JP2006149871A - Ophthalmologic measuring apparatus - Google Patents

Ophthalmologic measuring apparatus Download PDF

Info

Publication number
JP2006149871A
JP2006149871A JP2004347536A JP2004347536A JP2006149871A JP 2006149871 A JP2006149871 A JP 2006149871A JP 2004347536 A JP2004347536 A JP 2004347536A JP 2004347536 A JP2004347536 A JP 2004347536A JP 2006149871 A JP2006149871 A JP 2006149871A
Authority
JP
Japan
Prior art keywords
eye
examined
mask
optical system
image sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004347536A
Other languages
Japanese (ja)
Other versions
JP4628762B2 (en
Inventor
Masaaki Hanebuchi
昌明 羽根渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidek Co Ltd
Original Assignee
Nidek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidek Co Ltd filed Critical Nidek Co Ltd
Priority to JP2004347536A priority Critical patent/JP4628762B2/en
Publication of JP2006149871A publication Critical patent/JP2006149871A/en
Application granted granted Critical
Publication of JP4628762B2 publication Critical patent/JP4628762B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ophthalmologic measuring apparatus which is advantageous in terms of cost and can measure an optical characteristic such as the wave front aberration of an examined eye, etc. with high resolution. <P>SOLUTION: The apparatus includes: a projection optical system for projecting a spot shape light flux from a measurement light source to the eyeground of the examined eye; and a light receiving optical system which receives the light flux reflected from the eyeground and projecting the examined eye, has a mask pattern arranged at a substantially conjugated position with the pupil of the examined eye and has a two-dimensional imaging device arranged at the Talbot image of the mask pattern. The mask pattern has the orthogonal grid shape mask of a pitch which is formed so as to match with arrayal in the unit pixel size of the two-dimensional imaging device. The optical characteristic of the examined eye is measured based on a moire pattern which is generated by the Talbot image of the orthogonal grid shape mask and the pixel array of the two-dimensional imaging device. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、被検眼の光学特性を測定する眼科測定装置に関する。   The present invention relates to an ophthalmologic measurement apparatus that measures optical characteristics of an eye to be examined.

被検眼眼底にスポット状の光束を投影し、それを2次光源として被検眼を射出する光束を瞳孔内の複数部より取り出し、2次元撮像素子等で検出した情報から被検眼の波面収差分布等の光学特性を測定する眼科装置としては、いわゆるシャックハルトマン波面センサを使ったもの(例えば、特許文献1参照)と、2つの格子マスク(回折格子)により生じるモアレパターンを利用するもの(例えば、特許文献2参照)が知られている。
特開平10−305013号公報 特表2003−526404号公報
A spot-like light beam is projected onto the fundus of the eye to be examined, and the light beam emitted from the eye as a secondary light source is extracted from a plurality of parts in the pupil, and the wavefront aberration distribution of the eye to be examined is obtained from information detected by a two-dimensional image sensor or the like. As an ophthalmologic apparatus for measuring the optical characteristics of an optical device, one using a so-called Shack-Hartmann wavefront sensor (for example, see Patent Document 1) and one using a moire pattern generated by two grating masks (diffraction gratings) (for example, a patent) Document 2) is known.
Japanese Patent Laid-Open No. 10-305013 Special table 2003-526404 gazette

上記特許文献1に示されるシャックハルトマン波面センサの方式では、マイクロレンズアレイを通して2次元撮像素子で眼底反射光を受光する構成であるため、瞳孔内の分解能を一定以上に上げることができない。一方、モアレパターンを解析する方法によれば、高分解能な測定が可能である。特許文献2では、2つの格子マスクによって生じるモアレパターンをスクリーンに投影し、撮像レンズを介して2次元撮像素子で撮像している。しかし、モアレパターンを利用する方法においても更なる改良が望まれる。
本発明は、上記従来技術に鑑み、被検眼の波面収差等の光学特性を高分解能に測定可能で、コスト的にも有利な眼科測定装置を提供することを技術課題とする。
The Shack-Hartmann wavefront sensor method disclosed in Patent Document 1 is configured to receive fundus reflection light with a two-dimensional imaging device through a microlens array, and thus the resolution in the pupil cannot be increased beyond a certain level. On the other hand, according to the method of analyzing the moire pattern, high-resolution measurement is possible. In Patent Document 2, a moire pattern generated by two lattice masks is projected on a screen and imaged by a two-dimensional image sensor via an imaging lens. However, further improvement is desired in the method using the moire pattern.
An object of the present invention is to provide an ophthalmic measurement apparatus that can measure optical characteristics such as wavefront aberration of an eye to be examined with high resolution and is advantageous in terms of cost.

上記課題を解決するために、本発明は次のような構成を備えることを特徴とする。
(1) 測定光源からのスポット状の光束を被検眼眼底に投影する投影光学系と、眼底で反射して被検眼を射出する光束を受光する受光光学系であって、被検眼瞳孔と略共役位置に配置されたマスクパターンを有すると共に該マスクパターンのタルボット像位置に配置された2次元撮像素子を有する受光光学系とを備え、前記マスクパターンは前記2次元撮像素子の単位画素サイズの配列に合わせて形成されたピッチの直交格子状マスクを持ち、該直交格子状マスクのタルボット像と前記2次元撮像素子の画素配列によって生じるモアレパターンを基に被検眼の光学特性を測定することを特徴とする。この装置において、前記直交格子状マスクの透過部分と遮光部分の各幅は、2次元撮像素子の単位画素と同じ幅であることを特徴とする。
(2) (1)の眼科測定装置において、前記測定光源と共に前記マスクパターン及び2次元撮像素子を、被検眼の球面屈折誤差に応じて光軸方向に移動させる移動手段を設けたことを特徴とする。
In order to solve the above problems, the present invention is characterized by having the following configuration.
(1) A projection optical system that projects a spot-like light beam from a measurement light source onto the fundus of the eye to be examined, and a light-receiving optical system that receives a light beam that is reflected from the fundus and exits the eye to be examined. And a light receiving optical system having a two-dimensional image sensor arranged at a Talbot image position of the mask pattern, and the mask pattern is arranged in a unit pixel size array of the two-dimensional image sensor. It has an orthogonal lattice mask with a pitch formed in combination, and measures optical characteristics of an eye to be inspected based on a Talbot image of the orthogonal lattice mask and a moire pattern generated by the pixel arrangement of the two-dimensional image sensor. To do. In this apparatus, each width of the transmissive part and the light-shielding part of the orthogonal grid mask is the same width as the unit pixel of the two-dimensional image sensor.
(2) In the ophthalmologic measurement apparatus according to (1), a moving means is provided for moving the mask pattern and the two-dimensional image sensor together with the measurement light source in the optical axis direction according to the spherical refraction error of the eye to be examined. To do.

本発明によれば、被検眼の波面収差等の光学特性を高分解能に測定可能で、光学構成を簡略化してコスト的に有利となる。   According to the present invention, optical characteristics such as wavefront aberration of the eye to be examined can be measured with high resolution, and the optical configuration is simplified, which is advantageous in terms of cost.

以下、本発明の実施の形態を図面に基づいて説明する。図1は、眼科測定装置の測定光学系及び制御系の概略構成図である。眼科測定装置の光学系には、被検眼に対して測定光学系を位置合わせするために、被検眼にアライメント指標と投影し、その指標像を検出するアライメント光学系、前眼部観察光学系、被検眼を固視させると共に水晶体の調節を弛緩させる固視標光学系、等が配置されているが、これらは関係が薄いので省略している。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of a measurement optical system and a control system of an ophthalmologic measurement apparatus. The optical system of the ophthalmic measurement apparatus includes an alignment optical system that projects an alignment index onto the eye to be examined and detects the index image in order to align the measurement optical system with respect to the eye to be examined, an anterior ocular segment observation optical system, A fixation target optical system for fixing the eye to be inspected and relaxing the adjustment of the crystalline lens is disposed.

図1において、測定光学系10は、眼底にスポット状の光束を投影する投影光学系10aと、眼底からの反射光を受光する受光光学系10bとから構成される。投影光学系10aは、赤外光を発するLDやSLD等の測定光源11、リレーレンズ12、ハーフミラー13、対物レンズ14を備え、この順に被検眼に向けて配置される。受光光学系10aは、被検眼の前方から、対物レンズ14、ハーフミラー13、リレーレンズ15、ミラー16、受光系絞り17、コレメートレンズ18、直交格子状マスク19、CCD等の2次元撮像素子20の順に配置される。投影光学系10aの対物レンズ14とハーフミラー13は、投影光学系10bで共用される。ハーフミラー13では、光源11からの測定光束を透過し、眼底からの反射光を反射する。ハーフミラー13を穴あきミラーとしても良い。   In FIG. 1, a measurement optical system 10 includes a projection optical system 10a that projects a spot-like light beam on the fundus and a light receiving optical system 10b that receives reflected light from the fundus. The projection optical system 10a includes a measurement light source 11 such as an LD or SLD that emits infrared light, a relay lens 12, a half mirror 13, and an objective lens 14, which are arranged in this order toward the eye to be examined. The light receiving optical system 10a is a two-dimensional image pickup device such as an objective lens 14, a half mirror 13, a relay lens 15, a mirror 16, a light receiving system diaphragm 17, a collate lens 18, an orthogonal lattice mask 19, and a CCD from the front of the eye to be examined. They are arranged in the order of 20. The objective lens 14 and the half mirror 13 of the projection optical system 10a are shared by the projection optical system 10b. The half mirror 13 transmits the measurement light beam from the light source 11 and reflects the reflected light from the fundus. The half mirror 13 may be a perforated mirror.

回折格子である直交格子状マスク19は、光の透過率がほぼ0%の遮光部分とほぼ100%の透過部分が、水平・垂直の両方向にストライプ状に形成されている。マスク19は、対物レンズ14〜リレーレンズ18を介して、被検眼の瞳孔と光学的に略共役な位置に配置されている。また、2次元撮像素子20の受光面は、マスク19のタルボット(Talbot)像が生じる位置の近傍に置かれている。マスク19と2次元撮像素子20との距離をDとすると、タルボット像が生じる位置は、以下で示される。   In the orthogonal grating mask 19 which is a diffraction grating, a light-shielding portion having a light transmittance of approximately 0% and a light-transmitting portion having a transmittance of approximately 100% are formed in stripes in both horizontal and vertical directions. The mask 19 is disposed at a position optically conjugate with the pupil of the eye to be examined via the objective lens 14 to the relay lens 18. Further, the light receiving surface of the two-dimensional image sensor 20 is placed in the vicinity of the position where the Talbot image of the mask 19 is generated. Assuming that the distance between the mask 19 and the two-dimensional imaging device 20 is D, the position where the Talbot image is generated is shown below.

D=m・2d2/λ
dは直交格子状マスク19の格子定数(ON/OFFの1周期の長さ)、λは測定光源11の波長、mは整数である。
D = m · 2d 2 / λ
d is a lattice constant (length of one cycle of ON / OFF) of the orthogonal lattice mask 19, λ is the wavelength of the measurement light source 11, and m is an integer.

ここで、直交格子状マスク19の格子縞のピッチは、図2に示すように、2次元撮像素子20の単位画素サイズに合わせて形成されている。図2(a)は、2次元撮像素子20に配列された画素を示した図であり、20aが単位画素を示す。単位画素20aのサイズはW×Wで、例えば、W=7μmである。図2(b)は、直交格子状マスク19の直交格子縞を示す図であり、19aが格子縞を示す。水平・垂直の格子縞19aのON(透過部分)とOFF(遮光部分)の各幅は、2次元撮像素子20の単位画素と同じ幅Wである。W=7μmとすれば、1mm当たり71本の格子縞で測定できる。また、直交格子状マスク19は、2次元撮像素子20に関して光軸周りに微小な角度ずれθを与えて配置される。角度ずれθは、直交格子状マスク19の格子縞のピッチとの関係で、適切なモアレ縞ができるように決められている。   Here, the pitch of the lattice stripes of the orthogonal lattice mask 19 is formed in accordance with the unit pixel size of the two-dimensional image sensor 20 as shown in FIG. FIG. 2A is a diagram illustrating pixels arranged in the two-dimensional image sensor 20, and 20a represents a unit pixel. The size of the unit pixel 20a is W × W, for example, W = 7 μm. FIG. 2B is a diagram showing orthogonal lattice fringes of the orthogonal lattice mask 19, and 19a represents the lattice fringes. Each width of ON (transmission part) and OFF (light-shielding part) of the horizontal and vertical lattice stripes 19 a is the same width W as the unit pixel of the two-dimensional image sensor 20. If W = 7 μm, measurement can be performed with 71 lattice stripes per mm. Further, the orthogonal lattice mask 19 is arranged with a slight angular deviation θ around the optical axis with respect to the two-dimensional imaging device 20. The angle deviation θ is determined so that appropriate moire fringes can be formed in relation to the pitch of the lattice fringes of the orthogonal lattice mask 19.

本装置においては、測定光源11、受光系絞り17、コレメートレンズ18、直交格子状マスク19及び2次元撮像素子20は、一体のユニット21となって光軸方向に移動機構22によって移動される構成となっている。測定光源11、撮像素子20等を光軸方向に移動させることで、被検眼の球面屈折誤差を補正して被検眼眼底と測定光源11、受光絞り17とが光学的に共役に保たれる。この移動量はポテンショメータ等の検出器23により検出する。移動機構22、検出器23、撮像素子20は、制御ユニット30に接続されている。
なお、直交格子状マスク19は、光軸方向の移動位置に拘わらず、対物レンズ14、リレーレンズ15及びコリメートレンズ18によって、被検眼瞳孔と一定の倍率で光学的に共役になるように配置されている。
In this apparatus, the measurement light source 11, the light receiving system diaphragm 17, the collate lens 18, the orthogonal lattice mask 19, and the two-dimensional imaging device 20 are moved as a unit 21 by the moving mechanism 22 in the optical axis direction. It has a configuration. By moving the measurement light source 11, the image sensor 20 and the like in the optical axis direction, the spherical refraction error of the eye to be examined is corrected, and the eye fundus to be examined, the measurement light source 11, and the light receiving diaphragm 17 are kept optically conjugate. This amount of movement is detected by a detector 23 such as a potentiometer. The moving mechanism 22, the detector 23, and the image sensor 20 are connected to the control unit 30.
Note that the orthogonal lattice mask 19 is optically conjugate with the eye pupil to be examined at a constant magnification by the objective lens 14, the relay lens 15, and the collimating lens 18 regardless of the movement position in the optical axis direction. ing.

上記の構成において、測定光源11を発した光束は、リレーレンズ12、対物レンズ14によって被検眼眼底状にスポット状の光束が投影され、眼底上に点光源像を形成する。被検眼眼底に投影された点光源像は、反射・散乱されて被検眼を射出し、対物レンズ14によって集光され、ハーフミラー13、リレーレンズ15、ミラー16を介して受光絞り17の位置に集光された後、コリメータレンズ18で平行光束とされ、直交格子状マスク19を通過した光束が撮像素子20に受光される。   In the above configuration, the luminous flux emitted from the measurement light source 11 is projected as a spot-like luminous flux on the fundus of the eye to be examined by the relay lens 12 and the objective lens 14 to form a point light source image on the fundus. The point light source image projected on the fundus of the subject's eye is reflected and scattered, exits the subject's eye, is collected by the objective lens 14, and passes through the half mirror 13, relay lens 15, and mirror 16 to the position of the light receiving aperture 17. After being condensed, the collimator lens 18 makes a parallel light beam, and the light beam that has passed through the orthogonal lattice mask 19 is received by the image sensor 20.

直交格子状マスク19を通過した光束と撮像素子20の単位素子配列とによって生じるモアレパターンは、撮像素子20の近傍にできる直交格子状マスク19のタルボット像が、被検眼の収差によって乱されたことを反映して変化する。従って、無収差の光(平行光)が通過したときにできるモアレパターンに対して、被検眼からの反射光により生じるモアレパターンを解析すれば、被検眼の波面収差分布や屈折力分布を測定することが可能になる。   The moire pattern generated by the light flux that has passed through the orthogonal grid mask 19 and the unit element arrangement of the image sensor 20 is that the Talbot image of the orthogonal grid mask 19 formed in the vicinity of the image sensor 20 is disturbed by the aberration of the eye to be examined. Changes to reflect. Therefore, if the moiré pattern generated by the reflected light from the eye to be examined is analyzed with respect to the moiré pattern formed when non-aberration light (parallel light) passes, the wavefront aberration distribution and refractive power distribution of the eye to be examined are measured. It becomes possible.

制御ユニット30は、撮像素子20の出力画像信号を得て、被検眼の波面収差等を解析するプログラムを有し、眼の光学特性を解析する手段を兼ねる。前述のように、撮像素子20上における直交格子状マスク19の投影像は、被検眼の波面収差を反映している。この投影像と撮像素子20の単位素子配列との重なりよってモアレ縞が発生する。制御ユニット30は、撮像素子20により得られたモアレ縞の局所的な傾きを検出することで、波面の傾きを求める。波面の傾きの解析は、特表2003−526404号公報等に記載されているような周知の数学的技術を使用することができる。解析された波面の傾きは、周知のゼルニク(Zernike)多項式の展開を適用することによって定量化される。球面屈折誤差、乱視屈折誤差は多項式次数2次以下の項で表され、高次収差成分は多項式次数3次以上で求められる。波面収差分布や屈折力分布等の光学特性の解析結果は、制御ユニット30に接続されたモニタ31にマップ等の形で表示される。   The control unit 30 has a program for obtaining the output image signal of the image sensor 20 and analyzing the wavefront aberration and the like of the eye to be examined, and also serves as means for analyzing the optical characteristics of the eye. As described above, the projected image of the orthogonal grid mask 19 on the image sensor 20 reflects the wavefront aberration of the eye to be examined. Moire fringes are generated by the overlap between the projected image and the unit element array of the image sensor 20. The control unit 30 obtains the inclination of the wavefront by detecting the local inclination of the moire fringes obtained by the image sensor 20. For the analysis of the inclination of the wavefront, a well-known mathematical technique as described in JP-T-2003-526404 can be used. The slope of the analyzed wavefront is quantified by applying the well-known Zernike polynomial expansion. The spherical refraction error and the astigmatic refraction error are expressed by a polynomial order of the second order or less, and the higher order aberration component is obtained by the polynomial order of the third order or more. Analysis results of optical characteristics such as wavefront aberration distribution and refractive power distribution are displayed on the monitor 31 connected to the control unit 30 in the form of a map or the like.

なお、波面収差分布や屈折力分布の測定時には、予備測定により得られた球面屈折誤差を補正するように、測定光源11及び受光系絞り17〜撮像素子20等が一体化されたユニット21を光軸方向に移動させる。その移動量は検出器23によって検出された移動位置を球面屈折誤差に変換し、その球面屈折誤差を基準にして波面収差分布や屈折力分布を解析する。このようにユニット21を被検眼の球面屈折誤差を補正するように移動させることで、モアレ縞の解析に際しての解像度を落とすことなく、また、直交格子状マスク19及び撮像素子20の受光面のサイズを大きくすることなく、大きな屈折誤差の測定に対応できる。   When measuring the wavefront aberration distribution and the refractive power distribution, the unit 21 in which the measurement light source 11 and the light receiving system diaphragm 17 to the image sensor 20 are integrated is used to correct the spherical refraction error obtained by the preliminary measurement. Move in the axial direction. The movement amount is obtained by converting the movement position detected by the detector 23 into a spherical refraction error, and analyzing the wavefront aberration distribution and the refractive power distribution based on the spherical refraction error. Thus, by moving the unit 21 so as to correct the spherical refraction error of the eye to be inspected, the resolution at the time of analyzing moire fringes is not reduced, and the size of the light receiving surfaces of the orthogonal grid mask 19 and the image sensor 20 is reduced. It is possible to cope with measurement of a large refraction error without increasing the value.

眼の光学特性の分解能は、2次元撮像素子20の単位素子と直交格子状マスク19の幅に依存する。これは、シャックハルトマン式で用いるマイクロレンズアレイより細かなものを使用することが可能であるので、眼の光学特性の測定を高分解能で行うことが可能となる。また、モアレパターンを発生させる構成が、1つの直交格子状マスク19と2次元撮像素子20とで可能であるため、従来に比べて構成部材を簡略化でき、コスト的に有利となる。   The resolution of the optical characteristics of the eye depends on the width of the unit element of the two-dimensional image sensor 20 and the orthogonal lattice mask 19. Since it is possible to use a finer lens than the microlens array used in the Shack-Hartmann method, it is possible to measure the optical characteristics of the eye with high resolution. In addition, since a configuration for generating a moire pattern is possible with one orthogonal lattice mask 19 and the two-dimensional imaging device 20, the constituent members can be simplified compared to the conventional case, which is advantageous in terms of cost.

眼科測定装置の測定光学系及び制御系の概略構成図である。It is a schematic block diagram of the measurement optical system and control system of an ophthalmologic measurement apparatus. 2次元撮像素子の単位画素サイズに合わせて形成する直交格子状マスクを説明する図である。It is a figure explaining the orthogonal lattice mask formed according to the unit pixel size of a two-dimensional image sensor.

符号の説明Explanation of symbols

10 測定光学系
10a 投影光学系
10b 受光光学系
11 測定光源
19 直交格子状マスク
20 2次元撮像素子
22 移動機構
30 制御ユニット


DESCRIPTION OF SYMBOLS 10 Measurement optical system 10a Projection optical system 10b Light reception optical system 11 Measurement light source 19 Orthogonal lattice mask 20 Two-dimensional image sensor 22 Moving mechanism 30 Control unit


Claims (2)

測定光源からのスポット状の光束を被検眼眼底に投影する投影光学系と、眼底で反射して被検眼を射出する光束を受光する受光光学系であって、被検眼瞳孔と略共役位置に配置されたマスクパターンを有すると共に該マスクパターンのタルボット像位置に配置された2次元撮像素子を有する受光光学系とを備え、前記マスクパターンは前記2次元撮像素子の単位画素サイズの配列に合わせて形成されたピッチの直交格子状マスクを持ち、該直交格子状マスクのタルボット像と前記2次元撮像素子の画素配列によって生じるモアレパターンを基に被検眼の光学特性を測定することを特徴とする眼科測定装置 A projection optical system that projects a spot-like light beam from the measurement light source onto the fundus of the eye to be examined, and a light-receiving optical system that receives the light beam that is reflected off the fundus and exits the eye to be examined. And a light receiving optical system having a two-dimensional image sensor arranged at the Talbot image position of the mask pattern, the mask pattern being formed in accordance with the unit pixel size arrangement of the two-dimensional image sensor An ophthalmic measurement comprising: measuring an optical characteristic of an eye to be inspected based on a Talbot image of the orthogonal lattice mask and a moire pattern generated by a pixel arrangement of the two-dimensional image sensor. apparatus 請求項1の眼科測定装置において、前記測定光源と共に前記マスクパターン及び2次元撮像素子を、被検眼の球面屈折誤差に応じて光軸方向に移動させる移動手段を設けたことを特徴とする眼科測定装置。




2. The ophthalmologic measurement apparatus according to claim 1, further comprising moving means for moving the mask pattern and the two-dimensional image sensor together with the measurement light source in an optical axis direction according to a spherical refraction error of the eye to be examined. apparatus.




JP2004347536A 2004-11-30 2004-11-30 Ophthalmic measuring device Expired - Fee Related JP4628762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004347536A JP4628762B2 (en) 2004-11-30 2004-11-30 Ophthalmic measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004347536A JP4628762B2 (en) 2004-11-30 2004-11-30 Ophthalmic measuring device

Publications (2)

Publication Number Publication Date
JP2006149871A true JP2006149871A (en) 2006-06-15
JP4628762B2 JP4628762B2 (en) 2011-02-09

Family

ID=36628828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004347536A Expired - Fee Related JP4628762B2 (en) 2004-11-30 2004-11-30 Ophthalmic measuring device

Country Status (1)

Country Link
JP (1) JP4628762B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7559651B2 (en) 2006-11-02 2009-07-14 Nidek Co., Ltd. Ophthalmic measurement apparatus
WO2013151171A1 (en) 2012-04-06 2013-10-10 株式会社ニデック Ophthalmic measurement device, and ophthalmic measurement system equipped with ophthalmic measurement device
US9775507B2 (en) 2014-10-07 2017-10-03 Nidek Co., Ltd. Method of evaluating quality of vision in examinee's eye and storage medium
US10085631B2 (en) 2016-03-31 2018-10-02 Nidek Co., Ltd. Method for generating eyeglass-prescription assisting information

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62284204A (en) * 1986-06-02 1987-12-10 Nec Corp Moire topography camera
JPH04220509A (en) * 1990-03-09 1992-08-11 Carl Zeiss:Fa Method and apparatus for measuring surface of substance without contact
JPH0587541A (en) * 1991-05-20 1993-04-06 Suezo Nakatate Two-dimensional information measuring device
JPH10305013A (en) * 1997-05-09 1998-11-17 Topcon Corp Opthalmoscopic characteristic measuring instrument
JP2003526404A (en) * 1999-07-27 2003-09-09 エイエムティ テクノロジーズ、コーポレイション Eye biometer
WO2004071270A2 (en) * 2003-02-04 2004-08-26 Wave Tec Vision Systems, Inc. Opthalmic talbot-moire wavefront sensor
WO2004093667A1 (en) * 2003-03-25 2004-11-04 Bausch & Lomb Incorporated Moiré aberrometer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62284204A (en) * 1986-06-02 1987-12-10 Nec Corp Moire topography camera
JPH04220509A (en) * 1990-03-09 1992-08-11 Carl Zeiss:Fa Method and apparatus for measuring surface of substance without contact
JPH0587541A (en) * 1991-05-20 1993-04-06 Suezo Nakatate Two-dimensional information measuring device
JPH10305013A (en) * 1997-05-09 1998-11-17 Topcon Corp Opthalmoscopic characteristic measuring instrument
JP2003526404A (en) * 1999-07-27 2003-09-09 エイエムティ テクノロジーズ、コーポレイション Eye biometer
WO2004071270A2 (en) * 2003-02-04 2004-08-26 Wave Tec Vision Systems, Inc. Opthalmic talbot-moire wavefront sensor
JP2006516447A (en) * 2003-02-04 2006-07-06 ウェーブ テック ビジョン システムズ、インコーポレイテッド Eye Talbot moire wavefront sensor
WO2004093667A1 (en) * 2003-03-25 2004-11-04 Bausch & Lomb Incorporated Moiré aberrometer
JP2006521157A (en) * 2003-03-25 2006-09-21 ボシュ・アンド・ロム・インコーポレイテッド Moire aberration measuring instrument

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7559651B2 (en) 2006-11-02 2009-07-14 Nidek Co., Ltd. Ophthalmic measurement apparatus
WO2013151171A1 (en) 2012-04-06 2013-10-10 株式会社ニデック Ophthalmic measurement device, and ophthalmic measurement system equipped with ophthalmic measurement device
US9775507B2 (en) 2014-10-07 2017-10-03 Nidek Co., Ltd. Method of evaluating quality of vision in examinee's eye and storage medium
US10085631B2 (en) 2016-03-31 2018-10-02 Nidek Co., Ltd. Method for generating eyeglass-prescription assisting information

Also Published As

Publication number Publication date
JP4628762B2 (en) 2011-02-09

Similar Documents

Publication Publication Date Title
JP6348196B2 (en) System for determining the topography of the cornea of the eye
US7976163B2 (en) System and method for measuring corneal topography
US7339658B2 (en) Device and method for measuring surface topography and wave aberration of a lens system, in particular an eye
US20120274904A1 (en) Ophthalmic apparatus, method of controlling ophthalmic apparatus and storage medium
JP5970682B2 (en) Eyeball measuring device and eyeball measuring method
JP4988305B2 (en) Ophthalmic measuring device
JP4492847B2 (en) Eye refractive power measuring device
KR101571206B1 (en) Imaging apparatus
JP4491663B2 (en) Ophthalmic optical characteristic measuring device
JP3630884B2 (en) Ophthalmic examination equipment
JP2003533320A (en) Method and apparatus for measuring refraction error of the eye
JP4987426B2 (en) Ophthalmic measuring device
JP5517571B2 (en) Imaging apparatus and imaging method
JP6808383B2 (en) Optical coherence tomography equipment, its control method and optical coherence tomography system
JP4666461B2 (en) Eye refractive power measuring device
CN103415243A (en) Apparatus for measuring optical properties of an object
JP4619694B2 (en) Ophthalmic measuring device
JP2005342204A (en) Ophthalmologic measuring apparatus
JP4252288B2 (en) Eye characteristic measuring device
JP4628762B2 (en) Ophthalmic measuring device
US7249852B2 (en) Eye characteristic measuring apparatus
JP2018051224A (en) Ophthalmologic measurement apparatus
JP4630107B2 (en) Ophthalmic optical characteristic measuring device
JP4492859B2 (en) Eye refractive power measuring device
JP6646722B2 (en) Ophthalmic equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees