JPH07100762A - Grinding device - Google Patents

Grinding device

Info

Publication number
JPH07100762A
JPH07100762A JP24502793A JP24502793A JPH07100762A JP H07100762 A JPH07100762 A JP H07100762A JP 24502793 A JP24502793 A JP 24502793A JP 24502793 A JP24502793 A JP 24502793A JP H07100762 A JPH07100762 A JP H07100762A
Authority
JP
Japan
Prior art keywords
grinding
diameter
wheel
ground
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24502793A
Other languages
Japanese (ja)
Inventor
Takayuki Hotta
尊之 堀田
Takao Yoneda
孝夫 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP24502793A priority Critical patent/JPH07100762A/en
Publication of JPH07100762A publication Critical patent/JPH07100762A/en
Pending legal-status Critical Current

Links

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

PURPOSE:To reduce the dispersion of the working cycle time due to the change in the cutting performance of a grinding wheel, as for a grinding device. CONSTITUTION:A worked state calculating means 140 calculates a plurality of factors showing the worked state which changes according to the change in the cutting performance of a grinding wheel 19, and a forestage grinding completion diameter correcting means 150 performs correction so that the previously determined forestage grinding completion diameter is set close to the target finished diameter according to the degree of the excellent cutting performance of a grinding wheel through the fuzzy estimation, using a plurality of factors as input information. A control means 130 grinds a ground surface by the grinding wheel by advancing the wheel spindle stock 13 up to the time when the outside diameter of the ground surface Wa becomes equal to the forestage grinding completion diameter corrected by the forestage grinding completion diameter correcting means, and then the wheel spindle stock is advanced at a fine grinding speed, and the ground surface is ground by the grinding wheel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、工作物の円筒状の外径
を研削する研削装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grinding device for grinding a cylindrical outer diameter of a workpiece.

【0002】[0002]

【従来の技術】円筒研削盤等の研削装置においては、図
11に示すように、主軸台と心押台のセンタ15a,1
6aにより支持した工作物Wに対し回転する砥石車19
を有する砥石台を送り込んで被研削面の外径を研削して
いる。砥石台の位置を、図12の図表の線Gに示すよう
に、粗研削G1、精研削G2、微研削G3と順次送り速度を減
少させながら送り込むことにより、工作物Wの被研削面
Waの外径は、砥石台位置に換算した値で示せば、例えば
線Hに示すように減少する。この種の円筒研削加工にお
いては、高い精度を得るためにインプロセス定寸装置2
4を用いて研削中に被研削面の外径を計測しながら加工
を行い、被研削面Waの外径が予め定められた粗研削完了
径d1及び精研削完了径d2に達した時点で、それぞれ送り
速度を粗研送りから精研送りに、また精研送りから微研
送りに切り替え、仕上目標径Dに達すれば研削加工を完
了し、必要に応じスパークアウト研削を行って、砥石台
を後退させている。ある時点における線GとHの差は、
研削加工に必要な研削抵抗を与えるための工作物及びそ
の支持部の撓み(研削残量)である。
2. Description of the Related Art In a grinding machine such as a cylindrical grinder, as shown in FIG. 11, the centers 15a, 1 of the headstock and tailstock are used.
Grinding wheel 19 that rotates with respect to the workpiece W supported by 6a
The outer diameter of the surface to be ground is ground by sending in a grindstone stand having. As shown by the line G in the diagram of FIG. 12, the grindstone position is sequentially fed to the workpiece W by rough grinding G1, fine grinding G2, and fine grinding G3 while decreasing the feed speed.
If the outer diameter of Wa is represented by a value converted to the position of the grinding wheel head, it decreases as shown by a line H, for example. In this type of cylindrical grinding, in-process sizing device 2 is used to obtain high accuracy.
When the outer diameter of the surface to be ground Wa reaches the predetermined rough grinding completion diameter d1 and fine grinding completion diameter d2, which is performed while measuring the outer diameter of the surface to be ground during grinding using 4, The feed rate is switched from coarse to fine feed and from fine to fine feed, and if the finishing target diameter D is reached, the grinding process is completed, spark-out grinding is performed as necessary, and the grinding head is moved. It is retreating. The difference between lines G and H at some point is
It is the deflection (remaining amount of grinding) of the workpiece and its supporting portion for giving the grinding resistance necessary for grinding.

【0003】[0003]

【発明が解決しようとする課題】しかし図12に示す関
係は砥石車19の切れ味により異なったものとなる。す
なわち、砥石車19の切れ味がよい場合(例えばツルー
イング直後)は、図13の線Ga及びHaに示すように、研
削残量が小さいので比較的早い時点で粗研削完了径d1に
達する。これにより砥石台の粗研削送りが短くなり、こ
れに応じて送り速度の小さい精研削及び微研削送りが長
くなるので、1本の工作物を研削加工するための合計時
間、すなわちサイクルタイムは長くなる。これと逆に砥
石車19の切れ味が悪くなった場合(例えばツルーイン
グ後相当本数の工作物を加工した後)には粗研削送りが
長くなり、これによって生じた工作物Wの撓みによって
粗研削及び微研削送りが短くなるので、図13の線Gb及
びHbに示すように、サイクルタイムは短くなる。すなわ
ち砥石車の切れ味の変化によりサイクルタイムのばらつ
きを生じる。連続した加工ラインで工作物を加工する場
合には、一部の加工ステーションにこのようなばらつき
があると、加工ライン全体のネックとなって加工ライン
の能率を低下させるので好ましくない。
However, the relationship shown in FIG. 12 differs depending on the sharpness of the grinding wheel 19. That is, when the grinding wheel 19 has a good sharpness (for example, immediately after truing), as shown by the lines Ga and Ha in FIG. 13, since the remaining amount of grinding is small, the rough grinding completion diameter d1 is reached relatively early. As a result, the rough grinding feed of the wheel head becomes shorter, and the fine grinding and the fine grinding feeding with a low feed speed become longer accordingly. Therefore, the total time for grinding one workpiece, that is, the cycle time is long. Become. On the contrary, when the sharpness of the grinding wheel 19 becomes poor (for example, after processing a considerable number of workpieces after truing), the rough grinding feed becomes long, and the deflection of the workpiece W caused by this causes rough grinding and Since the fine grinding feed becomes shorter, the cycle time becomes shorter as shown by the lines Gb and Hb in FIG. That is, the cycle time varies depending on the sharpness of the grinding wheel. In the case of machining a workpiece on a continuous machining line, if there is such variation in some machining stations, it becomes a neck of the whole machining line and the efficiency of the machining line is lowered, which is not preferable.

【0004】本発明は、粗研削及び精研削等の前段研削
の完了時の径を砥石車の切れ味に応じて補正することに
より、このような問題を解決することを目的とする。
An object of the present invention is to solve such a problem by correcting the diameter at the time of completion of pre-stage grinding such as rough grinding and fine grinding according to the sharpness of the grinding wheel.

【0005】[0005]

【課題を解決するための手段】このために、本発明によ
る研削装置は、図1に示すように、モータにより回転駆
動される砥石車19を有する砥石台13と、前記砥石車
19とこれにより研削される工作物Wが互いに接近離間
する方向に前記砥石台13と工作物Wを相対移動させる
駆動手段100と、前記工作物Wに対する前記砥石台1
3の位置を検出する位置検出手段110と、研削中に工
作物Wの被研削面Waの外径を計測する定寸手段120を
備え、前段研削に引き続いて微研削を行って前記被研削
面Waを仕上目標径とする研削装置において、前記砥石車
19の切れ味の変化と関連して変化する加工状態を示す
複数の因子を演算する加工状態演算手段140と、上記
複数の因子を入力情報としてファジー推論により砥石車
の切れ味がよい場合にはその程度に応じて予め定められ
た前段研削完了径を仕上目標径に近づけるように補正す
る前段研削完了径補正手段150と、前記駆動手段10
0を作動させて先ず前記定寸手段120により計測され
る被研削面Waの外径が前記前段研削完了径補正手段15
0により補正された前段研削完了径になるまで前記砥石
台13を前段研削速度で前進させて前記砥石車19によ
り被研削面Waを研削し、次いで前記砥石台13を微研削
速度で前進させて前記砥石車19により被研削面Waを研
削する制御手段130を備えたことを特徴とするもので
ある。
To this end, the grinding apparatus according to the present invention, as shown in FIG. 1, has a grinding wheel base 13 having a grinding wheel 19 which is rotationally driven by a motor, the grinding wheel 19 and the grinding wheel 19 thereby. Driving means 100 for relatively moving the grindstone base 13 and the workpiece W in a direction in which the workpieces W to be ground come close to and away from each other, and the grindstone base 1 for the workpiece W.
The position detecting means 110 for detecting the position of No. 3 and the sizing means 120 for measuring the outer diameter of the surface to be ground Wa of the workpiece W during grinding are provided, and the surface to be ground is subjected to fine grinding subsequent to the pre-stage grinding. In a grinding device having a finishing target diameter of Wa, a processing state calculation means 140 for calculating a plurality of factors indicating a processing state that changes in association with a change in sharpness of the grinding wheel 19, and the plurality of factors as input information. When the sharpness of the grinding wheel is good by fuzzy reasoning, the pre-stage grinding completion diameter correcting means 150 for correcting the pre-stage grinding completion diameter determined in advance according to the degree of the sharpness to the target finish diameter, and the driving means 10
When the outer diameter of the surface to be ground Wa measured by the sizing means 120 is operated 0, the outer diameter of the ground surface Wa is corrected by the pre-stage grinding completion diameter correcting means 15
The grinding wheel base 13 is moved forward at the front-stage grinding speed until the front-stage grinding complete diameter corrected by 0 is reached, the surface to be ground Wa is ground by the grinding wheel 19, and then the grinding wheel base 13 is moved forward at the fine grinding speed. A control means 130 for grinding the surface Wa to be ground by the grinding wheel 19 is provided.

【0006】[0006]

【作用】前段研削完了径補正手段150は、加工状態演
算手段140により演算された複数の因子を入力情報と
してファジー推論により、砥石車の切れ味がよい場合に
は、その程度に応じて予め定められた前段研削完了径を
仕上目標径に近づけるように補正する。制御手段130
は駆動手段100を介して砥石台13を先ず比較的速い
切込み送り速度で前進させて砥石車19により工作物W
の被研削面Waを前段研削し、定寸手段120により計測
される被研削面Waの外径が前段研削完了径補正手段15
0により補正された前段研削完了径になれば前段研削を
終了する。引き続いて制御手段130は切込み送り速度
を比較的遅い微研削速度に切り替えて砥石台13を前進
させて被研削面Waの微研削を行う。定寸手段120によ
り計測される被研削面Waの外径が仕上目標径に達すれ
ば、制御手段130は必要に応じてスパークアウト研削
を行い、砥石台13を後退させて研削を終了する。
When the grinding wheel is sharp, the pre-stage grinding completion diameter correction means 150 is predetermined according to the degree of sharpness of the grinding wheel by fuzzy reasoning using a plurality of factors calculated by the processing state calculation means 140 as input information. Correct the front-stage grinding completion diameter so that it is close to the finishing target diameter. Control means 130
First, the grinding wheel base 13 is advanced at a relatively high cutting feed rate through the driving means 100, and the workpiece W is moved by the grinding wheel 19.
The outer diameter of the surface Wa to be ground, which is measured by the sizing means 120, is the front-stage grinding completion diameter correction means 15
When the pre-stage grinding completion diameter corrected by 0 is reached, the pre-stage grinding is terminated. Subsequently, the control means 130 switches the cutting feed speed to a relatively low fine grinding speed and advances the grindstone base 13 to finely grind the surface Wa to be ground. When the outer diameter of the surface to be ground Wa measured by the sizing means 120 reaches the finishing target diameter, the control means 130 performs spark-out grinding as necessary, retracts the wheel head 13, and finishes the grinding.

【0007】[0007]

【発明の効果】このような本発明によれば、砥石車の切
れ味がよい場合には、仕上目標径に近づくように補正さ
れた前段研削完了径まで前段研削において研削されるの
で、送り速度の小さい微研削送りが長くなることはな
く、従ってサイクルタイムが長くなることはない。これ
によりサイクルタイムのばらつきが減少すると共に、平
均サイクルタイムも従来に比して減少する。
As described above, according to the present invention, when the grinding wheel has a good sharpness, the pre-stage grinding is performed up to the pre-stage grinding completion diameter corrected so as to approach the finishing target diameter. Small fine grinding feeds will not be long and therefore cycle times will not be long. As a result, the variation in cycle time is reduced and the average cycle time is also reduced as compared with the conventional case.

【0008】[0008]

【実施例】以下に図2〜図5に示す実施例により、本発
明の説明をする。図2に示すように、研削盤10のベッ
ド11上に左右方向(Z方向)移動可能に案内支持した
工作物テーブル12上には、主軸15を軸承する主軸台
14と心押台16が左右方向に対向して同軸的に設けら
れ、工作物Wは主軸15と心押台16に設けたセンタ1
5a,16aにより両端が支持されている。主軸15は
主軸台14に設けたモータ18により回転駆動され、工
作物Wは左端部が主軸15から突設された回止め部材1
7に係合されて主軸15と共に回転される。
EXAMPLES The present invention will be described below with reference to examples shown in FIGS. As shown in FIG. 2, a headstock 14 and a tailstock 16 for bearing a main spindle 15 and a tailstock 16 are placed on the left and right sides of a worktable 12, which is guided and supported on a bed 11 of a grinding machine 10 so as to be movable in the left-right direction (Z direction). The workpiece W is coaxially provided so as to be opposed to each other in the direction of the center 1 provided on the spindle 15 and the tailstock 16.
Both ends are supported by 5a and 16a. The spindle 15 is rotationally driven by a motor 18 provided on the spindle stock 14, and the workpiece W has a left end portion protruding from the spindle 15 to prevent the detent member 1 from rotating.
7 and is rotated together with the main shaft 15.

【0009】また、ベッド11上には、Z方向と直交す
る水平なX方向に移動可能に砥石台13が案内支持さ
れ、この砥石台13にはCBN砥石等の砥石車19が主
軸15と平行な砥石軸20により軸承され、Vベルト回
転伝達機構21を介してモータ22により回転駆動され
る。ベッド11に設けたサーボモータ23は、数値制御
装置30のパルス分配回路34から分配される制御パル
スに基づいて作動する駆動回路41により制御駆動さ
れ、図略の送りねじ装置を介して砥石台13にX方向の
送りを与えるものである。エンコーダ等の位置検出器2
5はサーボモータ23の回転角度を介して砥石台13の
移動位置を検出し、この検出値はセンサコントローラ4
2を介して数値制御装置30に入力される。
A grindstone base 13 is guided and supported on the bed 11 so as to be movable in a horizontal X direction orthogonal to the Z direction, and a grindstone wheel 19 such as a CBN grindstone is parallel to the spindle 15 on the grindstone base 13. It is supported by a simple grindstone shaft 20 and is rotationally driven by a motor 22 via a V-belt rotation transmission mechanism 21. The servomotor 23 provided in the bed 11 is controlled and driven by a drive circuit 41 that operates based on a control pulse distributed from the pulse distribution circuit 34 of the numerical controller 30, and the grindstone base 13 is driven via a feed screw device (not shown). To feed in the X direction. Position detector 2 such as encoder
Reference numeral 5 detects the moving position of the grindstone 13 via the rotation angle of the servomotor 23, and the detected value is the sensor controller 4
It is input to the numerical control device 30 via 2.

【0010】工作物テーブル12上に設置されたインプ
ロセス定寸装置24は、1対の測定子34aの先端部を
研削中の工作物Wの被研削面Waに係合してその外径寸法
を連続的に直接測定し、その測定信号(アナログ信号)
は数値制御装置30に入力される。
The in-process sizing device 24 installed on the workpiece table 12 engages the tips of the pair of measuring elements 34a with the surface to be ground Wa of the workpiece W being ground to measure its outer diameter. Continuously and directly, and the measurement signal (analog signal)
Is input to the numerical controller 30.

【0011】数値制御装置30は、図2に示すように、
研削装置全体を制御し管理する中央処理装置(CPU)
31、メモリ32、外部とのデータの授受を行うインタ
フェース33、及びCPU31からの指令に応じて駆動
パルスを分配送出するパルス分配回路34を備えてい
る。CPU31には、A−Dコンバータ35を介して定
寸装置24が接続され、またセンサコントローラ42が
接続されている。このセンサコントローラ42はCPU
31により制御され、前述の位置検出器25が接続され
ている。更に、インタフェース33には、制御データ等
を入力するキーボード等の入力装置40が接続され、ま
たパルス分配回路34には、駆動回路41を介して前述
のサーボモータ23が接続されている。メモリ32に
は、工作物Wを加工するための加工プログラム、研削完
了径の補正処理を行うためのプログラム、ファジー推論
を実行するための各メンバシップ関数及びプロダクショ
ンルール、並びにその他のデータ等が格納されている。
As shown in FIG. 2, the numerical control device 30 has a
Central processing unit (CPU) that controls and manages the entire grinding machine
3, a memory 32, an interface 33 for exchanging data with the outside, and a pulse distribution circuit 34 for distributing and transmitting drive pulses in response to a command from the CPU 31. To the CPU 31, the sizing device 24 is connected via the A / D converter 35, and the sensor controller 42 is connected. This sensor controller 42 is a CPU
The position detector 25 is connected to the position detector 25 described above. Further, the interface 33 is connected to an input device 40 such as a keyboard for inputting control data and the like, and the pulse distribution circuit 34 is connected to the servo motor 23 described above via a drive circuit 41. The memory 32 stores a machining program for machining the workpiece W, a program for correcting the grinding completion diameter, membership functions and production rules for executing fuzzy inference, and other data. Has been done.

【0012】本実施例と請求項の関係において、サーボ
モータ23が駆動手段100を、位置検出器25が位置
検出手段110を、定寸装置24が定寸手段120を、
CPU31及びパルス分配回路34が制御手段130
を、CPU31及びメモリ32が加工状態演算手段14
0及び前段研削完了径補正手段150をそれぞれ構成し
ている。
In the relationship between this embodiment and the claims, the servo motor 23 is the driving means 100, the position detector 25 is the position detecting means 110, and the sizing device 24 is the sizing means 120.
The CPU 31 and the pulse distribution circuit 34 are control means 130.
The CPU 31 and the memory 32 are the processing state calculating means 14
0 and pre-stage grinding completion diameter correcting means 150 are respectively configured.

【0013】次に、上記のように構成された本実施例の
動作の説明をする。入力装置40からの指令により研削
装置が作動を開始すると、数値制御装置30のCPU3
1は、砥石車19が回転し、主軸台14と心押台16に
より支持された工作物Wがモータ18により所定の速度
で回転した状態で、主加工プログラム(図示省略)に基
づき、予め設定した粗研削送り速度で砥石台13を前進
させ、工作物Wの粗研削を実施する。粗研削の間に時々
刻々変化する砥石台13の切込み送り位置は位置検出器
25により検出され、その検出値はセンサコントローラ
42を経てCPU31に入力され、また定寸装置24は
測定子34aが工作物Wの被研削面Waに係合されて被研
削面Waの外径をインプロセス計測し、その計測値はA−
Dコンバータ35によりデジタル信号に変換してCPU
31に入力される。
Next, the operation of the present embodiment configured as described above will be described. When the grinding device starts operating in response to a command from the input device 40, the CPU 3 of the numerical control device 30
1 is a state in which the grinding wheel 19 is rotated and the workpiece W supported by the headstock 14 and the tailstock 16 is rotated at a predetermined speed by the motor 18 based on a main machining program (not shown). The grindstone base 13 is moved forward at the rough grinding feed speed, and the rough grinding of the workpiece W is performed. The cutting feed position of the grindstone 13 that changes from moment to moment during rough grinding is detected by the position detector 25, and the detected value is input to the CPU 31 via the sensor controller 42, and the sizing device 24 operates the probe 34a. The outer diameter of the surface to be ground Wa engaged with the surface to be ground Wa of the object W is measured in-process, and the measured value is A-
The digital signal is converted by the D converter 35 into a CPU
It is input to 31.

【0014】粗研削が進行し定寸装置24により計測さ
れた被研削面Waの径が粗研削完了径D1に達すれば、CP
U31は切込み送り速度を粗研削送り速度より小さい予
め設定された精研削送り速度に切り替えて砥石台13を
前進させ、工作物Wの精研削を実施する。精研削が進行
し定寸装置24により計測された被研削面Waの径が精研
削完了径D2に達すれば、CPU31は切込み送り速度を
更に小さく予め設定された微研削送り速度に切り替えて
砥石台13を前進させ、工作物Wの微研削を実施する。
そして定寸装置24により計測された被研削面Waの径が
仕上目標径Dに達すればCPU31は砥石台13の送り
を停止し、所定時間のスパークアウト研削を行ってから
砥石台13を後退させてその工作物Wの研削加工を終了
し、引き続き次の工作物Wの加工を行う。
When the rough grinding progresses and the diameter of the surface to be ground Wa measured by the sizing device 24 reaches the rough grinding completion diameter D1, CP
U31 switches the cutting feed rate to a preset fine-grinding feed rate that is smaller than the rough-grinding feed rate and advances the grindstone base 13 to perform fine-grinding of the workpiece W. When the fine grinding progresses and the diameter of the surface to be ground Wa measured by the sizing device 24 reaches the fine grinding completed diameter D2, the CPU 31 switches the cutting feed speed to a smaller fine feed speed set in advance to change the grinding wheel head. 13 is advanced to perform fine grinding of the workpiece W.
When the diameter of the surface to be ground Wa measured by the sizing device 24 reaches the finishing target diameter D, the CPU 31 stops the feed of the grindstone 13, performs spark-out grinding for a predetermined time, and then retracts the grindstone 13. Then, the grinding of the workpiece W is completed, and the next workpiece W is continuously processed.

【0015】以上に述べた本実施例の動作は、粗研削完
了径D1及び精研削完了径D2が研削状態に応じて補正され
る点を除き、図12に示す従来技術の作動と実質的に同
一である。また、砥石車19は所定数の工作物Wの加工
がなされる都度ツルーイングにより研削面の整形がなさ
れ、ツルーイング後の工作物Wの加工本数はメモリ32
に記憶される。
The operation of the present embodiment described above is substantially the same as the operation of the prior art shown in FIG. 12 except that the rough grinding completion diameter D1 and the fine grinding completion diameter D2 are corrected according to the grinding state. It is the same. The grinding wheel 19 has its grinding surface shaped by truing every time a predetermined number of workpieces W are machined, and the number of workpieces W after truing is stored in the memory 32.
Memorized in.

【0016】本実施例では前述した粗研削及び精研削の
間に、図3のフローチャートに示す研削完了径補正処理
がなされる。粗研削が開始されればこれと平行してこの
研削完了径補正処理が開始される。先ずCPU31は図
3のステップ100及びステップ101において、定寸
装置24により計測された被研削面Waの径及び位置検出
器25により検出された砥石台13の位置を入力する。
砥石台13の位置は、工作物Wと砥石車19の間の熱変
位及び砥石車19の摩耗による誤差を補正したものとす
る。続くステップ102でCPU31は、入力された被
研削面Waの径と砥石台13の位置(被研削面Waの径に換
算した値)の差として、研削残量Zを演算する。
In this embodiment, the grinding completion diameter correction process shown in the flowchart of FIG. 3 is performed between the rough grinding and the fine grinding described above. When rough grinding is started, this grinding completion diameter correction processing is started in parallel with this. First, in step 100 and step 101 of FIG. 3, the CPU 31 inputs the diameter of the surface to be ground Wa measured by the sizing device 24 and the position of the wheel head 13 detected by the position detector 25.
It is assumed that the position of the grinding wheel base 13 is corrected for the error caused by the thermal displacement between the workpiece W and the grinding wheel 19 and the abrasion of the grinding wheel 19. In subsequent step 102, the CPU 31 calculates the remaining grinding amount Z as the difference between the input diameter of the surface to be ground Wa and the position of the grindstone base 13 (value converted to the diameter of the surface to be ground Wa).

【0017】次いでCPU31はステップ103におい
て、ステップ101で入力された砥石台13の位置を予
め定められた指定位置と比較して粗研削完了径の補正を
行うか否かを判断する。CPU31は砥石台13が指定
位置に達していなければステップ100〜102を繰り
返し、指定位置に達すれば制御動作をステップ104に
進める。この指定位置は、粗研削がある程度進行して研
削状態が安定した位置で、かつ砥石車19の切れ味がも
っとも悪くなった状態でもそれ以前に精研削に切り替わ
ることがない位置に定められる。なおこの粗研削完了径
の補正は、本実施例では砥石台13の位置が予め定めら
れた指定位置となったときに行うようにしたが、ステッ
プ100で入力された被研削面Waの径が予め定められた
指定径となったときに行うようにしてもよい。
Next, in step 103, the CPU 31 compares the position of the grinding wheel base 13 input in step 101 with a predetermined designated position and determines whether to correct the rough grinding completion diameter. If the grinding wheel head 13 has not reached the designated position, the CPU 31 repeats steps 100 to 102, and if it reaches the designated position, advances the control operation to step 104. This designated position is set to a position where the rough grinding progresses to a certain extent and the grinding state is stable, and even before the grinding wheel 19 has the worst sharpness, it does not switch to the fine grinding before that. In this embodiment, the correction of the rough grinding completion diameter is performed when the position of the grindstone base 13 reaches a predetermined designated position. However, the diameter of the grinding surface Wa input in step 100 is It may be performed when the designated diameter is determined in advance.

【0018】砥石台13が指定位置に達すれば、CPU
31は制御動作をステップ104に進めて加工本数比N
を演算する。この加工本数比Nは、ツルーイング後の工
作物Wの加工本数をツルーイングインターバルの間にな
される全加工本数で除算したものである。続くステップ
105で、この加工本数比Nとステップ102で演算し
た研削残量Zに基づき、CPU31はファジー推論によ
り粗研削完了径の補正率Rを演算する。このファジー推
論の内容は次の通りである。
When the grindstone base 13 reaches the designated position, the CPU
31 indicates that the control operation proceeds to step 104 and the machining number ratio N
Is calculated. This machining number ratio N is the number of machining of the workpiece W after truing divided by the total number of machining performed during the truing interval. In the following step 105, the CPU 31 calculates the rough grinding completion diameter correction rate R by fuzzy reasoning based on the machining number ratio N and the remaining grinding amount Z calculated in step 102. The contents of this fuzzy reasoning are as follows.

【0019】先ず本実施例の研削装置のメモリ32に
は、図4の(a)及び(b)に示す研削残量及び加工本数比に
関する入力情報メンバシップ関数、図5に示す出力情報
メンバシップ関数、並びに図6の(a)及び(b)に示す粗研
削及び精研削についてのプロダクションルールが記憶さ
れている。研削残量及び加工本数比に関する入力情報メ
ンバシップ関数の横軸は、研削残量、加工本数比を表
し、縦軸は0から1までのグレードを表す。SML、M
DL、LRGは、小さい、中ぐらい、大きいと思われる
それぞれの研削残量、加工本数比に対するグレードの変
化を表す関数である。出力情報メンバシップ関数の横軸
は補正率を表し、縦軸は0から1までのグレードを表
す。NLG、NML、NSL・・・はプロダクションル
ールで選択される関数であり、グレードから頭切りされ
た関数の面積重心から補正率が算出される。CPU31
は先ずステップ102で演算した研削残量Zと研削残量
のメンバシップ関数により、グレードを演算する。図示
の例では図4の(a)に示すように、研削残量についての
グレードは、SMLに対しては0.4、MDLに対しては
0.6と演算される。同様に加工本数比についてのグレー
ドは、ZROに対しては0.2、SMLに対しては0.8と演
算される。この各数値を図6(a)の粗研削のプロダクシ
ョンルールに適用してMINをとれば図7のようにな
り、これに基づき出力情報メンバシップ関数の3つの関
数を頭切りし、図5の3つの関数の斜線部を合わせた面
積の重心から、CPU31によって補正率Rを演算す
る。この結果、補正率Rは52パーセントと演算され
る。
First, in the memory 32 of the grinding apparatus of this embodiment, the input information membership function relating to the remaining grinding amount and the ratio of the number of machining shown in (a) and (b) of FIG. 4 and the output information membership shown in FIG. The functions and the production rules for rough grinding and fine grinding shown in FIGS. 6A and 6B are stored. Input information relating to remaining grinding amount and number of processed lines The horizontal axis of the membership function represents the remaining amount of grinding and the number of processed lines, and the vertical axis represents grades from 0 to 1. SML, M
DL and LRG are functions that represent changes in the grade with respect to the remaining amount of grinding, which is considered to be small, medium, and large, and the ratio of the number of processed lines. The horizontal axis of the output information membership function represents the correction factor, and the vertical axis represents the grade from 0 to 1. NLG, NML, NSL ... Are functions selected by the production rule, and the correction factor is calculated from the area centroid of the function truncated from the grade. CPU31
First, the grade is calculated based on the remaining grinding amount Z calculated in step 102 and the membership function of the remaining grinding amount. In the illustrated example, as shown in (a) of FIG. 4, the grade of the remaining amount of grinding is 0.4 for SML and for MDL.
Calculated as 0.6. Similarly, the grade for the number of processed lines is calculated as 0.2 for ZRO and 0.8 for SML. Applying these numerical values to the production rule for rough grinding in FIG. 6 (a) and taking MIN, the result is as shown in FIG. 7. Based on this, three functions of the output information membership function are truncated, The correction factor R is calculated by the CPU 31 from the center of gravity of the area obtained by combining the shaded portions of the three functions. As a result, the correction rate R is calculated to be 52%.

【0020】次いでCPU31は、ステップ106にお
いて、予め定められた基準粗研削完了径と仕上目標径D
との差分に補正率Rを乗じ、これを仕上目標径Dに加え
ることにより粗研削完了径D1を演算して、粗研削におけ
る研削完了径補正処理を終了する。平行して行われてい
る主加工プログラムによる粗研削が進行し、定寸装置2
4により計測された被研削面Waの径が、以上のようにし
て補正された粗研削完了径D1に達すれば、CPU31は
切込み送り速度を粗研削送り速度から精研削送り速度に
切り替えて砥石台13を前進させ、工作物Wの精研削を
開始する。研削残量Zが小さければ、また加工本数比N
が小さければ砥石車19の切れ味はよいので、補正率R
は砥石車19の切れ味がよい程小さい値になり、粗研削
完了径D1も小さくなって仕上目標径Dに近づく。
Next, in step 106, the CPU 31 determines a predetermined reference rough grinding completion diameter and a finish target diameter D.
The difference between and is multiplied by a correction factor R and added to the finishing target diameter D to calculate the rough grinding completion diameter D1, and the grinding completion diameter correction processing in rough grinding is completed. Rough grinding by the main machining program being performed in parallel progresses and the sizing device 2
When the diameter of the surface to be ground Wa measured by 4 reaches the rough grinding completion diameter D1 corrected as described above, the CPU 31 switches the cutting feed speed from the rough grinding feed speed to the fine grinding feed speed and the grinding wheel head. 13 is advanced and the fine grinding of the workpiece W is started. If the remaining amount Z of grinding is small, the ratio N
If the value is small, the sharpness of the grinding wheel 19 is good, so the correction factor R
Becomes smaller as the sharpness of the grinding wheel 19 becomes better, and the rough grinding completion diameter D1 also becomes smaller to approach the finishing target diameter D.

【0021】主加工プログラムで引き続き行われる精研
削においても、粗研削の場合と同様、精研削と平行して
図3のフローチャートによる研削完了径補正処理がなさ
れる。この場合には、図6の(b)に示すように、プロダ
クションルールが粗研削の場合とは多少異なるが、これ
を除き同様にしてCPU31は補正率Rを演算し、この
補正率Rと予め定められた基準精研削完了径に基づき、
粗研削の場合と同様にして精研削完了径D2を演算する。
平行して行われる精研削が進行し、定寸装置24により
計測される被研削面Waの径が、補正された精研削完了径
D2に達すれば、CPU31は切込み送り速度を精研削送
り速度から微研削送り速度に切り替えて砥石台13を前
進させ、工作物Wの微研削を開始する。粗研削の場合と
同様、精研削時の補正率Rも砥石車19の切れ味がよい
程小さい値になり、精研削完了径D2も小さくなって仕上
目標径Dに近づく。
Also in the fine grinding which is continuously performed by the main machining program, the grinding completion diameter correction process is performed in parallel with the fine grinding according to the flowchart of FIG. 3, as in the case of the rough grinding. In this case, as shown in (b) of FIG. 6, the production rule is slightly different from that in the case of rough grinding, but except for this, the CPU 31 similarly calculates the correction rate R, and the correction rate R is calculated in advance. Based on the established standard fine grinding completion diameter,
The fine grinding completion diameter D2 is calculated in the same manner as in the case of rough grinding.
The fine grinding performed in parallel progresses, and the diameter of the grinding surface Wa measured by the sizing device 24 is the corrected fine grinding completed diameter.
When reaching D2, the CPU 31 switches the cutting feed rate from the fine grinding feed rate to the fine grinding feed rate, advances the grinding wheel base 13, and starts fine grinding of the workpiece W. As in the case of rough grinding, the correction factor R during fine grinding becomes smaller as the sharpness of the grinding wheel 19 becomes better, and the fine grinding completion diameter D2 also becomes smaller and approaches the finishing target diameter D.

【0022】微研削においては、定寸装置24により計
測された被研削面Waの径が仕上目標径Dに達すれば、C
PU31は前述のようにしてその工作物Wの研削加工を
終了し、次の工作物Wの加工行う。
In fine grinding, if the diameter of the surface to be ground Wa measured by the sizing device 24 reaches the finishing target diameter D, C
The PU 31 finishes the grinding process of the workpiece W as described above, and processes the next workpiece W.

【0023】上述のように本実施例によれば、ツルーイ
ングの直後などで砥石車19の切れ味がよい場合には、
粗研削では仕上目標径Dに近づくように補正された粗研
削完了径D1まで研削がなされ、また精研削では仕上目標
径Dに近づくように補正された精研削完了径D2まで研削
がなされるので、送り速度の小さい微研削送りが、砥石
車19の切れ味が悪い場合に比して長くなることはな
い。従って砥石車19の切れ味がよい場合のサイクルタ
イムが切れ味が悪い場合に比して長くなることはなく、
サイクルタイムのばらつきが減少すると共に、平均サイ
クルタイムも従来に比して減少する。なお図5に示す出
力情報メンバシップ関数は、妥当な出力値が得られるよ
うに中央付近を100パーセントとしてほゞ左右対称と
すればよく、図示のように左右端をそれぞれ0及び20
0パーセントとする必要は必ずしもない。
As described above, according to this embodiment, when the sharpness of the grinding wheel 19 is good immediately after truing,
In the rough grinding, the grinding is performed up to the rough grinding completion diameter D1 that is corrected so as to approach the target finishing diameter D, and in the fine grinding, the fine grinding completion diameter D2 that is corrected so as to approach the target finishing diameter D is performed. The fine-grinding feed having a low feed speed does not become longer than that when the grinding wheel 19 has poor sharpness. Therefore, the cycle time when the sharpness of the grinding wheel 19 is good is not longer than that when the sharpness is poor,
The variation in cycle time is reduced and the average cycle time is also reduced as compared with the conventional one. It should be noted that the output information membership function shown in FIG. 5 should be approximately left-right symmetric with 100% in the vicinity of the center so that a reasonable output value can be obtained.
It does not necessarily have to be 0%.

【0024】ステップ105のファジー推論のための入
力情報は、上記実施例では研削残量及び加工本数比を使
用したが、加工本数比の代わりに研削残量変化量を使用
して研削完了径の補正率Rを演算するようにしてもよ
い。研削残量変化量は連続して記憶された多数の研削残
量を用いて演算された工作物1回転当たりの研削残量の
変化量であり、この演算のためには、図3のステップ1
02で、所定の小時間間隔で演算した研削残量を工作物
2回転分に相当する数だけメモリ32の記憶領域に予め
記憶しておく。研削残量変化量の入力情報メンバシップ
関数は図8に示す通りであり、粗研削及び精研削につい
てのプロダクションルールは図9の(a)及び(b)に示す通
りであり、それ以外のメンバシップ関数は前述の実施例
と同じである。
The input information for the fuzzy inference in step 105 uses the remaining grinding amount and the ratio of the number of machining lines in the above-mentioned embodiment. The correction factor R may be calculated. The amount of change in the remaining grinding amount is the amount of change in the remaining amount of grinding per one revolution of the workpiece calculated by using a large number of continuously stored remaining amounts of grinding. For this calculation, step 1 in FIG.
In 02, the remaining grinding amount calculated at a predetermined small time interval is stored in advance in the storage area of the memory 32 by the number corresponding to two rotations of the workpiece. The input information membership function of the remaining amount of grinding change is as shown in FIG. 8, the production rules for rough grinding and fine grinding are as shown in (a) and (b) of FIG. 9, and the other members are the same. The ship function is the same as in the previous embodiment.

【0025】更にファジー推論のための入力情報として
は、上記各実施例で使用した研削残量、加工本数比及び
研削残量変化量のほかに、研削残量速度比、研削残量振
れ量など砥石車19の切れ味に関連して変化するものを
使用することができる。研削残量速度比はステップ10
2で演算した研削残量を工作物1回転当たりの切込み速
度で除することにより得られ、この研削残量速度比の入
力情報メンバシップ関数は図10の(a)に示すようにな
る。研削残量振れ量は記憶領域にストックされた多数の
研削残量を用いて演算した工作物1回転当たりの研削残
量の最大値と最小値の差であり、この研削残量振れ量の
入力情報メンバシップ関数は図10の(b)に示すように
なる。これらの入力情報を使用する場合には、研削残量
変化量はその値が負で大きいほど、また研削残量振れ量
はその値が小さいほど、補正率Rが小さい値になるよう
にプロダクションルールを作成する。この入力情報は2
つに限らず、3つ以上を組み合わせて使用してもよい。
Further, as input information for fuzzy inference, in addition to the remaining grinding amount, the number of machining lines and the remaining grinding amount change amount used in each of the above-mentioned embodiments, the remaining grinding velocity ratio, the remaining grinding fluctuation amount, etc. What changes in relation to the sharpness of the grinding wheel 19 can be used. The remaining speed ratio of grinding is step 10
It is obtained by dividing the grinding residual amount calculated in 2 by the cutting speed per one rotation of the workpiece, and the input information membership function of this grinding residual velocity ratio is as shown in FIG. The amount of remaining grinding amount is the difference between the maximum value and the minimum value of the remaining amount of grinding per one revolution of the workpiece, calculated using a large number of remaining grinding amounts stored in the storage area. The information membership function is as shown in FIG. When these input information items are used, the production rule is set such that the smaller the negative residual grinding amount variation amount is, the smaller the grinding residual amount deviation amount is, and the smaller the correction rate R is. To create. This input information is 2
Not limited to one, three or more may be used in combination.

【0026】なお上記実施例では、最終仕上げである微
研削の前に行う前段研削を粗研削と精研削の2つに分け
て行ったが、研削条件によっては精研削を省略して本発
明を実施してもよい。
In the above embodiment, the pre-grinding performed before the fine grinding as the final finishing is divided into the rough grinding and the fine grinding, but the fine grinding may be omitted depending on the grinding conditions. You may implement.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による研削装置の構成を示す図であ
る。
FIG. 1 is a diagram showing a configuration of a grinding apparatus according to the present invention.

【図2】 本発明による研削装置の一実施例の全体構成
を示す図である。
FIG. 2 is a diagram showing an overall configuration of an embodiment of a grinding apparatus according to the present invention.

【図3】 図2に示す実施例における研削完了径補正処
理のサブプログラムを示すフローチャートである。
FIG. 3 is a flowchart showing a subprogram of a grinding completion diameter correction process in the embodiment shown in FIG.

【図4】 補正率のファジー推論に使用する入力情報メ
ンバシップ関数の例を示す図である。
FIG. 4 is a diagram showing an example of an input information membership function used for fuzzy inference of a correction factor.

【図5】 同じく出力情報メンバシップ関数の例を示す
図である。
FIG. 5 is a diagram similarly showing an example of an output information membership function.

【図6】 同じくプロダクションルールの例を示す図で
ある。
FIG. 6 is a diagram similarly showing an example of a production rule.

【図7】 図6のプロダクションルールに実際の数値を
適用した例を示す図である。
7 is a diagram showing an example in which actual numerical values are applied to the production rule of FIG.

【図8】 入力情報メンバシップ関数の別の例を示す図
である。
FIG. 8 is a diagram showing another example of the input information membership function.

【図9】 プロダクションルールの別の例で図8に対応
するものを示す図である。
FIG. 9 is a diagram showing another example of the production rule, which corresponds to FIG. 8;

【図10】 入力情報メンバシップ関数の更に別の例を
示す図である。
FIG. 10 is a diagram showing still another example of the input information membership function.

【図11】 本発明が対象とする研削装置の一例の主要
部を示す図である。
FIG. 11 is a diagram showing a main part of an example of a grinding apparatus targeted by the present invention.

【図12】 従来の研削装置の一例の基本的作動状態の
説明図である。
FIG. 12 is an explanatory diagram of a basic operating state of an example of a conventional grinding device.

【図13】 従来の研削装置における砥石車の切れ味の
違いによる作動の違いを説明する図である。
FIG. 13 is a diagram illustrating a difference in operation due to a difference in sharpness of a grinding wheel in a conventional grinding device.

【符号の説明】[Explanation of symbols]

13…砥石台、19…砥石車、100…駆動手段、11
0…位置検出手段、120…定寸手段、130…制御手
段、140…加工状態演算手段、150…前段研削完了
径補正手段、W…工作物、Wa…被研削面。
13 ... Grinding stone base, 19 ... Grinding wheel, 100 ... Driving means, 11
0 ... Position detecting means, 120 ... Sizing means, 130 ... Control means, 140 ... Machining state calculating means, 150 ... Pre-stage grinding completion diameter correcting means, W ... Workpiece, Wa ... Surface to be ground.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 モータにより回転駆動される砥石車を有
する砥石台と、前記砥石車とこれにより研削される工作
物が互いに接近離間する方向に前記砥石台と工作物を相
対移動させる駆動手段と、前記工作物に対する前記砥石
台の位置を検出する位置検出手段と、研削中に工作物の
被研削面の外径を計測する定寸手段を備え、前段研削に
引き続いて微研削を行って前記被研削面を仕上目標径と
する研削装置において、前記砥石車の切れ味の変化と関
連して変化する加工状態を示す複数の因子を演算する加
工状態演算手段と、上記複数の因子を入力情報としてフ
ァジー推論により砥石車の切れ味がよい場合にはその程
度に応じて予め定められた前段研削完了径を仕上目標径
に近づけるように補正する前段研削完了径補正手段と、
前記駆動手段を作動させて先ず前記定寸手段により計測
される被研削面の外径が前記前段研削完了径補正手段に
より補正された前段研削完了径になるまで前記砥石台を
前段研削速度で前進させて前記砥石車により被研削面を
研削し、次いで前記砥石台を微研削速度で前進させて前
記砥石車により被研削面を研削する制御手段を備えたこ
とを特徴とする研削装置。
1. A grindstone base having a grindstone wheel driven to rotate by a motor, and a drive means for relatively moving the grindstone base and the workpiece in a direction in which the grindstone wheel and a workpiece ground by the grindstone move toward and away from each other. A position detecting means for detecting the position of the grindstone with respect to the workpiece and a sizing means for measuring the outer diameter of the surface to be ground of the workpiece during grinding, and performing fine grinding subsequent to the pre-stage grinding, In a grinding device having a surface to be ground as a finishing target diameter, a processing state calculating means for calculating a plurality of factors indicating a processing state that changes in association with a change in sharpness of the grinding wheel, and the plurality of factors as input information. When the sharpness of the grinding wheel is good by fuzzy reasoning, a pre-stage grinding completion diameter correction means for correcting the pre-stage grinding completion diameter predetermined according to the degree to approach the finishing target diameter,
By operating the driving means, first, the wheel head is advanced at the pre-stage grinding speed until the outer diameter of the surface to be ground measured by the sizing means reaches the pre-stage grinding complete diameter corrected by the pre-stage grinding completion diameter correcting means. And a grinding means for grinding the surface to be ground by the grinding wheel, and then advancing the grinding wheel base at a fine grinding speed to grind the surface to be ground by the grinding wheel.
JP24502793A 1993-09-30 1993-09-30 Grinding device Pending JPH07100762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24502793A JPH07100762A (en) 1993-09-30 1993-09-30 Grinding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24502793A JPH07100762A (en) 1993-09-30 1993-09-30 Grinding device

Publications (1)

Publication Number Publication Date
JPH07100762A true JPH07100762A (en) 1995-04-18

Family

ID=17127493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24502793A Pending JPH07100762A (en) 1993-09-30 1993-09-30 Grinding device

Country Status (1)

Country Link
JP (1) JPH07100762A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016036832A (en) * 2014-08-07 2016-03-22 新日鐵住金株式会社 Measuring device of rolling roll and grinding method of rolling roll

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016036832A (en) * 2014-08-07 2016-03-22 新日鐵住金株式会社 Measuring device of rolling roll and grinding method of rolling roll

Similar Documents

Publication Publication Date Title
JP2637488B2 (en) Numerically controlled grinding machine
JP3467807B2 (en) Grinding equipment
US5315789A (en) Numerically controlled machine tool and method of controlling grinding operation thereof
US4053289A (en) Grinding method and apparatus with metal removal rate control
JPH0669663B2 (en) Numerical control grinder
JP2846881B2 (en) Numerically controlled grinding machine
JPH06114683A (en) Numerically controlled grinding machine
JPH07100762A (en) Grinding device
JP3413939B2 (en) Grinding equipment
JPH0288169A (en) Numerical control grinder
JP3385666B2 (en) Grinding equipment
JP3344064B2 (en) Grinding equipment
JPH08168957A (en) Grinding device
JP3404902B2 (en) Grinding equipment
JPH0839427A (en) Grinding device
JP3376650B2 (en) Grinding equipment
JP2786879B2 (en) Internal grinding device
JPH05337825A (en) Grinding wheel correcting device for multiple grinder
JP3413938B2 (en) Grinding equipment
JP3143657B2 (en) Grinding equipment
JP2592083B2 (en) Numerically controlled grinding machine
JPH07214466A (en) Grinding device
JPH06278021A (en) Grinding device
JP3086534B2 (en) Grinding machine for processing non-circular workpieces
JP3185464B2 (en) Grinding equipment

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040608

Free format text: JAPANESE INTERMEDIATE CODE: A02