JPS5964022A - Method and apparatus for measuring refractivity - Google Patents

Method and apparatus for measuring refractivity

Info

Publication number
JPS5964022A
JPS5964022A JP57175847A JP17584782A JPS5964022A JP S5964022 A JPS5964022 A JP S5964022A JP 57175847 A JP57175847 A JP 57175847A JP 17584782 A JP17584782 A JP 17584782A JP S5964022 A JPS5964022 A JP S5964022A
Authority
JP
Japan
Prior art keywords
refractive power
lens
light
detection element
radial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57175847A
Other languages
Japanese (ja)
Other versions
JPH0355125B2 (en
Inventor
小早川 嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP57175847A priority Critical patent/JPS5964022A/en
Priority to US06/503,234 priority patent/US4609287A/en
Publication of JPS5964022A publication Critical patent/JPS5964022A/en
Publication of JPH0355125B2 publication Critical patent/JPH0355125B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は屈折度測定方法及び測定装置に関し、特に可動
部を持たず自動的に屈折度測定が可能なものに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refractive power measuring method and a measuring device, and more particularly to one that can automatically measure refractive power without having any moving parts.

従来、市場に供されているレンズメータ、ケラトメータ
はその殆んどが屈折度測定を手動で行なうもので測定に
時間がかかシ又、煩維性がある。
Conventionally, most of the lens meters and keratometers on the market manually measure the refractive power, which is time-consuming and complicated.

一方、測定を自動的に行なう自動レンズメー(2) タ、自動ケラトメータが知られているが、これには可動
部があって装置の複雑化、耐久性といった問題点がある
On the other hand, automatic lensmeters (2) and automatic keratometers that automatically perform measurements are known, but these have moving parts and have problems such as complexity and durability of the devices.

本発明は如上の点に鑑み、測定を自動的に且つ可動部な
く行表う新規な屈折度測定方法及び測定装置を提供する
ととを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned points, an object of the present invention is to provide a novel refractive power measuring method and measuring device that perform measurements automatically and without any moving parts.

とれを達成するため、本発明では、少なくとも3本のエ
ネルギーと一ムを被測定要素の異なる位置に照射し、該
被測定要素を経たエネルギービームを光軸方向所定位置
に設けられた2次元位置検出素子に受は偏位ベクトル和
をゼロとするよう被測定要素のアライメントを行ない、
前記偏位ベクトルの所定径線方向のベクトル成分より各
径線方向の屈折度を算出することを特以下、本発明の実
施例を示すが、第1図に諺発明の詳細な説明を行々う。
In order to achieve this, in the present invention, at least three beams of energy are irradiated to different positions of the element to be measured, and the energy beam that has passed through the element to be measured is directed to a two-dimensional position provided at a predetermined position in the optical axis direction. Align the element to be measured so that the sum of the deflection vectors on the detection element is zero,
An embodiment of the present invention will be described below, in which the degree of refraction in each radial direction is calculated from the vector component of the deflection vector in a predetermined radial direction. cormorant.

第1図において、1人、1B、1Cは3箇のLED等の
光源であ)、これらを順次点灯する。
In FIG. 1, 1 person, 1B, and 1C are three light sources such as LEDs, which are turned on in sequence.

絞シ板2には光源1ム、1B、jCに対応した光軸上(
3) の点を中心とした円周上の3箇の穴2A、2B、2C被
検レンズ3で屈折した後、2次元光位置検出素子4に入
る。検出素子4は、アナログ信号の出る半導体装置検出
器の如き単一素子でも曳く、またCCDの如きアレイ素
子でも良い。
The diaphragm plate 2 has optical axes (
3) After being refracted by the three holes 2A, 2B, and 2C on the circumference centered on the point 2A, 2B, and 2C to be tested, the light enters the two-dimensional optical position detection element 4. The detection element 4 may be a single element such as a semiconductor device detector that outputs an analog signal, or may be an array element such as a CCD.

光源1人、IB、ICは光軸8から等距離にあシ光源か
ら光軸に下した足は互いに120°を為す。
One light source, IB, and IC are equidistant from the optical axis 8, and the feet placed from the light source to the optical axis make an angle of 120° to each other.

絞シ板2の穴2人、 2B 、 2Cも同様の関係にあ
シ、従って3本の光ビームは互いに平行かつ光軸8に平
行となる。ここで被検レンズ3が無い時は、ビームは検
出素子4上の点4A 、 4B 、 4Gに至る。
The two holes 2B and 2C in the aperture plate 2 have a similar relationship, so the three light beams are parallel to each other and parallel to the optical axis 8. Here, when there is no test lens 3, the beam reaches points 4A, 4B, and 4G on the detection element 4.

被検レンズ3が入るとビームは屈折され、点4八′。When the test lens 3 enters, the beam is refracted to a point 48'.

4B/、4C/にくる。とこで各点4A 、 4B 、
 4Gから屈折後の点4ムf、 4BZ 4CIに至る
偏位ベクトルA、B、Cが被検レンズ3の屈折度、即ち
球面度数、乱視度数、乱視角及び光軸8からの被検レン
ズ中心のずれに関する位置情報を与える。ここで光ビー
ムの被検レンズ5によυ屈折される角度は近軸(4) 的に考えると被検レンズの屈折力と諷ル、たるビームと
レンズ中心0との距離に比例する。ベクトルA、B、C
の大きさは、この角度の他、更に被検レンズ5と検出素
子4の距離にも比例する。
Comes to 4B/, 4C/. Now, each point 4A, 4B,
The deviation vectors A, B, and C from 4G to points 4muf and 4BZ 4CI after refraction are the refractive power of the test lens 3, that is, the spherical power, astigmatic power, astigmatic angle, and the center of the test lens from the optical axis 8. Provides positional information regarding the deviation. Here, the angle at which the light beam is refracted by the test lens 5 is proportional to the refractive power of the test lens and the distance between the barrel beam and the lens center 0 when considered from a paraxial (4) perspective. Vector A, B, C
The size of is proportional to not only this angle but also the distance between the lens 5 to be tested and the detection element 4.

なおレンズ面を回転放物面と近似すれば、レンズ上の2
点に入射したビームの2点を結ぶ方向の収れん、発散の
度合は2点の間隔が一定なら入射位置には無関係である
。これによって、アライメントは三つの偏位ベクトルA
、B、Cのベクトル和がゼロと表るととによって求まる
Note that if the lens surface is approximated as a paraboloid of revolution, the 2
The degree of convergence and divergence in the direction connecting two points of a beam incident on a point is independent of the incident position if the interval between the two points is constant. This allows alignment to be performed using three deviation vectors A
, B, C is expressed as zero.

すなわち次のようIc3つのベクトルの1方向成分、Y
方向成分が共にゼpとなるようにする。
In other words, one direction component of three vectors Ic, Y
The direction components should both be zep.

ム、 + Bx+ Cx= O(1) ム、 + BY十CY= O(2) ここでAI、Bx、CXはベクトルム、B、C(7) 
!成分、ムア、 BY、 CYはベクトルム、B、Cの
Y成分である。
Mu, + Bx+ Cx= O(1) Mu, + BY+CY= O(2) Here, AI, Bx, CX are vectorum, B, C(7)
! The components, Moore, BY, CY are the Y components of the vector combs, B, and C.

とのようにアライメントを行なうととによって次の屈折
度測定が精確になされる。なお被検レンズ3がプリズム
作用を含む場合又はレンズを偏心させて用い故意にプリ
ズム効果を出す場(5) 合は(1)(2)式の左辺の値がその位置でのプリズム
度数を与える。
By performing the alignment as shown in and, the next refractive power measurement can be made accurately. In addition, if the test lens 3 has a prism effect or if the lens is eccentrically used to intentionally produce a prism effect (5), the value on the left side of equations (1) and (2) gives the prism power at that position. .

さて、被検レンズは一般に乱視を含んでいるが、各径線
方向の屈折力を求め石には少なくとも三極線方向の屈折
力を求めれば喪い。
Now, the lens to be tested generally has astigmatism, but if you calculate the refractive power in each radial direction and at least the refractive power in the triode direction for the stone, you will be able to overcome this problem.

すなわち、0を基準径線方向からの円周方向の角度とす
ると、対応する屈折力りは0の関数として D(θ)=α5in2(θ+β)+γ   (5)と表
わされる。
That is, if 0 is the angle in the circumferential direction from the reference radial direction, the corresponding refractive power is expressed as a function of 0 as D(θ)=α5in2(θ+β)+γ (5).

ここでα、β、γは定数であシ、各々乱視度、乱視角、
球面度数を表わす。第1図で被検レンズ3のレンズ面が
回転放物面に近似しているとし、且つ屈折に関するスネ
ルの法則に関し近似式を用いると、レンズの2点に一定
間隔で照たったビームの屈折後の偏位度合は、その2点
間を結ぶ方向に平行な如何なる2点間における場合につ
き同様となる。
Here, α, β, and γ are constants, and are respectively the degree of astigmatism, the angle of astigmatism,
Represents spherical power. In Figure 1, assuming that the lens surface of the lens to be tested 3 approximates a paraboloid of revolution, and using the approximate formula for Snell's law regarding refraction, we can see that after refraction of a beam that shines on two points on the lens at regular intervals, The degree of deviation is the same between any two points parallel to the direction connecting the two points.

従って、被検レンズ303ムSB方向と平行な径線方向
の屈折力をDABとし、3Ij5C方向、(6) 3C3ム方向と平行な径線方向の屈折力を各々DBOI
DOh とすると各々の屈折力は対応するベクトルム、
B、Cの対応する径線方向成分の和で表わされる。すカ
わち、 D、3=A□B +BBA        (4)”B
O:B  +C(5) BOCB ”OA”COA十ム、。(t5) ここでA□3はベクトルムの3ム3B方向成分の大きさ
を表わし、3人から5Bに向かうときプラス、3Bから
3ムに向かうときマイナスとする。他の符号についても
これに準する。
Therefore, the refractive power in the radial direction parallel to the SB direction of the tested lens is DAB, and the refractive power in the radial direction parallel to the 3Ij5C direction and (6) 3C3 direction is respectively DBOI.
DOh, each refractive power is the corresponding vectorum,
It is expressed as the sum of the corresponding radial components of B and C. Sukawachi, D, 3=A□B +BBA (4)”B
O:B +C(5) BOCB "OA" COA 10m. (t5) Here, A□3 represents the magnitude of the 3M 3B direction component of the vectorum, and is positive when going from 3 people to 5B, and negative when going from 3B to 3M. This also applies to other codes.

上述の3式によシ求まった二径線方向の各屈折力D□]
al”BOIDOAを(3)式に代入すれば連立方程式
よシ乱視度α、乱視角β、球面度数γが求まる。
Each refractive power D□ in the two radial directions determined by the above three formulas]
By substituting ``al''BOIDOA into equation (3), the degree of astigmatism α, the angle of astigmatism β, and the spherical power γ can be determined using simultaneous equations.

因みに、3A、3B、!iCを円周上、120°毎の点
とし、3ム3B方向に平行表径線方向を基準径線方向と
すると、次のようになる。
By the way, 3A, 3B! If iC is a point every 120° on the circumference, and the radial direction of the surface parallel to the 3B direction is the reference radial direction, the following is obtained.

DAB”ムAB+BBA=””2β+γDBO” ”B
O+COB ”α5in2(120°+β)+γ(7) DoA=CoA+AAo=α5in2(240°+β)
十γ々お(4)乃至(6)式を(3)式に代入し、連立
方程式を解いて未知数α、β、γを求めるのには公知の
自動演算手段が用いられる。
DAB"MUAB+BBA=""2β+γDBO""B
O+COB ”α5in2 (120°+β)+γ(7) DoA=CoA+AAo=α5in2(240°+β)
A known automatic calculation means is used to substitute equations (4) to (6) into equation (3) and solve the simultaneous equations to obtain the unknowns α, β, and γ.

ところで2次元光位置検出素子4として、アナ四グ信号
の出るポジションディテクターを用いる場合、各ビーム
が照射する位置を検出するため3本のビームを順次被検
レンズに入射し々ければならない。
By the way, when a position detector that outputs an analog signal is used as the two-dimensional optical position detection element 4, three beams must be sequentially incident on the lens to be tested in order to detect the position irradiated by each beam.

ポジションディテクターに複数のビームが同時に照射す
ると、照射位置が求まらず、単に平均化された照射位置
しか求まらないからである。
This is because if the position detector is irradiated with a plurality of beams at the same time, the irradiation position cannot be determined, but only the averaged irradiation position can be determined.

但し検出素子4としてCOD等のプレイ型の素子を用い
る場合は、3本のビームを同時に照射することが可能で
あシ、この場合光源は3箇でまく1箇で足シる。
However, if a play type element such as a COD is used as the detection element 4, it is possible to irradiate three beams at the same time, and in this case, one light source is sufficient instead of three.

次に第2図は本発明に係わる屈折度測定装置の第一の実
施例を示す。
Next, FIG. 2 shows a first embodiment of the refractometer according to the present invention.

11、IB、ICは3箇の光源であシ、IB、1Cは紙
面上で重なって見えるが第1図と同様に紙面に(8) 対し対称に位置する。
11, IB, and IC are three light sources. Although IB and 1C appear to overlap on the paper, they are located symmetrically with respect to (8) on the paper as in FIG. 1.

絞り板5は光軸8上に開口をもち、ことから出た光は細
いビームで入射レンズ6に入ヤ、ことで平行光束となシ
、被検レンズ3に入る。その後、被検レンズ3で屈折さ
れ受光レンズ7を通シ2次元光位置検出素子4に至る。
The diaphragm plate 5 has an aperture on the optical axis 8, and the light emitted from the aperture enters the input lens 6 as a narrow beam, and thus enters the lens 3 to be examined as a parallel beam of light. Thereafter, the light is refracted by the lens 3 to be tested, passes through the light receiving lens 7, and reaches the two-dimensional optical position detection element 4.

第2図において、破線は被検レンズ3の無いときの光ビ
ームの光路を示す。
In FIG. 2, the broken line indicates the optical path of the light beam when there is no lens 3 to be tested.

検出素子4は受光レンズ7の後側焦点位置に設けられる
ため、被検レンズ3の光軸上の位置に拘らず、焦点面上
、偏位ベクトルの大きさが一定となり、屈折度が安定し
て検出される。
Since the detection element 4 is provided at the back focal position of the light-receiving lens 7, the magnitude of the deviation vector is constant on the focal plane, regardless of the position on the optical axis of the lens 3 to be tested, and the refractive power is stabilized. detected.

ここで前述した如く、光源1ム、IB、1Gを順次点灯
し、ベクトルA、B、Cを(1)(2)式によって被検
レンズ3の軸ずれを検出してアライメントを行ない、(
3)乃至(6)式で各径線方向の屈折度を測定できる。
As described above, the light sources 1M, IB, and 1G are turned on sequentially, and the alignment is performed by detecting the axis deviation of the lens 3 to be tested using the vectors A, B, and C using equations (1) and (2).
The degree of refraction in each radial direction can be measured using equations 3) to (6).

第3図は、本発明の第二の実施例で、被検眼角膜の屈折
度を測定する自動ケラトメータに応用した亀のである。
FIG. 3 shows a second embodiment of the present invention, which is applied to an automatic keratometer for measuring the refractive power of the cornea of an eye to be examined.

光源1人から出た光は第4図(9) K示す絞シ板2の穴2Aを通シ光軸8と平行に被検眼角
膜Cに照たる。角膜Cでの反射光は受光レンズ9ムに入
シ、ミラー10Aによυ反射された後、受光レンズ9ム
の後側焦点位置に設けられた2次元光位置検出素子4に
至る。
The light emitted from one light source passes through the hole 2A of the diaphragm plate 2 shown in FIG. The reflected light from the cornea C enters the light-receiving lens 9m, is reflected by the mirror 10A, and then reaches the two-dimensional optical position detection element 4 provided at the rear focal position of the light-receiving lens 9m.

ここで角膜曲率によって反射角度が異なり、それに応じ
て検出素子4上の光ビーム位置が異なる。検出素子4は
受光レンズ9ムの後側焦点位置に設けられ、また絞如板
2.からくる光は光軸8に平行であるため、角膜Cが光
軸上で動いても反射角度は一定となる。
Here, the reflection angle varies depending on the corneal curvature, and the light beam position on the detection element 4 varies accordingly. The detection element 4 is provided at the rear focal position of the light receiving lens 9, and the aperture plate 2. Since the light coming from the lens is parallel to the optical axis 8, the reflection angle remains constant even if the cornea C moves on the optical axis.

角膜乱視が偏位ベクトルからの算出によシ求まるのは、
前述の実施例で述べたのと同様である。なお受光レンズ
、ミラーは第5図に示されるように3つの径線方向に3
次元的に配置され受光レンズ9ム、 9B 、 9Cの
各々がミラー10ム、10B。
Corneal astigmatism can be determined by calculating from the deviation vector.
This is the same as described in the previous embodiment. The light receiving lens and mirror are arranged in three radial directions as shown in Figure 5.
Dimensionally arranged light receiving lenses 9mm, 9B, 9C are mirrors 10mm, 10B, respectively.

10Cと組に表って光軸方向の所定位置に設けられる2
次元光位置検出素子4へ光ビームを向ける。
2 which appears in pairs with 10C and is provided at a predetermined position in the optical axis direction.
A light beam is directed toward the dimensional optical position detection element 4.

第6図は本発明に係わる測定装置の第三の実(10) 施例で、自動眼屈折計に応用したものである。Figure 6 is the third fruit (10) of the measuring device according to the present invention. This example is applied to an automatic eye refractometer.

光源1人から出た光はレンズ16、絞シ11、レンズ1
5を通り、穴あきミラー12の周辺反射部で反射され、
対物レンズ15を通って光軸8に平行になシ、第7図に
示されるように被検眼Eの瞳Kpの周辺部から入射して
眼底Erに至る。
The light emitted from one light source goes through lens 16, aperture 11, and lens 1.
5, is reflected by the peripheral reflection part of the perforated mirror 12,
The light passes through the objective lens 15 parallel to the optical axis 8, enters from the periphery of the pupil Kp of the eye E, and reaches the fundus Er, as shown in FIG.

眼底Brから反射した光は瞳Kpの中心部1!!Oを通
シ穴あきミラー12の穴を抜け、レンズ14を介して2
次元光位置検出素子4に至る。
The light reflected from the fundus Br is at the center of the pupil Kp 1! ! 2 through the hole in the perforated mirror 12 and through the lens 14.
This leads to the dimensional optical position detection element 4.

とこで光源1人、1B、1Cと穴あきミラー12と瞳E
pは光学的に共役でアシ、一方絞シ11と対物レンズ1
5の右側焦点位置と正視眼眼底11irと検出素子4は
光学的に共役である。すなわち、検出素子4は対物レン
ズ15の右側焦点位置と共役な位置に設けられる。被検
眼が正視なら入射光は眼底で光軸上に至り、反射光は光
軸8上を戻シ検出素子4の中心に至る。
There, there is one light source, 1B, 1C, perforated mirror 12, and pupil E.
p is optically conjugate; on the other hand, the diaphragm 11 and the objective lens 1
The right focal position of No. 5, the fundus 11ir of the emmetropic eye, and the detection element 4 are optically conjugate. That is, the detection element 4 is provided at a position conjugate with the right focal position of the objective lens 15. If the eye to be examined is emmetropic, the incident light reaches the optical axis at the fundus, and the reflected light returns along the optical axis 8 and reaches the center of the detection element 4.

被検眼が非正視眼であると図に実線で示される如く光軸
8と傾いた方向に反射され、検出素子4の中心から外れ
た点に至る。
If the eye to be examined is an ametropic eye, the light is reflected in a direction inclined to the optical axis 8, as shown by the solid line in the figure, and reaches a point away from the center of the detection element 4.

(11) この検出素子4上の照射位置の偏位を光源iA。(11) The deviation of the irradiation position on the detection element 4 is defined as the light source iA.

1B、1Cに対応する3径線方向で算出することによシ
、既述したようにアライメントが行なわれ更に被検眼E
の眼屈折力が求まる。
By calculating in the three radial directions corresponding to 1B and 1C, alignment is performed as described above, and the eye E
Find the eye refractive power.

なお本実施例では光束を瞳中心EOから取シ出している
が、入射点の瞳中心対称点から取り出しても良い。その
場合には、穴あきミラー12は3つの光透過部を設ける
必要がある。
In this embodiment, the light flux is taken out from the pupil center EO, but it may be taken out from the pupil center symmetry point of the incident point. In that case, the perforated mirror 12 needs to be provided with three light transmitting parts.

以上、述べた如く、本発明によれば全く可動部が無く、
また検出素子からの電気出力を用い自動的な屈折度測定
が可能となる。なお本発明で測定方向は3方向に限定さ
れず、それ以上の方向で測定するととによシ、よシ多く
の情報による測定精度の向上が期待される。
As described above, according to the present invention, there are no moving parts at all,
Furthermore, automatic refractive power measurement is possible using the electrical output from the detection element. Note that in the present invention, the measurement directions are not limited to three directions, and it is expected that the measurement accuracy will be improved by using more information.

また上述の実施例では、可視光ビームについて述べたが
、これに限定されず紫外光、赤外光、電子ビーム等、一
般のエネルギービームが用いられ、例えば電子レンズの
屈折度測定も可能である。
Further, in the above embodiment, a visible light beam was described, but the beam is not limited to this, and general energy beams such as ultraviolet light, infrared light, and electron beams can be used. For example, it is also possible to measure the refractive power of an electron lens. .

【図面の簡単な説明】[Brief explanation of the drawing]

(12) 第1図は、本発明の詳細な説明図、 第2図は、本発明に係わる屈折度測定装置の第一実施例
の図、 第3図は第二実施例で自動ケラトメータに応用した図、 第4図は絞シ板の図、 第5図は、光軸方向から眺めた空間配置図、第6図は、
第三実施例で自動屈折計に応用した図、 第7図は光軸方向から眺めた被検眼へのビーム照射位置
の説明図、 図中 IA、1B、1C・・・光源 2・・・絞ヤ板 2A、2B、2G・・・開口 3・・・被検レンズ 4・・・2次元光位置検出素子 5・・・絞シ板 6・・・入射レンズ 7.9ム、9B、9G・・・受光レンズ(13) 10A 10B 10C・・・(ツー 12・・・穴あきミラー 15・・・対物レンズ 出願人 キャノン株式会社 (14) マ ー135− dく
(12) Figure 1 is a detailed explanatory diagram of the present invention, Figure 2 is a diagram of the first embodiment of the refractometer according to the present invention, and Figure 3 is the second embodiment, applied to an automatic keratometer. Figure 4 is a diagram of the aperture plate, Figure 5 is a spatial layout diagram viewed from the optical axis direction, and Figure 6 is a diagram of the diaphragm plate.
A diagram of the third embodiment applied to an automatic refractometer. Figure 7 is an explanatory diagram of the beam irradiation position on the eye to be examined viewed from the optical axis direction. In the diagram, IA, 1B, 1C... light source 2... aperture Diameter plates 2A, 2B, 2G...Aperture 3...Test lens 4...Two-dimensional optical position detection element 5...Aperture plate 6...Incoming lens 7.9mm, 9B, 9G... ...Light receiving lens (13) 10A 10B 10C...(Two 12...Perforated mirror 15...Objective lens applicant Canon Co., Ltd. (14) Mar 135-d

Claims (1)

【特許請求の範囲】 素を経て来る前記エネルギービームを2次元位置検出素
子に受け、偏位ベクトル和をゼpとするととによシアラ
イメントを行なう段階と、 偏位ベクトルの所定径線方向のベクトル成分よシ、各径
線方向の屈折度を算出する段階を有することを特徴とす
る屈折度測定方法。 る特許請求の範囲第1項記載の屈折度測定方法。 & 平行な少なくとも3本のエネルギービームを被測定
要素に照射する手段と、被測定要素を経たエネルギービ
ームを受ける受光レンズと、 (1) 該受光レンズの後側焦点位置又はその共役位置に設けら
れる2次元位置検出手段と、偏位ベクトルの所定径線方
向のベクトル成分より各径線方向の屈折度を算出する手
段を有するととを特徴とする屈折度測定装置。 4、 被検レンズの屈折度を測定する特許請求の範囲第
3項記載の屈折度測定装置。 5、被検眼角膜の屈折度を測定す石特許請求の範囲第3
項記載の屈折度測定装置。 6 被検眼の屈折度を測定する特許請求の範囲第3項記
載の屈折度測定装置。
[Claims] A step of receiving the energy beam that has passed through the element on a two-dimensional position detection element, and performing shear alignment when the sum of the deflection vectors is zep; A refractive power measuring method comprising the step of calculating the refractive power in each radial direction as well as the vector component. A refractive power measuring method according to claim 1. & Means for irradiating at least three parallel energy beams onto the element to be measured, and a light receiving lens that receives the energy beams that have passed through the element to be measured, (1) installed at the rear focal position of the light receiving lens or at its conjugate position A refraction measuring device comprising: two-dimensional position detection means; and means for calculating a refraction degree in each radial direction from a vector component of a deviation vector in a predetermined radial direction. 4. A refractive power measuring device according to claim 3, which measures the refractive power of a lens to be tested. 5. Stone for measuring the refractive power of the cornea of the eye to be examined Patent Claim No. 3
Refractometer as described in Section 1. 6. The refractive power measuring device according to claim 3, which measures the refractive power of an eye to be examined.
JP57175847A 1982-10-05 1982-10-05 Method and apparatus for measuring refractivity Granted JPS5964022A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57175847A JPS5964022A (en) 1982-10-05 1982-10-05 Method and apparatus for measuring refractivity
US06/503,234 US4609287A (en) 1982-10-05 1983-06-10 Method of and apparatus for measuring refractive characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57175847A JPS5964022A (en) 1982-10-05 1982-10-05 Method and apparatus for measuring refractivity

Publications (2)

Publication Number Publication Date
JPS5964022A true JPS5964022A (en) 1984-04-11
JPH0355125B2 JPH0355125B2 (en) 1991-08-22

Family

ID=16003246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57175847A Granted JPS5964022A (en) 1982-10-05 1982-10-05 Method and apparatus for measuring refractivity

Country Status (1)

Country Link
JP (1) JPS5964022A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS628731A (en) * 1985-07-05 1987-01-16 キヤノン株式会社 Apparatus for measuring eye refractive power
JPS62122629A (en) * 1985-11-25 1987-06-03 キヤノン株式会社 Eye refractometer
JPS63242219A (en) * 1987-03-31 1988-10-07 キヤノン株式会社 Keratometer
JPH0197435A (en) * 1987-10-09 1989-04-14 Canon Inc Eye refractometer
JPH03172729A (en) * 1989-11-10 1991-07-26 Essilor Internatl (Cie Gen Opt) Method and apparatus for determining lens characteristics including power of lens
JPH03275036A (en) * 1990-03-26 1991-12-05 Canon Inc Ophthalmic measuring equipment
JPH07265267A (en) * 1995-01-30 1995-10-17 Canon Inc Eye measuring device
JPH0898803A (en) * 1995-09-04 1996-04-16 Canon Inc Eye refraction measuring instrument
JP2003517339A (en) * 1998-10-07 2003-05-27 トレイシ、テクナラジズ、エル、エル、シー Apparatus for measuring ocular aberration refraction

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50145249A (en) * 1974-05-08 1975-11-21
JPS5618836A (en) * 1979-07-23 1981-02-23 Canon Kk Refraction method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50145249A (en) * 1974-05-08 1975-11-21
JPS5618836A (en) * 1979-07-23 1981-02-23 Canon Kk Refraction method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0350532B2 (en) * 1985-07-05 1991-08-02 Canon Kk
JPS628731A (en) * 1985-07-05 1987-01-16 キヤノン株式会社 Apparatus for measuring eye refractive power
JPS62122629A (en) * 1985-11-25 1987-06-03 キヤノン株式会社 Eye refractometer
JPH0566804B2 (en) * 1985-11-25 1993-09-22 Canon Kk
JPH069544B2 (en) * 1987-03-31 1994-02-09 キヤノン株式会社 Eye measuring device
JPS63242219A (en) * 1987-03-31 1988-10-07 キヤノン株式会社 Keratometer
JPH0197435A (en) * 1987-10-09 1989-04-14 Canon Inc Eye refractometer
JPH03172729A (en) * 1989-11-10 1991-07-26 Essilor Internatl (Cie Gen Opt) Method and apparatus for determining lens characteristics including power of lens
JPH03275036A (en) * 1990-03-26 1991-12-05 Canon Inc Ophthalmic measuring equipment
JPH07265267A (en) * 1995-01-30 1995-10-17 Canon Inc Eye measuring device
JPH0898803A (en) * 1995-09-04 1996-04-16 Canon Inc Eye refraction measuring instrument
JP2003517339A (en) * 1998-10-07 2003-05-27 トレイシ、テクナラジズ、エル、エル、シー Apparatus for measuring ocular aberration refraction
JP4746748B2 (en) * 1998-10-07 2011-08-10 トレイシ、テクナラジズ、エル、エル、シー Apparatus for measuring the aberration refraction of the eye

Also Published As

Publication number Publication date
JPH0355125B2 (en) 1991-08-22

Similar Documents

Publication Publication Date Title
US4609287A (en) Method of and apparatus for measuring refractive characteristics
US7455407B2 (en) System and method of measuring and mapping three dimensional structures
US7380942B2 (en) Method for measuring the wave aberrations of the eye
US4984883A (en) Translation insensitive keratometer using moire deflectometry
JPS61234837A (en) Apparatus for measuring eye refraction
JPS62122629A (en) Eye refractometer
JPS63212318A (en) Eye measuring apparatus
US5523809A (en) Eye refraction measuring apparatus including optical path separating member light beam separating member, and/or light diameter changing means
US4432617A (en) Eye refractive error measuring device
JPS5964022A (en) Method and apparatus for measuring refractivity
US4281926A (en) Method and means for analyzing sphero-cylindrical optical systems
KR20060049531A (en) Eye refractive power measurement apparatus
JPH0352572B2 (en)
JPS6151890B2 (en)
JPS59190636A (en) Refractive-index measuring device
US5100227A (en) Translation insensitive keratometer using moire deflectometry
JPS59176644A (en) Measuring device for refraction extent
JPS624969B2 (en)
JP3052280B2 (en) Eye refraction measuring device
JPS61249432A (en) Apparatus for measuring shape of cornea
JPH069544B2 (en) Eye measuring device
JPS59164937A (en) Refractive index measuring apparatus
JPH0588131B2 (en)
JPS6018152A (en) Cornea measuring device
JPH0370962B2 (en)