JPH07260678A - Method and device for measuring light - Google Patents

Method and device for measuring light

Info

Publication number
JPH07260678A
JPH07260678A JP5541694A JP5541694A JPH07260678A JP H07260678 A JPH07260678 A JP H07260678A JP 5541694 A JP5541694 A JP 5541694A JP 5541694 A JP5541694 A JP 5541694A JP H07260678 A JPH07260678 A JP H07260678A
Authority
JP
Japan
Prior art keywords
light
sample
incident
irradiation
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5541694A
Other languages
Japanese (ja)
Inventor
Minoru Chokai
実 鳥海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5541694A priority Critical patent/JPH07260678A/en
Publication of JPH07260678A publication Critical patent/JPH07260678A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an exciting spectrum with suppressed distorsion by positively changing the incident angle for making an irradiation light incident into a sample in correspondence with the change in wavelength of irradiation light and making the penetrating depth of the irradiation light constant. CONSTITUTION:A light emitted from a light source 1 consisting of a xenon lamp is selected by a spectroscope unit 2 so that only a light 3 with specified irradiation wavelength may be obtained. The obtained light is converged on the focal face 6 of a total reflection plate 5 by an incident optical system 4. A substrate 5 is formed of semi-cylindrical sapphire with large refraction index. A sample 7 to be measured is placed in contact with the plane side of the substrate 5. The irradiation light 3 is made incident to the sample 7 through the substrate 5. The light emitted from the sample 7 during irradiation is observed by a detection optical system 8. The detected light 9 is formed into a monochromatic light, and it is converted into an electrical signal by a photomultiplier 11 and amplified by a preamplifier 12, then the result is inputted to a computer 13 for controlling. The light source 1, spectroscope unit 2 and optical system 4 are placed on a stage 15 where the sample 7 is the rotational center, allowing the incident angle to be set as desired by the computer 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、全反射現象を利用した
光測定方法及びその装置に係り、とくに被測定試料の光
の波長以下の微小な領域を測定するのに好敵な光測定方
法及びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical measuring method utilizing the total reflection phenomenon and an apparatus therefor, and in particular, an optical measuring method suitable for measuring a minute region of a sample to be measured which is equal to or shorter than the wavelength of light. And its device.

【0002】[0002]

【従来の技術】半導体産業や医療産業では、製品の表面
や界面の特性が製品の良否を決定する重要な因子であ
る。その為に、表面や界面の測定方法が盛んに研究され
ている。これに関連するものとしては、例えば、特開平
4−337447号公報には、全反射現象を利用した光
測定装置が示されている。即ち、レーザー光を光源に用
いて、そのレーザー光を高い屈折率を有する全反射基板
上の試料に全反射基板側から照射し、全反射基板と試料
との界面で全反射させ、試料の界面近傍だけを選択的に
励起し、その試料から発せられる光を観測することによ
り試料の界面近傍の情報を得るという測定装置である。
このような装置を用いて、入射角度を固定したまま、励
起波長を変えることにより試料の励起スペクトルを測定
し、試料の光学特性を得ていた。
2. Description of the Related Art In the semiconductor and medical industries, the characteristics of the surface and interface of a product are important factors that determine the quality of the product. For that reason, methods for measuring surfaces and interfaces have been actively studied. Related to this, for example, Japanese Patent Application Laid-Open No. 4-337447 discloses an optical measuring device utilizing the total reflection phenomenon. That is, laser light is used as a light source, and the laser light is applied to the sample on the total reflection substrate having a high refractive index from the total reflection substrate side, and is totally reflected at the interface between the total reflection substrate and the sample. This is a measurement device that selectively excites only the vicinity and observes the light emitted from the sample to obtain information near the interface of the sample.
Using such a device, the excitation spectrum of the sample was measured by changing the excitation wavelength while the incident angle was fixed, and the optical characteristics of the sample were obtained.

【0003】[0003]

【発明が解決しようとする課題】従来の励起スペクトル
測定方法は、照射光の波長を連続的に一定の波長領域で
変える必要がある為、照射光が全反射基板と試料との界
面から試料側に滲み込む深さが、照射光の波長の変化に
したがって変わってしまう。
In the conventional excitation spectrum measuring method, since it is necessary to continuously change the wavelength of the irradiation light in a constant wavelength region, the irradiation light is irradiated from the interface between the total reflection substrate and the sample to the sample side. The depth that penetrates into the body changes as the wavelength of the irradiation light changes.

【0004】その結果、測定される励起スペクトルは、
種々の深さからの情報を含み、実用上使えない程度に歪
んでいた。
As a result, the measured excitation spectrum is
It contained information from various depths and was distorted to the extent that it could not be used for practical purposes.

【0005】本発明の目的は、歪の少ない実用に耐えう
る励起スペクトルの測定方法及びその装置を提供するこ
とにある。
An object of the present invention is to provide a method and apparatus for measuring an excitation spectrum with little distortion and which can withstand practical use.

【0006】[0006]

【課題を解決するための手段】上記目的は、光源からの
複数の波長の光の試料への照射を、それらの試料への滲
込み深さが同一となるように行ない、試料からの検出光
を測定することにより達成できる。
The above object is to irradiate a sample with light of a plurality of wavelengths from a light source so that the depths of infiltration into the sample are the same, and to detect light from the sample. Can be achieved by measuring

【0007】[0007]

【作用】本発明者は全反射現象を利用した光測定で、照
射光が試料に入射する時の入射角度を変えることにより
照射光が試料に滲み込む深さが変えられることに着目
し、照射光の波長の変化に対応させて、照射光が試料に
入射する時の入射角度を積極的に変化させて、照射光が
試料に滲み込む深さを一定にすることが出来ることを見
出し本発明に至った。
In the light measurement utilizing the total reflection phenomenon, the present inventor has noticed that the depth at which the irradiation light penetrates into the sample can be changed by changing the incident angle when the irradiation light enters the sample. It has been found that the incident angle when the irradiation light is incident on the sample can be positively changed in accordance with the change in the wavelength of the light to make the depth of the irradiation light soaked into the sample constant. Came to.

【0008】以下詳細に説明する。照射光が試料に滲み
込む深さdは数1の関係式で与えられる。(例えば、特
開平4−337447号公報に掲載されている。)
The details will be described below. The depth d by which the irradiation light permeates the sample is given by the relational expression of Equation 1. (For example, it is disclosed in Japanese Patent Laid-Open No. 4-337447.)

【0009】[0009]

【数1】 [Equation 1]

【0010】ここで、λは照射光の波長、n1は全反射
基板の屈折率、n2は試料の屈折率、θiは照射光の入射
角度、κは試料の減衰率である。従って、この数1の関
係式を用いることにより、照射光の波長λが変化して
も、滲み込み深さdを一定に保つ為に必要な入射角度θ
iが定量的に求められる。従って、ステージを回転ステ
ージにし、試料に対する照射光の入射角度を変化させる
ことにより、入射光が試料に滲み込む深さを一定値に保
つことができ、入射光が試料に照射される表面、あるい
は界面から一定の深さの領域の試料の励起スペクトルを
測定できる。
Where λ is the wavelength of the irradiation light, n 1 is the refractive index of the total reflection substrate, n 2 is the refractive index of the sample, θ i is the incident angle of the irradiation light, and κ is the attenuation factor of the sample. Therefore, by using the relational expression of the mathematical expression 1, even if the wavelength λ of the irradiation light changes, the incident angle θ required to keep the penetration depth d constant.
i is obtained quantitatively. Accordingly, by changing the stage to a rotary stage and changing the incident angle of the irradiation light with respect to the sample, the depth at which the incident light penetrates into the sample can be maintained at a constant value, and the surface on which the incident light is irradiated to the sample, or It is possible to measure the excitation spectrum of the sample in a region of a certain depth from the interface.

【0011】試料は複数の膜からなる構造を有していて
も良い。
The sample may have a structure composed of a plurality of films.

【0012】回転する部分は、試料でも、入射光学系で
も、検出光学系でも、或いはその組合せでも良く、試料
に対する照射光の入射角度が所定の値に設定できればよ
い。機械的な回転ステージを用いなくても、微細な口径
の光ファイバーを並べて、各光ファイバー毎に試料に対
する照射光の入射角度が変化するように設置し、その光
ファイバーの内で入射光が試料に滲み込む深さが所定の
一定値のファイバー光を照射光とすることによっても目
的は達成できる。機械的な機構を用いないので、故障が
少ない利点がある。さらに、光ファイバーを用いるの
で、移動性に優れ、使い勝手が良いという利点がある。
光ファイバーの選択は所定の入射角度に対応した光ファ
イバーの光のみを開閉シャッターで通過させてもよい
し、複数の光ファイバーからの光を纏めて測定し、計算
機で各々を解析しても良い。
The rotating portion may be the sample, the incident optical system, the detection optical system, or a combination thereof, as long as the incident angle of the irradiation light with respect to the sample can be set to a predetermined value. Even without using a mechanical rotation stage, optical fibers with a small diameter are arranged and installed so that the incident angle of the irradiation light on the sample changes for each optical fiber, and the incident light permeates the sample within the optical fiber. The object can also be achieved by using fiber light having a predetermined constant depth as irradiation light. Since no mechanical mechanism is used, there is an advantage that there are few failures. Furthermore, since an optical fiber is used, it has the advantages of excellent mobility and ease of use.
For the selection of the optical fiber, only the light of the optical fiber corresponding to the predetermined incident angle may be passed through the opening / closing shutter, or the light from a plurality of optical fibers may be collectively measured and analyzed by a computer.

【0013】光ファイバーの代りに複数の光源を並べた
ものを用いても良い。
Instead of the optical fiber, a plurality of light sources arranged side by side may be used.

【0014】試料からの光を検出する場合でも、数1の
関係式と同様な式が成立することが知られている。例え
ば、鳥海ら、「全反射蛍光分光法における吸収効果」、
アプライド・オプティックス、第31巻、第30号、第
6376頁から第6382頁、1992年(Minor
u Toriumi et al, ”Absorpt
ion effects on total−inte
rnal−reflection fluoresce
nce spectroscopy”,Applied
Optics,31(30),6376−6382
(1993))に記載されている。従って、照射光の波
長λが変化しても、検出する深さを一定に保つ為に必要
な検出角度が定量的に求められる。従って、ステージを
回転ステージにし、試料に対する検出光の検出角度を変
化させることにより、試料の被測定深さを所定の一定値
に保つことができ、入射光が前記試料に照射される表
面、あるいは界面から一定の深さの領域の試料の励起ス
ペクトルを測定できる。
It is known that even when detecting light from a sample, an equation similar to the relational expression of Equation 1 holds. For example, Toriumi et al., "Absorption effect in total reflection fluorescence spectroscopy",
Applied Optics, Vol. 31, No. 30, pp. 6376 to 6382, 1992 (Minor
u Toriumi et al, "Absorbt
ion effects on total-int
rnal-reflection fluoresce
nce spectroscopy ”, Applied
Optics, 31 (30), 6376-6382.
(1993)). Therefore, even if the wavelength λ of the irradiation light changes, the detection angle necessary for keeping the detection depth constant can be quantitatively obtained. Therefore, by changing the detection angle of the detection light with respect to the sample to a rotating stage, the depth to be measured of the sample can be maintained at a predetermined constant value, and the surface irradiated with the incident light on the sample, or It is possible to measure the excitation spectrum of the sample in a region of a certain depth from the interface.

【0015】微細な口径の光ファイバーを並べて、試料
に対する照射光の入射角度を変えられるように設置し、
その光ファイバーの内で試料の被測定深さが所定の一定
値に対応した光ファイバーからの光を照射光とすること
によっても目的は達成できる。
Optical fibers having a minute diameter are arranged side by side so that the incident angle of the irradiation light with respect to the sample can be changed,
The object can also be achieved by using as the irradiation light the light from the optical fiber corresponding to the predetermined measured depth of the sample in the optical fiber.

【0016】[0016]

【実施例】次に、この発明の具体的な実施例について説
明する。尚、これらの実施例は、本発明の範囲内の好敵
な特定の条件の下における単なる例示にすぎず、本発明
がこれらの実施例のみに限定されるものではない。
EXAMPLES Next, specific examples of the present invention will be described. It should be noted that these examples are merely examples under favorable specific conditions within the scope of the present invention, and the present invention is not limited to these examples.

【0017】実施例1 まず、入射角度を回転ステージを用いて調整することに
より、試料内の一定の深さの領域部分のみの励起スペク
トルが測定出来ることを示す。
Example 1 First, it is shown that by adjusting the incident angle using a rotary stage, it is possible to measure the excitation spectrum of only a region of a certain depth in the sample.

【0018】図1を用いて本発明の光測定方法を実現す
る光測定装置の構成例の概要を説明する。キセノン・ラ
ンプからなる光源1から発せられる光は、分光器2によ
り所定の照射波長の光3のみに選択される。この光は入
射光学系4により、全反射基板5の焦点面6に絞り込ま
れる。入射光学系4は全反射基板の焦点面と集光用レン
ズの焦点面とを一致させたレンズからなっているが、必
要に応じて光軸調整用のミラー、レンズ、フィルター、
偏光板及びスリットなどを適宜用いることもできる。全
反射基板5は高い屈折率のサファイア製で、半円柱形状
をしている。全反射基板5の平面側に被測定試料7を密
着する。照射光3は、全反射基板5を介して試料7に入
射する。この光照射により生じた試料7からの発光を検
出光学系8で観測する。検出光学系8は全反射基板5の
焦点面6とレンズの焦点面とを一致させたレンズからな
っているが、必要に応じて光軸調整用のミラー、レン
ズ、フィルター、偏光解消板及びスリットなどを適宜用
いることもできる。検出光学系8で検出された光9は分
光器10で単色化され、光電子増倍管11で電気信号に
変換され、前置増幅器12を介して増幅された後、制御
用計算機13に入力される。光源1、分光器2及び入射
光学系4は試料7を回転中心14とする回転ステージ1
5に載置してあり、制御用計算機13により、任意の入
射角度に設定できる。分光器2及び分光器10も制御用
計算機13に接続してあり、任意の波長に設定できる。
An outline of a configuration example of an optical measuring device for realizing the optical measuring method of the present invention will be described with reference to FIG. The light emitted from the light source 1 composed of a xenon lamp is selected by the spectroscope 2 as only the light 3 having a predetermined irradiation wavelength. This light is focused on the focal plane 6 of the total reflection substrate 5 by the incident optical system 4. The incident optical system 4 is composed of a lens in which the focal plane of the total reflection substrate and the focal plane of the condensing lens are matched, but if necessary, a mirror for adjusting the optical axis, a lens, a filter,
A polarizing plate, a slit, and the like can be used as appropriate. The total reflection substrate 5 is made of sapphire having a high refractive index and has a semi-cylindrical shape. The sample 7 to be measured is brought into close contact with the flat surface side of the total reflection substrate 5. The irradiation light 3 is incident on the sample 7 via the total reflection substrate 5. The light emitted from the sample 7 caused by this light irradiation is observed by the detection optical system 8. The detection optical system 8 is composed of a lens in which the focal plane 6 of the total reflection substrate 5 and the focal plane of the lens coincide with each other. If necessary, a mirror for adjusting the optical axis, a lens, a filter, a depolarizer and a slit. And the like can be used as appropriate. The light 9 detected by the detection optical system 8 is monochromaticized by the spectroscope 10, converted into an electric signal by the photomultiplier tube 11, amplified by the preamplifier 12, and then input to the control computer 13. It The light source 1, the spectroscope 2, and the incident optical system 4 are the rotary stage 1 with the sample 7 as the center of rotation 14.
It is mounted on No. 5 and can be set to an arbitrary incident angle by the control computer 13. The spectroscope 2 and the spectroscope 10 are also connected to the control computer 13 and can be set to any wavelength.

【0019】このような装置を用いて低分子化合物であ
るピレンを高分子薄膜中に分散させた有機薄膜試料の界
面近傍50nmの被測定領域の300から400nmに
おける励起スペクトルの測定を以下のように行った。ま
ず、制御用計算機13により入射光学系側の分光器2の
波長を300nmの値に設定した。次に、数1の関係式
に基づいてこの波長における入射光3の滲み込み深さが
50nmになる入射角度を計算し、試料に当たる入射角
度がその値になるように回転ステージ15を駆動させ
た。その後、制御用計算機13により分光器10を所定
の分光波長に設定し、検出光9の強度を制御用計算機1
3に取り込んだ。以下、分光器2の波長を増加させなが
ら同様の手続きを繰返し、入射波長が400nmになる
まで、入射光3の滲み込み深さが一定の50nmになる
入射角度に設定しながら検出光9の強度を制御用計算機
13に取り込んだ。その結果16を、同様に入射光3の
滲み込み深さが一定の100nmの条件の結果17と合
わせて図2に示す。後述の従来法による結果である図3
と比較して、全反射分光の特徴である深さ毎の励起スペ
クトルの変化が明瞭に現われている。本発明により、初
めて深さ毎の励起スペクトルが測定出来るようになり、
実用上有益な情報が得られるようになった。
Using such a device, the excitation spectrum at 300 to 400 nm in the measured region of 50 nm near the interface of the organic thin film sample in which pyrene, which is a low molecular weight compound, is dispersed in a polymer thin film is measured as follows. went. First, the control computer 13 sets the wavelength of the spectroscope 2 on the incident optical system side to a value of 300 nm. Next, the incident angle at which the penetration depth of the incident light 3 at this wavelength becomes 50 nm is calculated based on the relational expression of the equation 1, and the rotary stage 15 is driven so that the incident angle at which the sample hits becomes that value. . After that, the spectroscope 10 is set to a predetermined spectral wavelength by the control computer 13, and the intensity of the detection light 9 is set to the control computer 1.
Taken in 3. Thereafter, the same procedure is repeated while increasing the wavelength of the spectroscope 2, and the intensity of the detection light 9 is set while the penetration angle of the incident light 3 is set to a constant 50 nm until the incident wavelength becomes 400 nm. Was taken into the control computer 13. The result 16 is also shown in FIG. 2 together with the result 17 under the condition that the penetration depth of the incident light 3 is constant at 100 nm. The result of the conventional method described later is shown in FIG.
Compared with, the change in the excitation spectrum at each depth, which is a feature of the total internal reflection spectroscopy, is clearly shown. With the present invention, it becomes possible to measure the excitation spectrum for each depth for the first time,
Practical useful information has come to be obtained.

【0020】また、光源1及び分光器2を回転ステージ
15上に載置することなく、分光器2からの光を光ファ
イバーを用いて、回転ステージ15上の入射光学系4に
導いても良い。この場合には、回転ステージ15の負荷
が小さくなるので、扱いやすい利点がある。
Alternatively, the light from the spectroscope 2 may be guided to the incident optical system 4 on the rotary stage 15 by using an optical fiber without mounting the light source 1 and the spectroscope 2 on the rotary stage 15. In this case, since the load on the rotary stage 15 is reduced, there is an advantage that it is easy to handle.

【0021】比較例 次に、従来の励起スペクトルは、実用性のないものであ
ることを示す。
Comparative Example Next, it is shown that the conventional excitation spectrum is not practical.

【0022】従来の励起スペクトルは、入射角度を一定
にしたまま、入射波長を掃引して測定されている。実施
例1の装置を用いて、回転ステージ15を駆動させず入
射角度を(70度及び45度に)一定にすることを除
き、実施例1と同じ操作を繰り返した。その結果(18
と19)を図3に示す。入射波長が変わると試料中の入
射光3の滲み込み深さが変化する為に、種々の深さの領
域で平均化されてしまい、全反射分光法の特徴である深
さ方向の情報が失われてしまっている。その為、図3は
変化の少ない特徴のない励起スペクトルであり、実用性
がない。
The conventional excitation spectrum is measured by sweeping the incident wavelength while keeping the incident angle constant. Using the apparatus of Example 1, the same operation as in Example 1 was repeated except that the rotary stage 15 was not driven and the incident angle was kept constant (at 70 degrees and 45 degrees). As a result (18
And 19) are shown in FIG. When the incident wavelength changes, the penetration depth of the incident light 3 in the sample changes, so that the light is averaged in various depth regions, and the information in the depth direction, which is a feature of total internal reflection spectroscopy, is lost. It has been broken. Therefore, FIG. 3 is a featureless excitation spectrum with little change and is not practical.

【0023】実施例2 次に、検出角度を回転ステージを用いて調整することに
より、試料の一定の深さの領域の励起スペクトルが測定
出来ることを示す。
Example 2 Next, it will be shown that the excitation spectrum in a region of a certain depth of the sample can be measured by adjusting the detection angle using a rotary stage.

【0024】実施例1の装置で回転ステージ上の部品を
以下のように変え、入射角度でなく検出角度を変えられ
るようにした。即ち、検出光学系8、分光器10及び光
電子増倍管11及び前置増幅器12を試料7を回転中心
14とする回転ステージ15上に載置し、制御用計算機
13により、任意の検出角度に設定できようにしたこと
を除き、実施例1の装置を用いて、試料7に対する検出
光9の検出角度を変化させることにより、試料7の検出
深さを一定値に保ち、励起スペクトルを測定した。その
結果、実用性のある励起スペクトルが得られた。
In the apparatus of Example 1, the components on the rotary stage were changed as follows so that the detection angle, rather than the incident angle, could be changed. That is, the detection optical system 8, the spectroscope 10, the photomultiplier tube 11 and the preamplifier 12 are placed on the rotary stage 15 having the sample 7 as the rotation center 14, and the control computer 13 sets the detection angle to an arbitrary angle. Except that the setting was made possible, the detection depth of the sample 7 was kept constant by changing the detection angle of the detection light 9 with respect to the sample 7 using the apparatus of Example 1, and the excitation spectrum was measured. . As a result, a practical excitation spectrum was obtained.

【0025】また、分光器10及び光電子増倍管11及
び前置増幅器12を回転ステージ15上に載置すること
なく、検出光学系8からの光を光ファイバーを用いて、
回転ステージ15上とは別の固定ステージ上に設置した
分光器10、光電子増倍管11及び前置増幅器12へ導
いても良い。この場合には、回転ステージ15の負荷が
小さくなるので、扱いやすい利点がある。
Further, without placing the spectroscope 10, the photomultiplier tube 11 and the preamplifier 12 on the rotary stage 15, the light from the detection optical system 8 is used by an optical fiber.
It may be guided to the spectroscope 10, the photomultiplier tube 11 and the preamplifier 12 which are installed on a fixed stage different from the rotary stage 15. In this case, since the load on the rotary stage 15 is reduced, there is an advantage that it is easy to handle.

【0026】実施例3 次に、入射角度を光ファイバー・アレイを用いることに
より調整し、試料の一定の深さの励起スペクトルが測定
出来ることを示す。
Example 3 Next, it is shown that the incident angle can be adjusted by using an optical fiber array to measure the excitation spectrum at a certain depth of the sample.

【0027】実施例1の装置で回転ステージ15の変わ
りに、図4に示すように光ファイバー20を以下のよう
に用いた。即ち、分光器2で選択された照射波長の光を
0.1mmの口径の光ファイバーを集めて束にした光フ
ァイバー束20の入射端に入射し、光ファイバー束20
の出射端を全反射基板5の焦点面6上で且つ入射平面内
に並べ、種々な入射角度で各光ファイバー20からの光
が全反射基板5上の試料7に照射出来るようにした。各
光ファイバー20の入射端には制御用計算機13により
独立に開閉するシャッター21がそれぞれ取り付けてあ
る。実施例1において、回転ステージ15を駆動させ
て、入射角度を制御する代りに、所定の入射角度に対応
したファイバーのシャッター21を開くことを除き、実
施例1の操作を繰り返し、試料7中の入射光の滲み込み
深さを一定値に保ちながら励起スペクトルを測定した。
その結果、実用性のある励起スペクトルが得られた。本
実施例の場合には、回転ステージを用いないので、機械
的な駆動部分がなく、小さくでき、扱いやすい利点があ
る。
Instead of the rotary stage 15 in the apparatus of Example 1, an optical fiber 20 as shown in FIG. 4 was used as follows. That is, the light of the irradiation wavelength selected by the spectroscope 2 is made incident on the incident end of the optical fiber bundle 20 which is a bundle of optical fibers having a diameter of 0.1 mm.
The light emitting ends of are arranged on the focal plane 6 of the total reflection substrate 5 and in the incident plane so that the light from each optical fiber 20 can irradiate the sample 7 on the total reflection substrate 5 at various incident angles. A shutter 21 that is independently opened and closed by the control computer 13 is attached to the incident end of each optical fiber 20. In Example 1, the operation of Example 1 was repeated except that the rotary stage 15 was driven to open the fiber shutter 21 corresponding to a predetermined incident angle instead of controlling the incident angle. The excitation spectrum was measured while keeping the penetration depth of incident light at a constant value.
As a result, a practical excitation spectrum was obtained. In the case of the present embodiment, since the rotary stage is not used, there is an advantage that there is no mechanical driving part, the size can be reduced, and the handling is easy.

【0028】実施例4 次に、検出角度を光ファイバー・アレイを用いることに
より調整し、試料の一定の深さの領域の励起スペクトル
が測定出来ることを示す。
Example 4 Next, it is shown that the detection angle can be adjusted by using an optical fiber array to measure the excitation spectrum in a region of a certain depth of the sample.

【0029】実施例2の装置で回転ステージの変わり
に、光ファイバーを以下のように用いた。即ち、実施例
3と同じ光ファイバー束20の入射端を全反射基板5の
焦点面6上に且つ出射平面内に並べ、種々な検出角度
で、試料7からの光を各光ファイバーで検出出来るよう
にした。光ファイバー束20の出射端には制御用計算機
13によりそれぞれ独立に開閉するシャッター21が取
り付けてある。この光ファイバーの出射端は分光器10
につながっている。この他は実施例2の光測定装置を同
じである。実施例2において、回転ステージ15を駆動
させて、検出角度を制御する代りに、所定の検出角度に
対応したファイバー20のシャッター21を開くことを
除き、実施例2の操作を繰り返し、試料7中の検出深さ
を一定値に保ちながら励起スペクトルを測定した。その
結果、実用性のある励起スペクトルが得られた。本実施
例の場合には、回転ステージを用いないので、機械的な
駆動部分がなく、小さくでき、扱いやすい利点がある。
Instead of the rotary stage in the apparatus of Example 2, an optical fiber was used as follows. That is, the same incident end of the optical fiber bundle 20 as in the third embodiment is arranged on the focal plane 6 of the total reflection substrate 5 and in the emission plane so that the light from the sample 7 can be detected by each optical fiber at various detection angles. did. A shutter 21 that is opened and closed independently by the control computer 13 is attached to the emission end of the optical fiber bundle 20. The exit end of this optical fiber is a spectrometer 10.
Connected to. Other than this, the optical measurement device of the second embodiment is the same. In Example 7, the operation of Example 2 was repeated except that the shutter 21 of the fiber 20 corresponding to the predetermined detection angle was opened instead of driving the rotary stage 15 to control the detection angle. The excitation spectrum was measured while the detection depth of was kept constant. As a result, a practical excitation spectrum was obtained. In the case of the present embodiment, since the rotary stage is not used, there is an advantage that there is no mechanical driving part, the size can be reduced, and the handling is easy.

【0030】[0030]

【発明の効果】本発明によれば、入射角度や検出角度を
調整することにより、入射光が試料に照射される表面、
あるいは界面から一定の深さの領域の試料のみを測定出
来るので、良好な実用性のある励起スペクトルが得られ
る。
According to the present invention, by adjusting the incident angle and the detection angle, the surface on which the sample is irradiated with the incident light,
Alternatively, since only a sample in a region of a certain depth from the interface can be measured, a good practical excitation spectrum can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の光測定装置図である。FIG. 1 is a diagram of an optical measurement device according to a first embodiment of the present invention.

【図2】本発明の実施例1の光測定方法で測定された励
起スペクトル図である。
FIG. 2 is an excitation spectrum diagram measured by the optical measurement method of Example 1 of the present invention.

【図3】本発明の比較例の光測定方法で測定された励起
スペクトル図である。
FIG. 3 is an excitation spectrum diagram measured by an optical measurement method of a comparative example of the present invention.

【図4】本発明の実施例3の光測定装置図である。FIG. 4 is a diagram of an optical measurement device according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…光源、2…分光器、3…入射光、4…入射光学系、
5…全反射基板、6…全反射基板5の焦点面、7…試
料、8…出射光学系、9…出射光、10…分光器、11
…光電子増倍管、12…前置増幅器、13…制御用計算
機、14…回転ステージ15の回転中心、15…回転ス
テージ、16…入射光3の滲み込み深さが50nmの条
件下の励起スペクトル、17…入射光3の滲み込み深さ
が100nmの条件下の励起スペクトル、18…入射角
度が70度の条件下の励起スペクトル、19…入射角度
が45度の条件下の励起スペクトル、20…光ファイバ
ー、21…シャッター。
1 ... Light source, 2 ... Spectrometer, 3 ... Incident light, 4 ... Incident optical system,
5 ... Total reflection substrate, 6 ... Focal plane of total reflection substrate 5, 7 ... Sample, 8 ... Emission optical system, 9 ... Emission light, 10 ... Spectroscope, 11
... Photomultiplier tube, 12 ... Preamplifier, 13 ... Control computer, 14 ... Rotation center of rotation stage 15, 15 ... Rotation stage, 16 ... Excitation spectrum under the condition that the penetration depth of incident light 3 is 50 nm , 17 ... Excitation spectrum under the condition that the penetration depth of incident light 3 is 100 nm, 18 ... Excitation spectrum under the condition that the incident angle is 70 degrees, 19 ... Excitation spectrum under the condition that the incident angle is 45 degrees, 20 ... Optical fiber, 21 ... Shutter.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】光源からの複数の波長の光で照射した試料
の同一の深さの領域から生じた検出光を測定することを
特徴とする光測定方法。
1. A light measuring method characterized by measuring detection light generated from a region of the same depth of a sample irradiated with light of a plurality of wavelengths from a light source.
【請求項2】回転ステージを用いて、試料に対する照射
光の入射角度あるいは照射により生じた光の検出角度の
少なくともいずれか一方を変化させる請求項1記載の光
測定方法。
2. The light measuring method according to claim 1, wherein at least one of an incident angle of the irradiation light with respect to the sample and a detection angle of the light generated by the irradiation is changed by using a rotary stage.
【請求項3】試料に対する照射光の入射角度を変えた複
数のファイバーを通して光源からの光を試料に照射出来
るように設置するか、あるいは試料からの検出光の検出
角度を変えた複数のファイバーを通して試料からの光を
検出出来るように設置するか少なくともいずれか一方を
行う請求項1記載の光測定方法。
3. The sample is installed so that the light from the light source can be irradiated through a plurality of fibers having different incident angles of the irradiation light with respect to the sample, or through the plurality of fibers having a different detection angle of the detection light from the sample. The light measuring method according to claim 1, wherein at least one of the two is installed so that light from the sample can be detected.
【請求項4】光源と、光源からの照射光を試料に照射す
る入射光学系と、照射光が入射された試料からの検出光
を検出する光検出部とを少なくとも備えた光測定装置に
おいて、光源からの複数の波長の光で照射した試料の同
一の深さの領域から生じた光を測定することを特徴とす
る光測定装置。
4. A light measuring device comprising at least a light source, an incident optical system for irradiating the sample with irradiation light from the light source, and a photodetector for detecting detection light from the sample on which the irradiation light is incident. An optical measurement device, which measures light generated from a region of the same depth of a sample irradiated with light of a plurality of wavelengths from a light source.
【請求項5】回転ステージを用いて、試料に対する照射
光の入射角度あるいは照射により生じた光の検出角度の
少なくともいずれか一方を変化させる請求項4記載の光
測定装置。
5. The light measuring device according to claim 4, wherein at least one of an incident angle of the irradiation light to the sample and a detection angle of the light generated by the irradiation is changed by using a rotary stage.
【請求項6】試料に対する照射光の入射角度を変えた複
数のファイバーを通して光源からの光を試料に照射出来
るように設置するか、あるいは試料からの検出光の検出
角度を変えた複数のファイバーを通して試料からの光を
検出出来るように設置するか少なくともいずれか一方を
行う請求項4記載の光測定装置。
6. A sample is installed so that light from a light source can be irradiated through a plurality of fibers having different incident angles of irradiation light, or a plurality of fibers having different detection angles of detection light from the sample are used. The light measuring device according to claim 4, wherein at least one of the two is installed so that light from the sample can be detected.
JP5541694A 1994-03-25 1994-03-25 Method and device for measuring light Pending JPH07260678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5541694A JPH07260678A (en) 1994-03-25 1994-03-25 Method and device for measuring light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5541694A JPH07260678A (en) 1994-03-25 1994-03-25 Method and device for measuring light

Publications (1)

Publication Number Publication Date
JPH07260678A true JPH07260678A (en) 1995-10-13

Family

ID=12997976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5541694A Pending JPH07260678A (en) 1994-03-25 1994-03-25 Method and device for measuring light

Country Status (1)

Country Link
JP (1) JPH07260678A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10185806A (en) * 1996-12-27 1998-07-14 Ricoh Co Ltd Water content detector
JP2000515966A (en) * 1996-07-11 2000-11-28 イーツェーベー インスティテュート ファー ヒェモ−ウント ビオゼンゾリック ミュンスター エー.ファー. Apparatus and method for performing a quantitative fluorescent mark affinity test
JP2007304042A (en) * 2006-05-15 2007-11-22 Toyota Motor Corp Device and method for measuring excoriation
JP2011145161A (en) * 2010-01-14 2011-07-28 Yamatake Corp Fluorescence type temperature sensor, method for adjusting the same, and method for measuring temperature
WO2016194061A1 (en) * 2015-05-29 2016-12-08 オリンパス株式会社 Optical-characteristic-detection optical system, measurement probe, and optical-characteristic-detection device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000515966A (en) * 1996-07-11 2000-11-28 イーツェーベー インスティテュート ファー ヒェモ−ウント ビオゼンゾリック ミュンスター エー.ファー. Apparatus and method for performing a quantitative fluorescent mark affinity test
JPH10185806A (en) * 1996-12-27 1998-07-14 Ricoh Co Ltd Water content detector
JP2007304042A (en) * 2006-05-15 2007-11-22 Toyota Motor Corp Device and method for measuring excoriation
JP2011145161A (en) * 2010-01-14 2011-07-28 Yamatake Corp Fluorescence type temperature sensor, method for adjusting the same, and method for measuring temperature
WO2016194061A1 (en) * 2015-05-29 2016-12-08 オリンパス株式会社 Optical-characteristic-detection optical system, measurement probe, and optical-characteristic-detection device

Similar Documents

Publication Publication Date Title
US20230194421A1 (en) Depth-resolved mid-infrared photothermal imaging of living cells and organisms with sub-micron spatial resolution
KR100352689B1 (en) Advanced synchronous luminescence system
KR20010110293A (en) Apparatus for optically characterising thin layered material
TWI780109B (en) Systems and methods for semiconductor metrology and inspection
CN112945927B (en) In-situ high-pressure confocal Raman spectrum measurement system
CN112414992A (en) Raman spectrum excitation enhancement module
JP2807777B2 (en) Optical absorption spectrum measuring device using slab optical waveguide
TWI798614B (en) Combined ocd and photoreflectance apparatus, system and method
CN107843564A (en) Reflection type optical material nonlinear polarization spectrum measuring device
Song et al. Application of liquid waveguide to Raman spectroscopy in aqueous solution
JP3649823B2 (en) Organic matter analyzer
JPH07260678A (en) Method and device for measuring light
JP2005172774A (en) Method and apparatus for measuring physical properties based on catoptric characteristics
TWI769203B (en) Alignment characteristic measurement method, alignment characteristic measurement program, and alignment characteristic measurement device
JP2001242083A (en) Light intensifying method, light intensifying device, fluorometry using it, and fluorometer
US5673109A (en) System and method for increasing the efficiency of a raman gas analysis system
JP3101707B2 (en) Raman scattered light enhancement device
JPH10281876A (en) Polarizing imaging system
JP2006242902A (en) Bio-sensing device
JP2000249646A (en) Near visual field optical microscope device
JPH09189657A (en) Method and device for analyzing constituting atom or molecule of sample
JPH11101808A (en) Near field optical microspectroscope
JPH11142745A (en) Microscope device
Toriumi et al. Variable‐angle ultraviolet total‐internal‐reflection fluorescence spectroscopy using a white excitation light source
JP2943236B2 (en) Total reflection absorption spectrum measurement device