JPH07263456A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH07263456A
JPH07263456A JP7378094A JP7378094A JPH07263456A JP H07263456 A JPH07263456 A JP H07263456A JP 7378094 A JP7378094 A JP 7378094A JP 7378094 A JP7378094 A JP 7378094A JP H07263456 A JPH07263456 A JP H07263456A
Authority
JP
Japan
Prior art keywords
semiconductor region
region
semiconductor
base
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7378094A
Other languages
Japanese (ja)
Inventor
Hidetoshi Arakawa
秀俊 荒川
Yoshitaka Sugawara
良孝 菅原
Masamitsu Inaba
政光 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Power Semiconductor Device Ltd
Original Assignee
Hitachi Ltd
Hitachi Haramachi Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Haramachi Electronics Ltd filed Critical Hitachi Ltd
Priority to JP7378094A priority Critical patent/JPH07263456A/en
Priority to DE69530881T priority patent/DE69530881D1/en
Priority to EP95301625A priority patent/EP0673072B1/en
Priority to US08/404,465 priority patent/US5608236A/en
Priority to KR1019950005533A priority patent/KR950034825A/en
Publication of JPH07263456A publication Critical patent/JPH07263456A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To provide a semiconductor device, in particular, a bipolar transistor of high withstand voltage which is excellent in high frequency characteristics. CONSTITUTION:In a semiconductor device, in particular, a lateral, type bi,polar transistor device, a gap is formed between the high concentration part of a second N-base layer of high impurity concentration for supplying a base current and the high concentration part of a second P-collector layer 6 of low impurities. Thereby contact is evaded, so that the concentration of the P-collector layer of low concentration can be made high without deteriorating the withstand voltage, and the collector resistance can be lowered. The voltage between an emitter and a base at the time of transistor operation can be decreased, and current capacity can be improved. Hence high frequency and large current operation of a transistor is realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置に関わり、
特に高耐圧で、且つ、高速のバイポーラトランジスタに
関する。
BACKGROUND OF THE INVENTION The present invention relates to a semiconductor device,
Particularly, it relates to a bipolar transistor having a high breakdown voltage and a high speed.

【0002】[0002]

【従来の技術】一般にパワーICやLSI、信号用トラ
ンジスタ等では、高耐圧で高電流増幅率、且つ、高速の
バイポーラトランジスタが必要とされる。しかし、これ
らの特性を同時に実現することは困難であり、従来は高
電流増幅率を実現するために、ベースを薄くして耐圧を
犠牲にしたりする方法や、ダーリントン・トランジスタ
構成にして速度を犠牲にしたりする方法が用いられてい
る。
2. Description of the Related Art In general, power ICs, LSIs, signal transistors, etc. require bipolar transistors of high breakdown voltage, high current amplification factor, and high speed. However, it is difficult to realize these characteristics at the same time. Conventionally, in order to achieve a high current amplification factor, the base is thinned to sacrifice the breakdown voltage, or the Darlington transistor configuration is used to sacrifice the speed. The method is used.

【0003】例えば、バイポーラリニアICにおいて
は、回路設計における自由度が増大し、且つ回路構成を
簡単にするために、npnトランジスタとpnpトラン
ジスタを混用しているが、製造工程数を少なくするため
にnpnトランジスタは縦型構造、pnpトランジスタ
はラテラル構造にして用いている。この場合は、特に高
耐圧で高電流増幅率、且つ、高速のバイポーラトランジ
スタを同時に実現できないことの影響が深刻である。な
ぜなら、ラテラル構造のpnpトランジスタにおいて
は、コレクタ接合耐圧は濃度の低いベース(半導体基体
領域)に空乏層が広がることで達成されるが、空乏層が
エミッタ接合に達するいわゆるパンチスルー現象を防ぐ
ために、エミッタ・コレクタ間の間隔(ベース幅)をコ
レクタ接合の設計耐圧における空乏層幅より広く設計さ
れる。この結果、電流増幅率が縦構造のトランジスタに
比べて著しく低下してしまうためである。
For example, in a bipolar linear IC, an npn transistor and a pnp transistor are mixed in order to increase the degree of freedom in circuit design and to simplify the circuit configuration, but in order to reduce the number of manufacturing steps. The npn transistor has a vertical structure and the pnp transistor has a lateral structure. In this case, the influence of not being able to simultaneously realize a bipolar transistor having a high breakdown voltage, a high current amplification factor, and a high speed is serious. This is because in the lateral pnp transistor, the collector junction breakdown voltage is achieved by spreading the depletion layer in the base (semiconductor substrate region) having a low concentration, but in order to prevent the so-called punch-through phenomenon in which the depletion layer reaches the emitter junction, The distance between the emitter and collector (base width) is designed to be wider than the depletion layer width at the design breakdown voltage of the collector junction. As a result, the current amplification factor is significantly lower than that of the vertical transistor.

【0004】このようなラテラル型トランジスタの問題
を解決するために種々の素子構造が提案されている。一
例として特開昭59−127865号公報に開示された
pnpトランジスタが知られている。このトランジスタ
は、n型の基体領域の一主表面側に基体領域より高不純
物濃度を有するnベース領域、nベース領域内にpエミ
ッタ領域、nベース領域から離れた基体領域に第1のp
コレクタ領域、第1のpコレクタ領域からnベース領域
に向かって延び、かつnベース領域を包囲する第1のコ
レクタ領域、及びnベース領域より低不純物濃度の第2
のpコレクタ領域を形成した構成になっている。この構
成に依れば、低圧印加時には第2のコレクタ領域がコレ
クタとなり、高圧印加時には第2のコレクタ領域には空
乏層が広がり第1のコレクタ領域がコレクタとなり、こ
の結果電流増幅率、遮断周波数及び耐圧を共に改善する
ことができる。
Various element structures have been proposed to solve the problem of the lateral type transistor. As an example, a pnp transistor disclosed in JP-A-59-127865 is known. This transistor has an n base region having a higher impurity concentration than the base region on one main surface side of the n type base region, ap emitter region in the n base region, and a first p region in the base region distant from the n base region.
A collector region, a first collector region extending from the first p collector region toward the n base region and surrounding the n base region, and a second impurity region having a lower impurity concentration than the n base region.
The p collector region is formed. According to this structure, when the low voltage is applied, the second collector region becomes the collector, and when the high voltage is applied, the depletion layer spreads in the second collector region, and the first collector region becomes the collector. As a result, the current amplification factor and the cutoff frequency are increased. And the withstand voltage can be improved together.

【0005】しかし、この構造では、ベース抵抗の配慮
が無されておらず、リニアICでの使用において、ベー
ス抵抗が大きい為に、雑音電圧が大きくなってしまうと
いう問題があった。それを解決するために、特願平1−
268959号において開示された構造が知られてい
る。この構造は、前記特開昭59−127865号公報
に開示されたpnpトランジスタのnベース領域を包囲
する第1のコレクタ領域の一部を解放し、その部分を高
不純物濃度のnベースと第1のコレクタ領域の外部のベ
ース電極用の第2の高不純物濃度のベース層とを連結す
るものである。これによれば、ベース抵抗を小さくで
き、その結果、雑音電圧の小さなpnpトランジスタを
形成することができる。
However, in this structure, the consideration of the base resistance is not taken into consideration, and there is a problem that the noise voltage becomes large due to the large base resistance when used in a linear IC. To solve it, Japanese Patent Application 1-
The structure disclosed in 268959 is known. This structure releases a part of the first collector region surrounding the n base region of the pnp transistor disclosed in the above-mentioned Japanese Patent Laid-Open No. 59-127865, and uses that part as a high impurity concentration n base. The second collector layer is connected to the second high impurity concentration base layer for the base electrode outside the collector region. According to this, the base resistance can be reduced, and as a result, a pnp transistor with a low noise voltage can be formed.

【0006】具体的な代表的課題の一つである高耐圧・
高速リニアICのラテラルpnpトランジスタを例にあ
げて説明する。高耐圧でより一層の高速リニア回路(I
C)を実現するために、前記特願平1−268959号
に開示されたラテラルpnpトランジスタの平面図及び
断面図を図7、図8にしめす。遮断周波数の向上のため
に、実効動作領域となるpエミッタ3とp−コレクタ6
間のnベース層2の幅を著しく狭くすると、ベース抵抗
及びコレクタ抵抗の遮断周波数におよぼす寄与度が大き
くなり、それらを低減することが必要となる。
High breakdown voltage, which is one of the typical representative problems
A lateral pnp transistor of a high-speed linear IC will be described as an example. High breakdown voltage and higher speed linear circuit (I
7 and 8 are plan views and cross-sectional views of the lateral pnp transistor disclosed in Japanese Patent Application No. 1-268959 in order to realize C). In order to improve the cutoff frequency, the p-emitter 3 and the p-collector 6 which are effective operating regions
If the width of the n base layer 2 between them is remarkably narrowed, the contribution of the base resistance and the collector resistance to the cutoff frequency becomes large, and it is necessary to reduce them.

【0007】一方、高耐圧化する場合、電界緩和領域と
して働くnベース2と第1のpコレクタ領域4間距離で
ある第2のコレクタ領域6の長さが大きくなり、その結
果、コレクタ抵抗が増大する。さらに、nベース2から
引き出す第2のnベース5の距離も長くなり、その結
果、ベース抵抗の増大となる。その抵抗を低減するため
に、さらに引出部のベース不純物濃度を第1のnベース
2より高くすると、トランジスタの逆バイアス印加時
に、第2のpコレクタ領域6と第2のnベース5との不
純物の接触部での電解集中が激しく耐圧の低下を招く。
その耐圧の低下を防ぐために、第2のコレクタ領域6の
不純物濃度を低くする必要があり、その結果、コレクタ
抵抗が増大し、遮断周波数の低下となってしまう。
On the other hand, when the breakdown voltage is increased, the length of the second collector region 6 which is the distance between the n base 2 and the first p collector region 4, which acts as an electric field relaxation region, becomes large, and as a result, the collector resistance is increased. Increase. Further, the distance of the second n-base 5 pulled out from the n-base 2 also becomes long, resulting in an increase in base resistance. In order to reduce the resistance, if the base impurity concentration of the extraction portion is made higher than that of the first n-base 2, the impurity of the second p-collector region 6 and the second n-base 5 is applied when the reverse bias of the transistor is applied. Electrolytic concentration is severe at the contact portion of, and the breakdown voltage is lowered.
In order to prevent the reduction of the breakdown voltage, it is necessary to reduce the impurity concentration of the second collector region 6, and as a result, the collector resistance increases and the cutoff frequency decreases.

【0008】一方、このトランジスタにおいて、電流容
量を増大するために、第2のnベース層5と反対側にエ
ミッタ3を長くすると、第1のnベース2とpエミッタ
3との関係が電流増幅率の仕様により決定されるため、
第2のnベース5端からエミッタ3端までのベース抵抗
が大きく、その結果、高電流動作時において第2のnベ
ース5方向から反対側に行くほどエミッタ−ベース間電
圧が低下し、エミッタ−ベース間電圧のこの不均一か
ら、高電流領域での電流増幅率及び遮断周波数、雑音電
圧の低下を招く。
On the other hand, in this transistor, when the emitter 3 is lengthened on the side opposite to the second n base layer 5 in order to increase the current capacity, the relation between the first n base 2 and the p emitter 3 is current amplified. Since it is determined by the rate specification,
The base resistance from the second n-base 5 end to the emitter 3 end is large, and as a result, the emitter-base voltage decreases from the second n-base 5 direction to the opposite side during high current operation, and the emitter-base voltage decreases. This non-uniformity of the base-to-base voltage causes a decrease in current amplification factor, cutoff frequency, and noise voltage in the high current region.

【0009】[0009]

【発明が解決しようとする課題】本発明の課題は、耐圧
を犠牲にすることなく雑音特性の優れた、高耐圧で高周
波特性の半導体装置、特にバイポーラトランジスタを提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor device having a high withstand voltage and a high frequency characteristic, particularly a bipolar transistor, which has an excellent noise characteristic without sacrificing the withstand voltage.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、一方導電型の第1の半導体領域と、第
1の半導体領域の一主表面から内部に延び第1の半導体
領域より高不純物を有する一方導電型の第2の半導体領
域と、第2の半導体領域の露出面から内部に延び第2の
半導体領域より高不純物を有する他方導電型の第3の半
導体領域と、第1の半導体領域の一主表面から内部に延
びその露出面が開放した環状を有し第2の半導体領域を
実質的に包囲し、第1の半導体領域より高不純物濃度を
有する他方導電型の第4の半導体領域と、第1の半導体
領域の一主表面から内部に延び、一端が第2の半導体領
域につらなり他端が第4の半導体領域の開放した個所を
通って第2の半導体領域から遠ざかるように延び、第1
の半導体領域及び第2の半導体領域より高不純物濃度を
有する一方導電型の第5の半導体領域と、第2の半導体
領域と第4の半導体領域との間に位置して両領域に接
し、さらに、第5の半導体領域部の外周側では空隙にお
いて、第1の半導体領域の一主表面から内部に延び、第
1の半導体領域より高不純物濃度で第4の半導体領域よ
り低不純物濃度を有する他方導電型の第6の半導体領域
と、第2の半導体領域と少なくとも一部の第6の半導体
領域上に主表面上に形成される絶縁物を介して被って第
3の半導体領域の露出面となる第1の開口部にオーミッ
ク接触する第1の電極と、第4の半導体領域の露出面と
なる第2の開口部にオーミック接触する第2の電極と、
第5の半導体領域の露出面となる第3の開口部にオーミ
ック接触する第3の電極とを具備することを特徴とする
半導体装置としたものである。
In order to solve the above problems, according to the present invention, a first semiconductor region of one conductivity type and a first semiconductor region extending inward from one main surface of the first semiconductor region are provided. A second conductivity type second semiconductor region having a higher impurity content, a third conductivity type third semiconductor region extending inward from an exposed surface of the second semiconductor region and having a higher impurity content than the second semiconductor region, The first semiconductor region has an annular shape that extends inward from one main surface and has an exposed surface that is open and substantially surrounds the second semiconductor region, and has a higher impurity concentration than the first semiconductor region. 4 semiconductor region and the first semiconductor region from one main surface to the inside, one end of which is connected to the second semiconductor region and the other end of which extends from the open portion of the fourth semiconductor region to the second semiconductor region. First to extend away
Located between the second semiconductor region and the fourth semiconductor region, and one conductive type fifth semiconductor region having a higher impurity concentration than the second semiconductor region and the second semiconductor region, and contacting both regions. , On the outer peripheral side of the fifth semiconductor region portion, in the void, extending inward from one main surface of the first semiconductor region and having a higher impurity concentration than the first semiconductor region and a lower impurity concentration than the fourth semiconductor region, A conductive type sixth semiconductor region, and an exposed surface of the third semiconductor region which is covered with the second semiconductor region and at least a part of the sixth semiconductor region via an insulator formed on the main surface. A first electrode in ohmic contact with the first opening, and a second electrode in ohmic contact with the second opening that is an exposed surface of the fourth semiconductor region,
A third semiconductor device is provided with a third electrode that makes ohmic contact with a third opening that is an exposed surface of the fifth semiconductor region.

【0011】前記半導体装置において、第3の半導体領
域は、その露出面における第1の開口部が、第5の半導
体領域から遠方に偏ってオーミック接触することとして
もよく、また、第4の半導体領域と対向していない部分
を少なくとも一部除去した形状としてもよい。また、前
記半導体装置において、主表面における第4の半導体領
域と対抗する側においては、少なくとも第2の半導体領
域より小さく、第1の半導体領域の一主表面から内部に
延び、第2の半導体領域より深く、かつ、第3の半導体
領域より低不純物を有する一方導電型の第7の半導体領
域を有することもできる。更に、前記半導体装置は、第
1の半導体領域が、半導体基体の一方の主表面側に相互
に電気的に絶縁して併設された複数個の島領域の一つと
してもよい。
In the above semiconductor device, the third semiconductor region may have an ohmic contact in which the first opening in the exposed surface is biased far away from the fifth semiconductor region, and the fourth semiconductor region. The shape may be such that at least a part of the portion that does not face the region is removed. In the semiconductor device, on the side of the main surface facing the fourth semiconductor region, at least smaller than the second semiconductor region, extending inward from one main surface of the first semiconductor region, the second semiconductor region is formed. It is also possible to have a seventh semiconductor region that is deeper and has a lower impurity than the third semiconductor region, while having a conductivity type seventh semiconductor region. Further, in the semiconductor device, the first semiconductor region may be one of a plurality of island regions provided on one main surface side of the semiconductor substrate so as to be electrically insulated from each other.

【0012】上記のように、本発明では、半導体装置、
特にラテラル型バイポーラトランジスタ装置において、
ベース電流を供給する高不純物濃度の第5の半導体領域
である第2のnベース層の高濃度部と低不純物の第6の
半導体領域である第2のpコレクタ層の高濃度部の接触
を避けることによって、このトランジスタの逆バイアス
印加時に、この接合部の電界の緩和ができ、その結果、
耐圧の低下が防止できる。従って、第6の半導体領域で
ある第2のコレクタ層の不純物濃度を低下することな
く、つまり、コレクタ抵抗の増加なしで、遮断周波数の
低下を防止することができる。
As described above, according to the present invention, the semiconductor device,
Especially in lateral bipolar transistor devices,
Contact between the high-concentration portion of the second n base layer, which is the fifth semiconductor region having a high impurity concentration for supplying the base current, and the high-concentration portion of the second p collector layer, which is the sixth semiconductor region having a low impurity concentration, is performed. By avoiding this, when applying a reverse bias to this transistor, the electric field at this junction can be relaxed, resulting in
The breakdown voltage can be prevented from lowering. Therefore, it is possible to prevent the cutoff frequency from decreasing without decreasing the impurity concentration of the second collector layer that is the sixth semiconductor region, that is, without increasing the collector resistance.

【0013】また、電流容量を増やすため第3の半導体
領域であるpエミッタ領域長を長くすると第5の半導体
領域である第2のベース領域から遠ざかるにしたがい、
第2の半導体領域である第1のnベース領域は第3の半
導体領域であるエミッタ領域でピンチされることにより
高抵抗となり、トランジスタ動作時にエミッタ電流の片
寄りのために高電流領域での電流増幅率や遮断周波数の
低下が著しい。そこでこの第2の半導体領域である第1
のベース領域の低抵抗化のために、一つの手段として
は、このトランジスタの実効ベース領域以外の第3の半
導体領域であるpエミッタ領域の底部に低抵抗となる第
7の半導体領域である不純物拡散層を設けることや、実
効ベース領域と対抗しない第3の半導体領域であるpエ
ミッタ領域の中央部を除去しベース拡散層が露出するよ
うにし、第1のベース拡散層のエミッタ拡散のピンチに
よる高抵抗化を防止することができる。
Further, when the length of the p-emitter region which is the third semiconductor region is increased to increase the current capacity, the distance from the second base region which is the fifth semiconductor region increases.
The first n base region, which is the second semiconductor region, becomes high resistance by being pinched by the emitter region, which is the third semiconductor region, and the current in the high current region is increased due to bias of the emitter current during transistor operation. The gain and cutoff frequency are significantly reduced. Therefore, the first semiconductor which is the second semiconductor region
In order to reduce the resistance of the base region of the transistor, as one means, the bottom of the p-type emitter region, which is the third semiconductor region other than the effective base region of this transistor, is the impurity of the seventh semiconductor region that has a low resistance. By providing a diffusion layer or removing the central portion of the p-type emitter region, which is the third semiconductor region that does not oppose the effective base region, to expose the base diffusion layer, a pinch of the emitter diffusion of the first base diffusion layer is performed. High resistance can be prevented.

【0014】さらに、遮断周波数を高電流化のために、
ベース電極から遠方のエミッタ接合でのエミッタ−ベー
ス間電圧の不均一性の防止を目的に、第3の半導体領域
であるエミッタ領域において第3の電極であるベース電
極から遠方に偏って第1の電極であるエミッタ電極を設
けてもよい。上記の本発明の半導体装置は、リニアIC
の高周波pnpトランジスタとして好適に用いることが
できる。
Further, in order to increase the cutoff frequency to a high current,
For the purpose of preventing non-uniformity of the emitter-base voltage at the emitter junction far from the base electrode, the first biased first electrode is biased far from the base electrode which is the third electrode in the emitter region which is the third semiconductor region. You may provide the emitter electrode which is an electrode. The semiconductor device of the present invention is a linear IC.
Can be suitably used as the high frequency pnp transistor.

【0015】[0015]

【作用】本発明によれば、高耐圧のバイポーラトランジ
スタにおいて、第5の半導体領域である第2のベース領
域と低不純物での第6の半導体領域であるpコレクタ領
域とが接触しないので、従来構造で電圧印加時の電界集
中する部位を回避でき、従って耐圧が低下することなく
第6の半導体領域である第2のpコレクタ層のシート抵
抗を下げることができ、その結果、コレクタ抵抗を小さ
くでき、遮断周波数が向上できる。さらに、高電流での
エミッタ偏り効果を低減するために、エミッタ下にベー
スの低不純物層を設けたり、実行エミッタ領域でないエ
ミッタ領域を取り除くことにより、さらに、エミッタ内
でのコンタクト位置をベース電極から遠方に配置するこ
とにより、エミッタ接合のエミッタ−ベース間電圧の均
一化とベース抵抗の低減化が達成でき、高電流領域ま
で、遮断周波数の向上が図れる。
According to the present invention, in the high breakdown voltage bipolar transistor, the second base region, which is the fifth semiconductor region, and the p collector region, which is the sixth semiconductor region with low impurities, do not contact each other. In the structure, it is possible to avoid a portion where an electric field is concentrated when a voltage is applied, and thus it is possible to reduce the sheet resistance of the second p collector layer that is the sixth semiconductor region without lowering the breakdown voltage, and as a result, the collector resistance is reduced. The cutoff frequency can be improved. Furthermore, in order to reduce the effect of biasing the emitter at high current, a low impurity layer of the base is provided under the emitter, and the emitter region that is not the effective emitter region is removed, so that the contact position within the emitter is further changed from the base electrode. By arranging them at a distant position, the emitter-base voltage of the emitter junction can be made uniform and the base resistance can be reduced, and the cutoff frequency can be improved even in the high current region.

【0016】[0016]

【実施例】以下、本発明の半導体装置を実施例として示
した図面により詳述する。 実施例1 図1と図2は、それぞれ、本発明の第1の実施例を示す
ラテラルpnpトランジスタの平面図と断面図を示す。
図1、図2において、1は、多結晶シリコン21に絶縁
膜30を介して絶縁膜30に接するn型の埋込層10を
設けて島状に埋設され、半導体基体20の一方の主表面
22に露出する第1の領域である基体領域である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The semiconductor device of the present invention will be described in detail below with reference to the drawings showing the embodiments. Embodiment 1 FIG. 1 and FIG. 2 respectively show a plan view and a sectional view of a lateral pnp transistor showing a first embodiment of the present invention.
In FIGS. 1 and 2, reference numeral 1 denotes an island-like buried structure in which an n-type buried layer 10 in contact with the insulating film 30 is provided on the polycrystalline silicon 21 to form an island shape. It is a base region which is a first region exposed at 22.

【0017】2は、基体領域1の一主表面22の一部か
ら内部に延びる基体領域1より高不純物を有する第2の
領域であるn型導電性を有するベース領域である。3
は、ベース領域2の露出面から内部に延びるベース領域
2より高不純物濃度を有する第3の領域であるp型導電
型のエミッタ領域である。4は、基体領域1の主表面2
2から内部に延びnベース領域2を主表面22において
所定の距離離れて包囲するように環状でその一部が開放
して基体領域1より高不純物濃度を有する第4の領域で
あるp型導電型のコレクタ領域である。
Reference numeral 2 is a base region having n-type conductivity, which is a second region extending inward from a part of one main surface 22 of the base region 1 and having a higher impurity than the base region 1. Three
Is a p-type conductivity type emitter region which is a third region extending inward from the exposed surface of the base region 2 and having a higher impurity concentration than the base region 2. 4 is the main surface 2 of the base region 1
P-type conductivity, which is a fourth region extending inward from the base region 2 and surrounding the n base region 2 at a predetermined distance on the main surface 22 so as to surround the base region 2 and have a part thereof open to have a higher impurity concentration than the base region 1. It is the collector region of the mold.

【0018】5は、基体領域1の一主表面22から内部
に延び、一端がnベース領域2につらなり他端がコレク
タ領域4の開放した個所をとおって遠ざかるように延
び、ベース領域2より高濃度層を有する第5の領域であ
る連結ベース領域である。6は、基体領域1の一主表面
22から内部に延び、nベース領域2とコレクタ領域4
との間に接し、さらに、連結ベース領域5との間に一
部、表面において基体1が現われ、空隙となるように配
置した基体領域1より高不純物濃度でコレクタ領域4よ
り低不純物濃度の第6の領域であるp−コレクタ領域で
ある。
The reference numeral 5 extends inward from one main surface 22 of the base region 1, one end is connected to the n base region 2 and the other end is extended away from the open part of the collector region 4, and is higher than the base region 2. It is a connecting base region which is a fifth region having a concentration layer. 6 extends inward from the one main surface 22 of the base region 1, and includes an n base region 2 and a collector region 4.
And the connection base region 5 and a part of the substrate 1 appears on the surface between the base region 1 and the connection base region 5 and has a higher impurity concentration than the base region 1 and a lower impurity concentration than the collector region 4. 6 is a p-collector region which is a region of 6.

【0019】31は、半導体基体20の一方の主表面2
2上に形成される絶縁膜であり、41は、絶縁膜31の
開口部51によりベース領域5の少なくとも一部と低抵
抗接触する第3の電極であるベース電極でB端子とな
る。42は、絶縁膜31の開口部52によりエミッタ領
域3の少なくとも一部と低抵抗接触し、絶縁膜31を介
してコレクタ領域4と対向するベース領域2と連結ベー
ス領域5とp−コレクタ領域6の一部を覆う第1の電極
であるエミッタ電極でE端子となる。
Reference numeral 31 denotes one main surface 2 of the semiconductor substrate 20.
Reference numeral 41 denotes an insulating film formed on the second insulating film 31, and reference numeral 41 denotes a base electrode which is a third electrode that makes low resistance contact with at least a part of the base region 5 through the opening 51 of the insulating film 31 and serves as a B terminal. 42 has a low resistance contact with at least a part of the emitter region 3 through the opening 52 of the insulating film 31, and faces the collector region 4 via the insulating film 31; the base region 2; the connecting base region 5; and the p-collector region 6. The emitter electrode, which is the first electrode covering a part of the above, becomes the E terminal.

【0020】43は、絶縁膜31の開口部53によりコ
レクタ領域4の少なくとも一部と低抵抗接触し、絶縁膜
31を介してコレクタ領域4上とそのコレクタ領域を超
えてnベース領域と対向する方向のp−コレクタ領域6
上の一部とコレクタ領域の外周方向の主表面に露出する
基体領域1の一部を覆う第3の電極であるコレクタ電極
でC端子となる。8は、nベース領域2とエミッタ領域
3を形成する同一不純物拡散窓とするための多結晶シリ
コン薄膜であり、絶縁膜31に埋設される。
43 has a low resistance contact with at least a part of the collector region 4 through the opening 53 of the insulating film 31 and faces the n base region on the collector region 4 and beyond the collector region through the insulating film 31. Direction p-collector region 6
The collector electrode, which is a third electrode covering a part of the upper part and a part of the base region 1 exposed on the outer peripheral main surface of the collector region, serves as a C terminal. Reference numeral 8 is a polycrystalline silicon thin film for forming the same impurity diffusion window forming the n base region 2 and the emitter region 3, and is buried in the insulating film 31.

【0021】本実施例における各寸法等の具体例を以下
に示す。単結晶島1厚さは、40μm、埋込層10の拡
散濃度及び拡散深さはそれぞれ5×1018/cm3 と1
0μm、nベース領域2の拡散濃度及び拡散深さはそれ
ぞれ2×1017/cm3 と2.5μm、エミッタ領域3
の拡散濃度及び拡散深さはそれぞれ5×1015/cm3
と0.5μm、コレクタ領域4の拡散濃度及び拡散深さ
はそれぞれ1×1018/cm3 と3.5μm、連結ベー
ス領域5の拡散濃度及び拡散深さはそれぞれ1×1020
/cm3 と2.0μm、p−コレクタ領域6の拡散濃度
及び拡散深さはそれぞれ6×1015/cm3 と5.0μ
mである。
Specific examples of each dimension and the like in this embodiment are shown below. The single crystal island 1 has a thickness of 40 μm, and the buried layer 10 has a diffusion concentration and a diffusion depth of 5 × 10 18 / cm 3 and 1, respectively.
0 μm, the diffusion concentration and the diffusion depth of the n base region 2 are 2 × 10 17 / cm 3 and 2.5 μm, respectively, and the emitter region 3
The diffusion concentration and the diffusion depth are 5 × 10 15 / cm 3 respectively.
And 0.5 μm, the diffusion concentration and the diffusion depth of the collector region 4 are 1 × 10 18 / cm 3 and 3.5 μm, respectively, and the diffusion concentration and the diffusion depth of the connection base region 5 are 1 × 10 20 respectively.
/ Cm 3 and 2.0 μm, and the diffusion concentration and the diffusion depth of the p-collector region 6 are 6 × 10 15 / cm 3 and 5.0 μm, respectively.
m.

【0022】また、ベース領域2及び連結ベース領域5
とコレクタ領域3間の距離は15μm、コレクタ領域3
と埋込層10間距離は15μm、エミッタ電極42のベ
ース領域2及び連結ベース領域5からp−コレクタ領域
6方向への覆う長さは8μmである。また、連結ベース
領域5とp−コレクタ領域6間は、ホトマスク間で7μ
mである。エミッタ拡散層と接触するエミッタ電極面積
は3μm×3μm、エミッタは縦、横の長さがそれぞれ
15μmである。
The base region 2 and the connecting base region 5 are also provided.
The distance between the collector region 3 and the collector region 3 is 15 μm.
The distance between the buried layer 10 and the buried layer 10 is 15 μm, and the covering length of the emitter electrode 42 from the base region 2 and the connecting base region 5 in the p-collector region 6 direction is 8 μm. In addition, between the connection base region 5 and the p-collector region 6 is 7 μm between the photomasks.
m. The area of the emitter electrode in contact with the emitter diffusion layer is 3 μm × 3 μm, and the length and width of the emitter are each 15 μm.

【0023】本発明によれば、連結ベース領域5がp−
コレクタ領域6を横切る従来構造に比べて、耐圧を低下
することなく、p−の濃度を約10%向上できた。この
素子の特性は、コレクタ−エミッタ間耐圧BVCEO 〜1
50V、電流増幅率〜130、遮断周波数fr 〜230
MHzであり、p−コレクタ領域6の濃度の向上によ
り、コレクタ抵抗を小さくでき、遮断周波数を約7%向
上できた。
According to the present invention, the connecting base region 5 is p-.
Compared with the conventional structure that traverses the collector region 6, the p − concentration can be improved by about 10% without lowering the breakdown voltage. The characteristics of this element are as follows: Collector-emitter breakdown voltage BV CEO ~ 1
50 V, the current amplification factor 130, the cutoff frequency f r to 230
Since the frequency is MHz, the collector resistance can be reduced by increasing the concentration of the p-collector region 6, and the cutoff frequency can be improved by about 7%.

【0024】実施例2 図3は、本発明による第2の実施例を示すラテラルpn
pトランジスタの平面図である。この構造は、本発明の
実施例1において、電流容量を大きくするために、エミ
ッタ領域3を連結ベース領域5と反対方向に長くしたも
のであり、さらにエミッタ領域3のコンタクト領域52
を連結ベース領域5と反対方向に片寄って配置してあ
る。その他の構成は、実施例1と同じである。
Embodiment 2 FIG. 3 shows a lateral pn showing a second embodiment according to the present invention.
It is a top view of a p-transistor. In this structure, the emitter region 3 is elongated in the direction opposite to the connection base region 5 in order to increase the current capacity in the first embodiment of the present invention, and the contact region 52 of the emitter region 3 is further formed.
Are arranged offset in the opposite direction to the connection base region 5. Other configurations are the same as those in the first embodiment.

【0025】エミッタ領域3と接触するエミッタのコン
タクト領域52は3μm×3μm、エミッタ領域は、幅
15μm、長さ50μmである。この素子の特性は、コ
レクタ−エミッタ間耐圧BVCEO 〜150V、電流増幅
率〜130、遮断周波数fr 〜180MHzであり、ま
た、コンタクト領域52が片寄らないトランジスタに比
べ、約10%電流容量が改善できた。
The contact region 52 of the emitter which is in contact with the emitter region 3 is 3 μm × 3 μm, and the emitter region is 15 μm wide and 50 μm long. Characteristics of the element, the collector - emitter breakdown voltage BV CEO ~150V, current amplification factor 130, a cut-off frequency f r ~180MHz, also compared to a transistor contact region 52 is not biased, about 10% current capacity is improved did it.

【0026】実施例3 図4は、本発明による第3の実施例を示すラテラルpn
pトランジスタの平面図である。この構造は、本発明の
実施例2において、電流容量を大きくするために、特
に、エミッタ領域3を横方向に長くしたときに、そのエ
ミッタの長さに比例した電流が得られるように、コレク
タと対抗する実効的に動作する横方向エミッタ以外のエ
ミッタ部の一部を除去し、ベース領域2の表面が露出す
るような構成としている。エミッタ形状以外の構成は、
実施例2と同じである。
Embodiment 3 FIG. 4 shows a lateral pn showing a third embodiment according to the present invention.
It is a top view of a p-transistor. In this structure, in the second embodiment of the present invention, in order to increase the current capacity, particularly when the emitter region 3 is elongated in the lateral direction, a collector current is obtained in proportion to the length of the emitter. A part of the emitter portion other than the lateral emitter that effectively operates in opposition to is removed to expose the surface of the base region 2. For configurations other than the emitter shape,
This is the same as the second embodiment.

【0027】この構造に依れば、ベース抵抗が小さくで
きるため、ベース電極から近いところと遠方のエミッタ
−ベース間電圧差を小さくでき、その結果、エミッタ長
を大きくする場合に有利となる。この素子の特性は、コ
レクタ−エミッタ間耐圧BVCEO 〜150V、電流増幅
率〜130、遮断周波数fr 〜190MHzと、実施例
2とほぼ同等であるが、電流容量を約10%改善でき
た。
According to this structure, since the base resistance can be reduced, the emitter-base voltage difference near and far from the base electrode can be reduced, which is advantageous when the emitter length is increased. Characteristics of the element, the collector - emitter breakdown voltage BV CEO ~150V, the current amplification factor 130, the cutoff frequency f r ~190MHz, is almost equal to that of Example 2, was the current capacity improved by about 10%.

【0028】実施例4 図5と図6は、本発明による第4の実施例を示すラテラ
ルpnpトランジスタの平面図と断面図である。この構
造は、本発明の実施例1において、電流容量を大きくす
るために、特に、エミッタ領域3を横方向に長くしたと
きに、その長さに比例した電流が得られるように、コレ
クタと対抗する横方向エミッタ以外のエミッタ部、つま
りエミッタの下部に、ベースと同極性のn型のベース低
抵抗となる第7の半導体領域である第2ベース領域23
を設けたものである。エミッタ形状以外の構成は、実施
例1と同じである。
Embodiment 4 FIGS. 5 and 6 are a plan view and a sectional view of a lateral pnp transistor showing a fourth embodiment according to the present invention. In the structure according to the first embodiment of the present invention, this structure opposes the collector so as to obtain a current proportional to the length of the emitter region 3, particularly when the emitter region 3 is elongated in the lateral direction. The second base region 23, which is a seventh semiconductor region having a low resistance of the n-type base having the same polarity as the base, is formed in the emitter portion other than the lateral emitter, that is, below the emitter.
Is provided. The configuration other than the emitter shape is the same as that of the first embodiment.

【0029】第2のベース領域23の表面濃度及び拡散
深さはそれぞれ5×1018/cm3、4μmである。こ
の構造に依れば、エミッタ領域3が長い場合、エミッタ
下のベース抵抗が小さいため、ベース電極から近いとこ
ろと遠方のエミッタ−ベース間電圧差を小さくでき、そ
の結果、エミッタ長を大きくする場合に有利となる。こ
の素子の特性は、コレクタ−エミッタ間耐圧BVCEO
150V、電流増幅率〜130、遮断周波数fr 〜15
0MHzと、実施例3とほぼ同等であるが、電流容量で
約20%改善できた。なお、これらの実施例は誘電体分
離基板に限定されることが無く、pn分離基板等にも適
用して効果がある。
The surface concentration and diffusion depth of the second base region 23 are 5 × 10 18 / cm 3 and 4 μm, respectively. According to this structure, when the emitter region 3 is long, the base resistance under the emitter is small, so that the emitter-base voltage difference near and far from the base electrode can be reduced, and as a result, when the emitter length is increased. Be advantageous to. The characteristics of this element are that the collector-emitter breakdown voltage BV CEO ~
150 V, the current amplification factor 130, the cutoff frequency f r to 15
It was 0 MHz, which was almost the same as that of Example 3, but the current capacity could be improved by about 20%. It should be noted that these embodiments are not limited to the dielectric isolation substrate, and are effective when applied to a pn isolation substrate or the like.

【0030】[0030]

【発明の効果】本発明の半導体装置によれば、耐圧を低
下することなくコレクタ抵抗を小さくでき、その結果、
高周波化ができ、また、電流容量を大きくするためにエ
ミッタ長を長くするとそれにほぼ比例した電流容量を得
られ、高周波リニアICに好適な高周波のpnpトラン
ジスタを提供することができる。
According to the semiconductor device of the present invention, the collector resistance can be reduced without lowering the breakdown voltage. As a result,
When the emitter length is increased to increase the current capacity, a current capacity approximately proportional to the current can be obtained, and a high-frequency pnp transistor suitable for a high-frequency linear IC can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体装置の一例を示す平面図。FIG. 1 is a plan view showing an example of a semiconductor device of the present invention.

【図2】図1の断面図。FIG. 2 is a sectional view of FIG.

【図3】本発明の半導体装置の他の例を示す平面図。FIG. 3 is a plan view showing another example of the semiconductor device of the present invention.

【図4】本発明の半導体装置の他の例を示す平面図。FIG. 4 is a plan view showing another example of the semiconductor device of the present invention.

【図5】本発明の半導体装置のもう一つの例を示す平面
図。
FIG. 5 is a plan view showing another example of the semiconductor device of the present invention.

【図6】図5の断面図。6 is a sectional view of FIG.

【図7】従来の半導体装置を示す平面図。FIG. 7 is a plan view showing a conventional semiconductor device.

【図8】図7の断面図。FIG. 8 is a sectional view of FIG.

【符号の説明】[Explanation of symbols]

1…基体領域(第1の領域)、2…ベース領域(第2の
領域)、3…エミッタ領域(第3の領域)、4…コレク
タ領域(第4の領域)、5…高濃度連結ベース領域(第
5の領域)、6…低濃度pコレクタ領域(第6の領
域)、8…ポリSi、10…埋込層、20…半導体基
体、21…支持体、22…主表面、23…ベース低抵抗
用領域(第7の領域)、30、31…絶縁膜、41…ベ
ース電極(第3の電極)、42…エミッタ電極(第1の
電極)、43…コレクタ電極(第2の電極)、51、5
2、53…コンタクト、E…エミッタ端子、B…ベース
端子、C…コレクタ端子
1 ... Base region (first region), 2 ... Base region (second region), 3 ... Emitter region (third region), 4 ... Collector region (fourth region), 5 ... High-concentration linked base Region (fifth region), 6 ... Low concentration p collector region (sixth region), 8 ... Poly Si, 10 ... Buried layer, 20 ... Semiconductor substrate, 21 ... Support, 22 ... Main surface, 23 ... Low base resistance region (seventh region), 30, 31 ... Insulating film, 41 ... Base electrode (third electrode), 42 ... Emitter electrode (first electrode), 43 ... Collector electrode (second electrode) ), 51, 5
2, 53 ... Contact, E ... Emitter terminal, B ... Base terminal, C ... Collector terminal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 稲葉 政光 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masamitsu Inaba 7-1-1 Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 一方導電型の第1の半導体領域と、第1
の半導体領域の一主表面から内部に延び第1の半導体領
域より高不純物を有する一方導電型の第2の半導体領域
と、第2の半導体領域の露出面から内部に延び第2の半
導体領域より高不純物を有する他方導電型の第3の半導
体領域と、第1の半導体領域の一主表面から内部に延び
その露出面が開放した環状を有し第2の半導体領域を実
質的に包囲し、第1の半導体領域より高不純物濃度を有
する他方導電型の第4の半導体領域と、第1の半導体領
域の一主表面から内部に延び、一端が第2の半導体領域
につらなり他端が第4の半導体領域の開放した個所を通
って第2の半導体領域から遠ざかるように延び、第1の
半導体領域及び第2の半導体領域より高不純物濃度を有
する一方導電型の第5の半導体領域と、第2の半導体領
域と第4の半導体領域との間に位置して両領域に接し、
さらに、第5の半導体領域部の外周側では空隙におい
て、第1の半導体領域の一主表面から内部に延び、第1
の半導体領域より高不純物濃度で第4の半導体領域より
低不純物濃度を有する他方導電型の第6の半導体領域
と、第2の半導体領域と少なくとも一部の第6の半導体
領域上に主表面上に形成される絶縁物を介して被って第
3の半導体領域の露出面となる第1の開口部にオーミッ
ク接触する第1の電極と、第4の半導体領域の露出面と
なる第2の開口部にオーミック接触する第2の電極と、
第5の半導体領域の露出面となる第3の開口部にオーミ
ック接触する第3の電極とを具備することを特徴とする
半導体装置。
1. A conductive first semiconductor region and a first conductive region
A second semiconductor region of one conductivity type that extends inward from one main surface of the semiconductor region and has higher impurities than the first semiconductor region, and extends inward from an exposed surface of the second semiconductor region A third semiconductor region of the other conductivity type having a high impurity, and a second semiconductor region which substantially extends from one main surface of the first semiconductor region to the inside and has an open exposed surface, and which substantially surrounds the second semiconductor region, A fourth semiconductor region of the other conductivity type having a higher impurity concentration than that of the first semiconductor region, and a fourth semiconductor region extending inward from one main surface of the first semiconductor region, the one end being connected to the second semiconductor region and the other end being the fourth semiconductor region. A fifth semiconductor region of one conductivity type that extends away from the second semiconductor region through an open part of the semiconductor region and has a higher impurity concentration than the first semiconductor region and the second semiconductor region; Second semiconductor region and fourth semiconductor In contact with both regions located between the band,
Furthermore, on the outer peripheral side of the fifth semiconductor region portion, in the void, the first semiconductor region extends from one main surface to the inside, and
On the main surface on the other conductivity type sixth semiconductor region having a higher impurity concentration than the fourth semiconductor region and a lower impurity concentration than the fourth semiconductor region, the second semiconductor region and at least a part of the sixth semiconductor region. A first electrode which is in ohmic contact with the first opening, which is an exposed surface of the third semiconductor region, and a second opening which is an exposed surface of the fourth semiconductor region. A second electrode in ohmic contact with the part,
A semiconductor device comprising: a third electrode that makes ohmic contact with a third opening that is an exposed surface of the fifth semiconductor region.
【請求項2】 前記第3の半導体領域の露出面における
第1の開口部が、第5の半導体領域から遠方に偏ってオ
ーミック接触することを特徴とする請求項1記載の半導
体装置。
2. The semiconductor device according to claim 1, wherein the first opening in the exposed surface of the third semiconductor region is in ohmic contact with a distance from the fifth semiconductor region.
【請求項3】 前記第3の半導体領域において、第4の
半導体領域と対向していない部分を少なくとも一部除去
した形状としたことを特徴とする請求項2記載の半導体
装置。
3. The semiconductor device according to claim 2, wherein at least a part of the third semiconductor region which does not face the fourth semiconductor region is removed.
【請求項4】 前記主表面における第4の半導体領域と
対抗する側においては、少なくとも第2の半導体領域よ
り小さく、第1の半導体領域の一主表面から内部に延
び、第2の半導体領域より深く、かつ、第3の半導体領
域より低不純物を有する一方導電型の第7の半導体領域
を有することを特徴とする請求項1、2又は3記載の半
導体装置。
4. On the side of the main surface facing the fourth semiconductor region, at least smaller than the second semiconductor region, extending inward from one main surface of the first semiconductor region, and extending from the second semiconductor region. 4. The semiconductor device according to claim 1, wherein the semiconductor device is deep and has a seventh semiconductor region of one conductivity type having a lower impurity than the third semiconductor region.
【請求項5】 前記第1の半導体領域が、半導体基体の
一方の主表面側に相互に電気的に絶縁して併設された複
数個の島領域の一つであることを特徴とする請求項1〜
4のいずれか1項記載の半導体装置。
5. The first semiconductor region is one of a plurality of island regions provided on one main surface side of a semiconductor substrate so as to be electrically insulated from each other. 1 to
4. The semiconductor device according to any one of 4 above.
【請求項6】 請求項1〜5のいずれか1項記載の半導
体装置を高周波pnpトランジスタとして用いたリニア
IC。
6. A linear IC using the semiconductor device according to claim 1 as a high frequency pnp transistor.
JP7378094A 1994-03-18 1994-03-22 Semiconductor device Pending JPH07263456A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP7378094A JPH07263456A (en) 1994-03-22 1994-03-22 Semiconductor device
DE69530881T DE69530881D1 (en) 1994-03-18 1995-03-13 Semiconductor arrangement with a lateral bipolar transistor
EP95301625A EP0673072B1 (en) 1994-03-18 1995-03-13 Semiconductor device comprising a lateral bipolar transistor
US08/404,465 US5608236A (en) 1994-03-18 1995-03-15 Semiconductor device
KR1019950005533A KR950034825A (en) 1994-03-18 1995-03-17 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7378094A JPH07263456A (en) 1994-03-22 1994-03-22 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH07263456A true JPH07263456A (en) 1995-10-13

Family

ID=13528069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7378094A Pending JPH07263456A (en) 1994-03-18 1994-03-22 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH07263456A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002319590A (en) * 2001-04-20 2002-10-31 Denso Corp Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002319590A (en) * 2001-04-20 2002-10-31 Denso Corp Semiconductor device

Similar Documents

Publication Publication Date Title
EP0462270B1 (en) Method of using a semiconductor device comprising a substrate having a dielectrically isolated semiconductor island
CN107316900B (en) Double-carrier junction transistor layout structure
US5670396A (en) Method of forming a DMOS-controlled lateral bipolar transistor
JP2830744B2 (en) Integrated device
JP2000068372A (en) Semiconductor device and manufacture thereof
JPH07263456A (en) Semiconductor device
US5608236A (en) Semiconductor device
EP2997601A1 (en) An insulated gate bipolar transistor amplifier circuit
JPH055373B2 (en)
US5777376A (en) Pnp-type bipolar transistor
JP2760401B2 (en) Dielectric separation substrate and semiconductor device
KR100277680B1 (en) Improved LGI Power Devices
JPH0521442A (en) Semiconductor device
WO1994027324A1 (en) A lateral bipolar transistor with variable base width and a method for controlling the base width
JPS60233856A (en) Semiconductor device
JP2581247B2 (en) Semiconductor device provided with conductivity-modulated MISFET
JPH03259533A (en) Semiconductor integrated circuit device
JPS6381861A (en) Conductivity modulation mosfet
JPH0321055A (en) Semiconductor integrated circuit device and manufacture of the same
JPS6031105B2 (en) semiconductor equipment
JP3389092B2 (en) Dielectric separated type semiconductor device
JP2604793B2 (en) Semiconductor device
JP2001102388A (en) High breakdown-strength semiconductor device
JPH07263455A (en) Semiconductor device
JPS61208260A (en) Semiconductor device