JPH07265267A - Eye measuring device - Google Patents

Eye measuring device

Info

Publication number
JPH07265267A
JPH07265267A JP7033049A JP3304995A JPH07265267A JP H07265267 A JPH07265267 A JP H07265267A JP 7033049 A JP7033049 A JP 7033049A JP 3304995 A JP3304995 A JP 3304995A JP H07265267 A JPH07265267 A JP H07265267A
Authority
JP
Japan
Prior art keywords
light
eye
dimensional
reflected
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7033049A
Other languages
Japanese (ja)
Inventor
Yoshi Kobayakawa
嘉 小早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7033049A priority Critical patent/JPH07265267A/en
Publication of JPH07265267A publication Critical patent/JPH07265267A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure eye refraction with high accuracy by guiding the fundus reflected light to a two-dimensional light position sensor via a light flux aperture arranged conjunctively to the pupil of an eye under inspection in optical paths split by a light splitting member, and determining the eye refraction value based on the output of the two-dimensional light position sensor. CONSTITUTION:The wavelength light from a refraction measuring light source 23 passes through a dichromic mirror 10 and is reflected on a dichroic mirror 17, and the light source 23 is image-formed near the rear side focal point of an objective lens 1. The light flux reflected on the fundus Er of an eye E under inspection is reflected on a perforated mirror 20, and it is projected on a two-dimensional array sensor 19 via a lens 25 through the openings of a six-hole aperture 24. The passed light fluxes from the openings 24a, 24d; 24b, 24e; 24c, 24f of the six-hole aperture 24 are projected on ruled lines AD, BE, CF on the sensor 19 via a cylinder lens 18, and the refracting power in each ruled line direction is measured based on the interval between two light spots on each ruled line.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、眼屈折値を測定するた
めに用いられる眼測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an eye measuring device used for measuring an eye refraction value.

【0002】[0002]

【従来の技術】従来から構成を小型化した眼測定装置が
求められており、特に小型化を達成しながら高精度な眼
屈折測定が実施できる装置が望まれる。
2. Description of the Related Art Conventionally, there has been a demand for an eye measuring apparatus having a downsized structure, and in particular, an apparatus capable of performing highly accurate eye refraction measurement while achieving downsizing is desired.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、構成
を小型化しながら測定精度を悪化させずに、高精度な眼
屈折測定が行える眼測定装置を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an eye measuring device capable of highly accurate eye refraction measurement without downgrading the measurement accuracy while reducing the size of the structure.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る眼測定装置は、光分割部材と、該光分割
部材を介して点状光束を被検眼の眼底に投影する投影系
と、前記光分割部材によって分岐した光路の被検眼瞳孔
と略共役な位置に配置した光束絞りと、1つの二次元光
位置センサと、前記投影系により点状光束投影した被検
眼の眼底からの反射光を前記光分割部材と前記光束絞り
とを介して前記二次元光位置センサに導く受光系とを有
し、前記二次元光位置センサで検出した光束の位置を基
に眼屈折値を求めることを特徴とする。
An eye measuring apparatus according to the present invention for achieving the above object comprises a light splitting member, and a projection system for projecting a point light beam through the light splitting member onto the fundus of the eye to be examined. A light beam diaphragm arranged at a position substantially conjugate with the subject's eye pupil in the optical path branched by the light splitting member, one two-dimensional optical position sensor, and a two-dimensional light beam from the fundus of the subject's eye projected as a point-like light beam by the projection system. It has a light receiving system for guiding the reflected light to the two-dimensional light position sensor through the light splitting member and the light beam diaphragm, and obtains an eye refraction value based on the position of the light beam detected by the two-dimensional light position sensor. It is characterized by

【0005】[0005]

【作用】上述の構成を有する眼測定装置は、光分割部材
を介して点状光束を被検眼の眼底に投影し、眼底反射光
を光分割部材によって分割された光路中に被検眼瞳孔と
共役に配置した光束絞りを介して二次元光位置センサに
導光し、二次元光位置センサ上の光束位置を基に眼屈折
値を求める。
In the eye measuring device having the above-described structure, the point light beam is projected onto the fundus of the eye to be examined through the light splitting member, and the fundus reflected light is conjugated with the pupil of the eye to be examined in the optical path split by the light splitting member. The light is guided to the two-dimensional optical position sensor through the light beam diaphragm disposed at, and the eye refraction value is obtained based on the light beam position on the two-dimensional optical position sensor.

【0006】[0006]

【実施例】本発明を図示の実施例に基づいて詳細に説明
する。例えば、図1は本発明を理解するための第1の例
を示し、被検眼Eに対向して対物レンズ1が配置され、
この対物レンズ1の後方には、絞り2、光分割部材3、
4、円柱レンズ5a、CCD等から成る一次元センサア
レイ6aが配列されている。また、光分割部材3の反射
方向に円柱レンズ5b、一次元センサアレイ6bが配列
され、光分割部材4の反射方向に円柱レンズ5c、一次
元センサアレイ6cが配列されている。また、光軸Oを
中心にして図2に示すように、等角度等距離に6個の測
定光源7a〜7fが配置されている。これらの測定光源
7a〜7fには発光ダイオード等の点状光源が用いら
れ、少なくとも3径線方向にそれぞれ2個ずつ配置さ
れ、測定光源7aと7d、7bと7e、7cと7fは各
径線AD、BE、CF方向に配置されている。ただし、
被検眼Eの角膜Ecと装置のアライメントが合致している
場合には各径線ごとに光源7は1個ずつでもよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail based on the illustrated embodiments. For example, FIG. 1 shows a first example for understanding the present invention, in which an objective lens 1 is arranged facing an eye E to be inspected,
Behind this objective lens 1, a diaphragm 2, a light splitting member 3,
4, a cylindrical lens 5a, a one-dimensional sensor array 6a including a CCD and the like are arranged. Further, the cylindrical lens 5b and the one-dimensional sensor array 6b are arranged in the reflecting direction of the light dividing member 3, and the cylindrical lens 5c and the one-dimensional sensor array 6c are arranged in the reflecting direction of the light dividing member 4. Further, as shown in FIG. 2 with the optical axis O as the center, six measurement light sources 7a to 7f are arranged at equal angles and equal distances. A point light source such as a light emitting diode is used as each of the measurement light sources 7a to 7f, and at least two point light sources are arranged in each of the three radial directions. The measurement light sources 7a and 7d, 7b and 7e, 7c and 7f are each radial line. They are arranged in the AD, BE, and CF directions. However,
When the alignment between the cornea Ec of the eye E to be inspected and the apparatus is matched, one light source 7 may be provided for each radial line.

【0007】円柱レンズ5aの母線方向と、一次元アレ
イセンサ6aのアレイ配列方向は径線AD方向にあり、
円柱レンズ5aは光束を一次元アレイセンサ6a上に集
光する働きをなすものである。同様に、他の円柱レンズ
5bの母線方向と一次元アレイセンサ6bの配列方向、
及び円柱レンズ5cの母線方向と一次元アレイセンサ6
cの配列方向は、それぞれ各径線BE方向及びCE方向
になっている。また、各円柱レンズ6の母線と垂直な方
向で、絞り2と各一次元アレイセンサ7とは各円柱レン
ズ6により共役になっている。
The generatrix direction of the cylindrical lens 5a and the array arrangement direction of the one-dimensional array sensor 6a are in the radial line AD direction,
The cylindrical lens 5a functions to condense the light beam on the one-dimensional array sensor 6a. Similarly, the generatrix direction of the other cylindrical lens 5b and the arrangement direction of the one-dimensional array sensor 6b,
And the direction of the generatrix of the cylindrical lens 5c and the one-dimensional array sensor 6
The arrangement directions of c are the radial directions BE and CE, respectively. Further, the diaphragm 2 and each one-dimensional array sensor 7 are conjugated by each cylindrical lens 6 in a direction perpendicular to the generatrix of each cylindrical lens 6.

【0008】この例において、測定光源7a、7dは被
検眼Eの角膜Ec上にそれぞれ虚像7A' 、7D' を形成
し、またこれらの像7A' 、7D' は対物レンズ1によ
り絞り2、光分割部材3、4及び円柱レンズ5aを通っ
て一次元アレイセンサ6aに投影される。同様に、測定
光源7b、7eの像は光分割部材3により反射され、円
柱レンズ5bを通って一次元アレイセンサ6bに投影さ
れる。更に、測定光源7c、7fの像も光分割部材4に
より反射され、円柱レンズ5cを通り一次元アレイセン
サ6c上に投影される。この場合に、作動距離による誤
差を受け難くするために、絞り2を対物レンズ1の後側
焦点位置の近傍に配置することが望ましい。
In this example, the measurement light sources 7a and 7d form virtual images 7A 'and 7D' on the cornea Ec of the eye E to be inspected, and these images 7A 'and 7D' are formed by the objective lens 1 and the diaphragm 2 and light. It is projected on the one-dimensional array sensor 6a through the dividing members 3 and 4 and the cylindrical lens 5a. Similarly, the images of the measurement light sources 7b and 7e are reflected by the light splitting member 3, pass through the cylindrical lens 5b, and are projected on the one-dimensional array sensor 6b. Further, the images of the measurement light sources 7c and 7f are also reflected by the light splitting member 4, pass through the cylindrical lens 5c, and are projected onto the one-dimensional array sensor 6c. In this case, it is desirable to arrange the diaphragm 2 in the vicinity of the rear focal position of the objective lens 1 in order to make it difficult to receive an error due to the working distance.

【0009】図3は円柱レンズ5aと一次元アレイセン
サ6aの説明図であり、虚像7A'、7D' は一次元ア
レイセンサ6a上では像7A" 、7D" となるから、こ
れらの位置を求めればよい。このようにして求められた
3径線上の位置から、角膜曲率半径や角膜乱視等の角膜
形状を測定することができる。
FIG. 3 is an explanatory view of the cylindrical lens 5a and the one-dimensional array sensor 6a. Since the virtual images 7A 'and 7D' are images 7A "and 7D" on the one-dimensional array sensor 6a, their positions can be obtained. Good. The corneal shape such as the radius of curvature of the cornea and the corneal astigmatism can be measured from the positions on the three radial lines thus obtained.

【0010】角膜Ecは一般に乱視があるので回転楕円面
と仮定する。先ず、光軸O上に角膜Ecの曲率中心がない
場合は、一次元アレイセンサ7上の2つの像は中心に対
し非対称となる。即ち、図3に示す2つの像7A" 、7
D" の中心座標が径線AD方向の偏心を表すことにな
り、2方向の偏心を表すことになる。従って、2方向の
中心座標により二次元的偏心が測定できる。
Since the cornea Ec generally has astigmatism, it is assumed to be a spheroid. First, when there is no center of curvature of the cornea Ec on the optical axis O, the two images on the one-dimensional array sensor 7 are asymmetric with respect to the center. That is, the two images 7A ″, 7 shown in FIG.
The center coordinates of D "represent the eccentricity in the direction of the radial line AD, and represent the eccentricity in the two directions. Therefore, the two-dimensional center coordinates can measure the two-dimensional eccentricity.

【0011】また、偏心があっても像の間隔は不変であ
り、この間隔は角膜Ecの反射球面屈折力と反射円柱屈折
力のその径線方向成分との和に反比例する。この関係か
ら、3径線合わせて3つの関係式が得られることにな
り、未知数は球面、円柱屈折力及びその角度の3つであ
るから、これらの連立方程式から球面屈折力等を算出す
ることが可能である。
Further, even if there is eccentricity, the image interval remains unchanged, and this interval is inversely proportional to the sum of the reflective spherical refractive power of the cornea Ec and its radial component of the reflective cylindrical refractive power. From this relationship, three relational expressions including the three radial lines will be obtained. Since the unknowns are the spherical power, the cylindrical power, and the angle, the spherical power, etc. should be calculated from these simultaneous equations. Is possible.

【0012】図4は本発明を理解するための第2の例を
示し、ここで図1と同じ番号は同一部材を表している。
この実施例においては、図1の光分割部材3、4を用い
る代りに円柱レンズ板8が用いられている。この円柱レ
ンズ板8は図5に示すように、3径線AD、BE、CF
の方向にそれぞれ母線を持つ6個の円柱レンズ8a〜8
fによって構成され、かつその側面形状は図6に示すよ
うな楔形状になっていて、光束を光軸O方向に屈折させ
る機能を持っている。光位置センサとして、図7に示す
ような撮影用CCD等の二次元エリアアレイセンサ9が
用いられている。
FIG. 4 shows a second example for understanding the present invention, where the same numbers as in FIG. 1 represent the same members.
In this embodiment, a cylindrical lens plate 8 is used instead of using the light splitting members 3 and 4 of FIG. As shown in FIG. 5, the cylindrical lens plate 8 has three radial lines AD, BE, CF.
Cylindrical lenses 8a to 8 each having a generatrix in the direction of
6 and has a wedge shape as shown in FIG. 6 and has a function of refracting the light beam in the optical axis O direction. As the optical position sensor, a two-dimensional area array sensor 9 such as a photographing CCD as shown in FIG. 7 is used.

【0013】径線AD、BE、CFの線上に像7A" 、
7D" 等が投影されるから、これらの像7A" 、7D"
の間隔から上述のように角膜形状を測定することができ
る。円柱レンズ板8は6個の光源像からの光束が、絞り
2を通過して分離した位置に配置され、同様に母線と垂
直方向で絞り2とエリアアレイセンサ9とを共役にして
いる。また、楔形状の円柱レンズ8a〜8fによる偏向
作用は、精度を上げるため拡大した像の光束をエリアセ
ンサアレイ9内に入射することに役立っている。
An image 7A "is drawn on the lines of the radial lines AD, BE, CF.
Since 7D "and the like are projected, these images 7A" and 7D "
The corneal shape can be measured from the interval of as described above. The cylindrical lens plate 8 is arranged at positions where the light beams from the six light source images pass through the diaphragm 2 and are separated, and similarly, the diaphragm 2 and the area array sensor 9 are conjugated in the direction perpendicular to the generatrix. The deflecting action of the wedge-shaped cylindrical lenses 8a to 8f is useful for allowing the light flux of the enlarged image to enter the area sensor array 9 in order to improve the accuracy.

【0014】図8は本発明の実施例を示し、この実施例
は眼屈折測定と角膜形状測定の双方の機能を有し、かつ
受光部を共用している。先ず、角膜形状測定系について
は、点状光源である測定光源7a〜7dは図1の場合と
同様に配置されているが、対物レンズ1の後方にはダイ
クロイックミラー10が斜設され、その反射側の光軸に
はレンズ11、絞り12、円柱レンズ板13、レンズ1
4が順次に配置されている。レンズ14の後方には光路
変換用の全反射ミラー15を介してレンズ16、ダイク
ロイックミラー17、円柱レンズ板18、二次元アレイ
センサ19が順次に配置されている。
FIG. 8 shows an embodiment of the present invention. This embodiment has both the functions of eye refraction measurement and corneal shape measurement, and shares the light receiving portion. First, regarding the corneal shape measuring system, the measurement light sources 7a to 7d, which are point light sources, are arranged in the same manner as in the case of FIG. 1, but the dichroic mirror 10 is obliquely installed behind the objective lens 1 and its reflection is performed. A lens 11, a diaphragm 12, a cylindrical lens plate 13, and a lens 1 are provided on the side optical axis.
4 are sequentially arranged. A lens 16, a dichroic mirror 17, a cylindrical lens plate 18, and a two-dimensional array sensor 19 are sequentially arranged behind the lens 14 via a total reflection mirror 15 for optical path conversion.

【0015】ここで、絞り12は対物レンズ1及びレン
ズ11から成る光学系の後側焦点位置附近に置かれ、円
柱レンズ板13は円柱レンズに関しては図5、図6に示
す円柱レンズ板8と同様な構成になっており、楔形状に
よる偏向方向はAD、BE、CF方向である。レンズ1
4はフィールドレンスであり、この面に角膜像が投影さ
れ、この面をレンズ16により二次元アレイセンサ19
上に投影するようになっている。ダイクロイックミラー
17は測定光源7a〜7d等からの波長光を透過する特
性のものとされている。なお、6個の測定光源7a〜7
fは1個ずつ点灯することになる。円柱レンズ板18は
図9に示すように、測定径線方向に母線を有する3つの
円柱レンズ18a、18b、18cから成り、二次元ア
レイセンサ19の近傍に位置し、母線垂直方向の光を集
光する作用をなすものである。
Here, the diaphragm 12 is placed near the rear focal position of the optical system including the objective lens 1 and the lens 11, and the cylindrical lens plate 13 is the same as the cylindrical lens plate 8 shown in FIGS. With the same configuration, the deflection directions by the wedge shape are AD, BE, and CF directions. Lens 1
Reference numeral 4 is a field lens, on which a corneal image is projected, and the lens 16 is used to project a two-dimensional array sensor 19 on this surface.
It is designed to project on top. The dichroic mirror 17 has a characteristic of transmitting wavelength light from the measurement light sources 7a to 7d and the like. In addition, six measurement light sources 7a to 7
f will light up one by one. As shown in FIG. 9, the cylindrical lens plate 18 is composed of three cylindrical lenses 18a, 18b, and 18c having a generatrix in the measurement radial direction, is located near the two-dimensional array sensor 19, and collects light in the direction perpendicular to the generatrix. It has the function of shining.

【0016】二次元アレイセンサ19上に投影された像
は例えば図10に示すようになり、測定径線と同じ径線
AD、BE、CFで示す特定の径線上に光束が投影され
るから、これらの径線上の2光点の距離から角膜形状を
測定することが可能である。
The image projected on the two-dimensional array sensor 19 is, for example, as shown in FIG. 10, and since the light beam is projected on a specific radial line indicated by the same radial lines AD, BE, and CF as the measuring radial line, It is possible to measure the corneal shape from the distance between two light spots on these radial lines.

【0017】次に、眼屈折測定系については、光軸O上
のダイクロイックミラー10の背後の穴あきミラー20
に続いて絞り21、レンズ22、屈折測定用光源23が
順次に配置され、穴あきミラー20の反射側の光軸には
6穴絞り24、レンズ25、プリズム板26及びダイク
ロイックミラー17が配置されている。
Next, regarding the eye refraction measurement system, the perforated mirror 20 behind the dichroic mirror 10 on the optical axis O is used.
Then, a diaphragm 21, a lens 22 and a refraction measuring light source 23 are sequentially arranged, and a 6-hole diaphragm 24, a lens 25, a prism plate 26 and a dichroic mirror 17 are arranged on the optical axis of the reflection side of the perforated mirror 20. ing.

【0018】屈折測定用光源23からの波長光は、ダイ
クロイックミラー10を通過し、ダイクロイックミラー
17を反射するようになっている。屈折測定用光源23
には発光ダイオード等の点状光源が用いられ、これは正
視の被検眼Eの眼底Erと共役に配置することが望まし
い。屈折測定用光源23はレンズ22により対物レンズ
1の後側焦点附近に結像される。絞り21は中心に開口
を有し、被検眼Eの瞳と略共役になっている。また、6
穴絞り24は図11に示すように、光軸を中心にして等
距離等角度に設けられた6個の開口24a〜24fを有
し、同様に瞳に共役に配置されている。プリズム板26
は図12に示すように6個の楔プリズム26a〜26f
によって構成され、また二次元アレイセンサ19は円柱
レンズ18a、18b、18cの屈折力を考慮しないと
き屈折測定用光源23と共役になっている。
The wavelength light from the refraction measuring light source 23 passes through the dichroic mirror 10 and is reflected by the dichroic mirror 17. Refraction measuring light source 23
A point light source such as a light emitting diode is used for this, and it is desirable that this is arranged conjugate with the fundus Er of the eye E to be emmetropic. The refraction measuring light source 23 is imaged by the lens 22 near the rear focus of the objective lens 1. The diaphragm 21 has an opening at the center and is substantially conjugate with the pupil of the eye E to be examined. Also, 6
As shown in FIG. 11, the aperture stop 24 has six openings 24a to 24f that are equidistant and equiangular with respect to the optical axis, and are similarly arranged conjugate to the pupil. Prism plate 26
Is the six wedge prisms 26a to 26f as shown in FIG.
The two-dimensional array sensor 19 is conjugate with the refraction measuring light source 23 when the refracting powers of the cylindrical lenses 18a, 18b, and 18c are not taken into consideration.

【0019】被検眼Eの眼底Erから反射してきた光束は
穴あきミラー20で反射され、6穴絞り24の開口を通
りレンズ25により二次元アレイセンサ19に投影され
る。この場合に、6穴絞り24は瞳に共役であるから、
瞳周辺の3径線方向の6個所から反射光を取り出すこと
ができる。
The luminous flux reflected from the fundus Er of the eye E to be examined is reflected by the perforated mirror 20, passes through the opening of the 6-hole diaphragm 24, and is projected onto the two-dimensional array sensor 19 by the lens 25. In this case, since the 6-hole diaphragm 24 is conjugate to the pupil,
The reflected light can be taken out from six places around the pupil in the direction of the three-diameter line.

【0020】プリズム板26がない場合には、正視の被
検眼Eの眼底Erからの6光束は中心の一点に集中するこ
とになるが、プリズム板26はこれらの6光束の位置を
独立に測定できるように二次元アレイセンサ19上で分
離し、かつ円柱レンズ18a、18b、18cの各方向
に偏向する作用を果たしている。例えば、6穴絞り2ア
の開口24a、24dから出射した光束は、円柱レンズ
18aを通って二次元アレイセンサ19上で径線AD上
に至る。また、6穴絞り24の開口24b、24eから
の光束は円柱レンズ18bを通って径線BE上に至り、
同様に開口24c、24fからの光束は径線CF上に到
達するから、これらの各径線上の2光点の間隔から各径
線方向の屈折力を測定できる。即ち、3径線方向の屈折
力が求まり、径線方向の変化を正弦波的と仮定すれば、
円球屈折力、乱視度、乱視角から成る眼屈折値を求める
ことができる。
If the prism plate 26 is not provided, the six light beams from the fundus Er of the eye E to be emmetropic will be concentrated at one point in the center, but the prism plate 26 independently measures the positions of these six light beams. It separates on the two-dimensional array sensor 19 so that it can be deflected in each direction of the cylindrical lenses 18a, 18b, 18c. For example, the light flux emitted from the openings 24a and 24d of the 6-hole diaphragm 2a reaches the radial line AD on the two-dimensional array sensor 19 through the cylindrical lens 18a. Light fluxes from the openings 24b and 24e of the 6-hole diaphragm 24 pass through the cylindrical lens 18b and reach the radial line BE,
Similarly, since the light fluxes from the openings 24c and 24f reach the radial lines CF, the refracting power in each radial direction can be measured from the interval between the two light spots on each radial line. That is, if the refractive power in the radial direction is obtained and the change in the radial direction is assumed to be sinusoidal,
An eye refraction value composed of a spherical power, an astigmatic degree, and an astigmatic angle can be obtained.

【0021】上述の実施例は、3径線の場合を示した
が、勿論3径線以上でも同様に適用できることは云うま
でもない。また、光位置センサはアレイセンサを用いた
場合を説明したが、例えば半導体光位置検出器(ポジシ
ョンディテクタ)等のアナログ型光位置センサを用いて
もよい。
Although the above-mentioned embodiment shows the case of the three-diameter wire, it goes without saying that the same is applicable to the three-diameter wire or more. Further, although the case where the array position sensor is used as the optical position sensor has been described, an analog type optical position sensor such as a semiconductor optical position detector (position detector) may be used.

【0022】[0022]

【発明の効果】以上説明したように本発明に係る眼測定
装置は、眼底反射光を1つの二次元光位置センサで光束
位置検出する構成によって装置を小型化できると共に、
点状光束によって受光面上での光束位置が眼底の凹凸の
影響を受け難くすると共に、瞳孔と略共役な位置にある
光束絞りによって前眼部や場合によって眼鏡等の有害光
もより有効に除去できるようにして、受光面が広がった
ことによって発生し易くなった誤差を防止し、小型化し
ながら測定精度を悪化させずに高精度な測定を可能にす
る。
As described above, the eye measuring apparatus according to the present invention can be miniaturized by the structure in which the luminous flux position is detected by one two-dimensional optical position sensor for the fundus reflected light.
The point-like light flux makes it difficult for the light flux position on the light receiving surface to be affected by the unevenness of the fundus, and the light flux diaphragm located at a position approximately conjugate to the pupil more effectively removes harmful light such as the anterior eye part and possibly glasses. By doing so, it is possible to prevent an error that is likely to occur due to the spread of the light receiving surface, and to realize high-precision measurement without deteriorating the measurement accuracy while reducing the size.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の例の光学的構成図である。FIG. 1 is an optical configuration diagram of a first example.

【図2】測定光源の配置例の正面図である。FIG. 2 is a front view of an arrangement example of measurement light sources.

【図3】円柱レンズと一次元アレイセンサの関係の説明
図である。
FIG. 3 is an explanatory diagram of a relationship between a cylindrical lens and a one-dimensional array sensor.

【図4】第2の例の構成図である。FIG. 4 is a configuration diagram of a second example.

【図5】円柱レンズ板の正面図である。FIG. 5 is a front view of a cylindrical lens plate.

【図6】側面図である。FIG. 6 is a side view.

【図7】エリアアレイセンサ上の光点の説明図である。FIG. 7 is an explanatory diagram of light spots on the area array sensor.

【図8】実施例の構成図である。FIG. 8 is a configuration diagram of an embodiment.

【図9】円柱レンズ板の正面図である。FIG. 9 is a front view of a cylindrical lens plate.

【図10】アレイセンサと光点との関係の説明図であ
る。
FIG. 10 is an explanatory diagram of a relationship between an array sensor and a light spot.

【図11】6穴絞りの正面図である。FIG. 11 is a front view of a 6-hole diaphragm.

【図12】プリズム板の正面図である。FIG. 12 is a front view of a prism plate.

【符号の説明】[Explanation of symbols]

1 対物レンズ 12、21 絞り 7a〜7f 測定光源 13、18 円柱レンズ板 19 二次元エリアアレイセンサ 10、17 ダイクロイックミラー 20 穴あきミラー 23 屈折測定用光源 24 6穴絞り DESCRIPTION OF SYMBOLS 1 Objective lens 12,21 Stopper 7a-7f Measurement light source 13,18 Cylindrical lens plate 19 Two-dimensional area array sensor 10,17 Dichroic mirror 20 Perforated mirror 23 Refraction measurement light source 24 6-hole stop

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光分割部材と、該光分割部材を介して点
状光束を被検眼の眼底に投影する投影系と、前記光分割
部材によって分岐した光路の被検眼瞳孔と略共役な位置
に配置した光束絞りと、1つの二次元光位置センサと、
前記投影系により点状光束投影した被検眼の眼底からの
反射光を前記光分割部材と前記光束絞りとを介して前記
二次元光位置センサに導く受光系とを有し、前記二次元
光位置センサで検出した光束の位置を基に眼屈折値を求
めることを特徴とする眼測定装置。
1. A light splitting member, a projection system for projecting a point-like light flux onto the fundus of the eye to be examined via the light splitting member, and an optical path branched by the light splitting member at a position substantially conjugate to the pupil of the eye to be examined. The arranged light beam diaphragm, one two-dimensional optical position sensor,
The two-dimensional light position has a light receiving system that guides the reflected light from the fundus of the subject's eye that is projected as a point-like light beam by the projection system to the two-dimensional light position sensor via the light splitting member and the light beam diaphragm. An eye measuring device characterized by obtaining an eye refraction value based on a position of a light beam detected by a sensor.
JP7033049A 1995-01-30 1995-01-30 Eye measuring device Pending JPH07265267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7033049A JPH07265267A (en) 1995-01-30 1995-01-30 Eye measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7033049A JPH07265267A (en) 1995-01-30 1995-01-30 Eye measuring device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62079209A Division JPH069544B2 (en) 1987-03-31 1987-03-31 Eye measuring device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP11058968A Division JPH11285472A (en) 1999-03-05 1999-03-05 Eye examination device

Publications (1)

Publication Number Publication Date
JPH07265267A true JPH07265267A (en) 1995-10-17

Family

ID=12375925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7033049A Pending JPH07265267A (en) 1995-01-30 1995-01-30 Eye measuring device

Country Status (1)

Country Link
JP (1) JPH07265267A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55110531A (en) * 1979-02-16 1980-08-26 Canon Kk Mechanism for measuring visibility
JPS5618836A (en) * 1979-07-23 1981-02-23 Canon Kk Refraction method
JPS5666234A (en) * 1979-11-02 1981-06-04 Canon Kk Measuring apparatus
JPS56132935A (en) * 1980-03-21 1981-10-17 Canon Kk Detector apparatus
JPS5964022A (en) * 1982-10-05 1984-04-11 キヤノン株式会社 Method and apparatus for measuring refractivity
JPS6148335A (en) * 1984-08-16 1986-03-10 キヤノン株式会社 Eye refractometer
JPS61122837A (en) * 1984-11-19 1986-06-10 株式会社ニコン Focus detector of eyeground observation apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55110531A (en) * 1979-02-16 1980-08-26 Canon Kk Mechanism for measuring visibility
JPS5618836A (en) * 1979-07-23 1981-02-23 Canon Kk Refraction method
JPS5666234A (en) * 1979-11-02 1981-06-04 Canon Kk Measuring apparatus
JPS56132935A (en) * 1980-03-21 1981-10-17 Canon Kk Detector apparatus
JPS5964022A (en) * 1982-10-05 1984-04-11 キヤノン株式会社 Method and apparatus for measuring refractivity
JPS6148335A (en) * 1984-08-16 1986-03-10 キヤノン株式会社 Eye refractometer
JPS61122837A (en) * 1984-11-19 1986-06-10 株式会社ニコン Focus detector of eyeground observation apparatus

Similar Documents

Publication Publication Date Title
JP6348196B2 (en) System for determining the topography of the cornea of the eye
US6802609B2 (en) Eye characteristic measuring apparatus
US6536900B2 (en) Eye characteristic measuring apparatus
JPS6216088B2 (en)
JPS6150449B2 (en)
JPH0430855B2 (en)
JPH08240408A (en) Displacement sensor
JP2000097699A5 (en)
US5781275A (en) Eye refractometer and eye refractive power measuring apparatus for electro-optically measuring the refractive power of the eye
JP4492859B2 (en) Eye refractive power measuring device
JPH07265267A (en) Eye measuring device
US6897421B2 (en) Optical inspection system having an internal rangefinder
JPH0984760A (en) Positioning detection device for ophthalmic equipment
JPH11285472A (en) Eye examination device
JPH069544B2 (en) Eye measuring device
JPS627852B2 (en)
JP2006149871A (en) Ophthalmologic measuring apparatus
JPH11346998A (en) Eye refractometer
JP3052280B2 (en) Eye refraction measuring device
JPS624969B2 (en)
SU1337042A1 (en) Keratometer
JP2938488B2 (en) Surgical microscope
JP2951991B2 (en) Eye refractometer
JPH05337085A (en) Ophthalmologic refraction measuring device
JPH03297439A (en) Eye refractometer