JPH07260264A - Refrigerating device - Google Patents

Refrigerating device

Info

Publication number
JPH07260264A
JPH07260264A JP5600894A JP5600894A JPH07260264A JP H07260264 A JPH07260264 A JP H07260264A JP 5600894 A JP5600894 A JP 5600894A JP 5600894 A JP5600894 A JP 5600894A JP H07260264 A JPH07260264 A JP H07260264A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
condenser
outlet
saturation temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5600894A
Other languages
Japanese (ja)
Inventor
Takeshi Hiruko
毅 蛭子
Takayuki Setoguchi
隆之 瀬戸口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP5600894A priority Critical patent/JPH07260264A/en
Publication of JPH07260264A publication Critical patent/JPH07260264A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To make it possible to easily and accurately determe the mixing ratio of the refrigerants during operation of a refrigerating device. CONSTITUTION:The subject relates to a refrigerating device having a refrigerant circuit in which a compressor 1, condenser 2, expansion mechanism 3, and evaporator 4 are connected and through which a nonazeotropic mixture of refrigerants is circulated. In this refrigerating system there are provided a pressure detector 5 which detects the discharge pressure of the compressure 1 and a plurality of temperature detectors 7, 8 which detect the temperatures of the refrigerant inside the condenser 2 at a plurality of spots positioned therein with specified distances apart from the condenser exit 2a. From the ratio of the differential temperature of the refrigerant detected by these temperature detectors 7, 8 to the difference between the distances from the condenser exit 2a to the respective temperature detectors 7, 8 the gradient of a change in temperature of the refrigerant inside the condenser 2 is obtained. Furthermore, there are provided a first calculating means and a second calculating means: the first calculating mans is for obtaining the condensing saturation temperature of the refrigerant at the condenser exit 2a on the basis of the above-mentioned gradient and the second calculating means is for obtaining the mixing ratio of the refrigerants on the basis of the condensing saturation temperature determined by the first calculating means and the discharge pressure detected by the pressure detector 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本願発明は、作動媒体として非共
沸混合冷媒を用いた冷凍装置に関し、さらに詳しくは、
冷媒回路内を循環する冷媒の混合比を容易に求め得るよ
うにした冷凍装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating apparatus using a non-azeotropic mixed refrigerant as a working medium.
The present invention relates to a refrigerating device which makes it possible to easily obtain a mixing ratio of refrigerant circulating in a refrigerant circuit.

【0002】[0002]

【従来の技術】沸点の異なる2種以上の冷媒を混合させ
た非共沸混合冷媒を作動媒体として用いた冷凍装置は従
来から良く知られている。
2. Description of the Related Art A refrigeration system using a non-azeotropic mixed refrigerant in which two or more kinds of refrigerants having different boiling points are mixed as a working medium has been well known.

【0003】この非共沸混合冷媒は、混合された冷媒の
それぞれの沸点が異なっているため、単一冷媒を用いた
場合とは異なり、冷凍サイクルにおいて相変化(例え
ば、液相→気相あるいは気相→液相)を生じる蒸発器内
あるいは凝縮器内における冷媒温度が一定とならず、所
定の匂配で直線的に変化する。
This non-azeotropic mixed refrigerant differs in the boiling point of the mixed refrigerants from each other. Therefore, unlike the case where a single refrigerant is used, a phase change (for example, liquid phase → gas phase or The refrigerant temperature in the evaporator or condenser that produces the gas phase → liquid phase is not constant and changes linearly with a predetermined odor.

【0004】ところで、冷凍サイクルの効率向上を図る
一つの手段として、蒸発器の出口側における冷媒の過熱
度が一定になるように膨張機構の開度を制御する方法が
あるが、このような制御を行うためには、蒸発器出口側
における冷媒の飽和温度を知る必要がある。この飽和温
度は、単一冷媒を用いた冷凍装置の場合冷媒圧力を検出
するだけで容易に求められるが、非共沸混合冷媒を用い
た冷凍装置の場合冷媒の混合比が分からないと求めるこ
とができない。つまり、単一冷媒の場合、圧縮機吸入部
からの圧力情報のみで飽和温度が得られるのに反して、
非共沸混合冷媒の場合、飽和温度を得るのに、圧力、乾
き度、混合比の情報が必要となるのである。
By the way, as one means for improving the efficiency of the refrigeration cycle, there is a method of controlling the opening degree of the expansion mechanism so that the degree of superheat of the refrigerant on the outlet side of the evaporator becomes constant. In order to perform the above, it is necessary to know the saturation temperature of the refrigerant on the outlet side of the evaporator. This saturation temperature can be easily obtained by simply detecting the refrigerant pressure in the case of a refrigeration system using a single refrigerant, but in the case of a refrigeration system using a non-azeotropic mixed refrigerant, the saturation temperature must be determined if it is unknown. I can't. That is, in the case of a single refrigerant, the saturation temperature can be obtained only by the pressure information from the compressor suction part,
In the case of a non-azeotropic mixed refrigerant, information on pressure, dryness, and mixing ratio is required to obtain the saturation temperature.

【0005】上記のような理由から、非共沸混合冷媒を
用いた冷凍装置において過熱度制御を行うためには、冷
凍サイクルにおける冷媒の混合比を得ることが必要とさ
れている。
For the above reasons, in order to control the degree of superheat in a refrigeration system using a non-azeotropic mixed refrigerant, it is necessary to obtain the refrigerant mixture ratio in the refrigeration cycle.

【0006】このような要求から、蒸発器の飽和温度に
近いであろう位置に温度検出器を設けて、該温度検出器
により検出された温度を冷媒飽和温度と仮定して冷媒の
混合比を求めるようにしたもの(特公平5ー45868
号公報参照)、あるいは冷凍装置の運転停止時における
冷媒の温度と圧力とを検出して、これらに基づいて冷媒
の混合比を求めるようにしたもの(特開昭61ー138
058号公報参照)が既に提案されている。
From such a demand, a temperature detector is provided at a position that is likely to be close to the saturation temperature of the evaporator, and the temperature detected by the temperature detector is assumed to be the refrigerant saturation temperature to obtain the refrigerant mixture ratio. What was done (Japanese Patent Publication No. 5-45868)
(See Japanese Laid-Open Patent Publication No. 61-138), or the temperature and pressure of the refrigerant when the refrigeration system is stopped, and the mixture ratio of the refrigerant is calculated based on these.
No. 058) has already been proposed.

【0007】[0007]

【発明が解決しようとする課題】ところが、上記公知例
の前者の場合、冷媒が完全に飽和している個所を設定す
ることが困難なため、正確な飽和温度の検出が難しく、
得られる混合比も不正確となるおそれがある。また、上
記公知例の後者の場合、運転停止時における温度と圧力
とに基づいているため、運転中の冷媒混合比が得られな
いという不具合がある。なお、運転停止時と運転中とで
は、冷凍サイクルの負荷等の影響によって冷媒混合比が
異なる場合が多い。
However, in the former case of the above-mentioned known example, it is difficult to set the point where the refrigerant is completely saturated, so that it is difficult to accurately detect the saturation temperature.
The resulting mixing ratio may also be inaccurate. Further, in the latter case of the above-mentioned known example, there is a problem that the refrigerant mixture ratio during operation cannot be obtained because it is based on the temperature and the pressure when the operation is stopped. Note that the refrigerant mixing ratio often differs between when the operation is stopped and when the operation is in progress due to the influence of the load of the refrigeration cycle and the like.

【0008】本願発明は、上記の点に鑑みてなされたも
ので、冷凍装置の運転中における冷媒の混合比を容易且
つ正確に求めることを目的とするものである。
The present invention has been made in view of the above points, and it is an object of the present invention to easily and accurately determine the mixing ratio of the refrigerant during the operation of the refrigeration system.

【0009】[0009]

【課題を解決するための手段】本願発明は、圧縮機、凝
縮器、膨張機構および蒸発器を接続してなる冷媒回路に
非共沸混合冷媒を流通させる冷凍装置において、前記圧
縮機の吐出圧力を検出する圧力検出器と、前記凝縮器内
において凝縮器出口から所定距離離れた複数個所(2個
所あるいは3個所以上)の冷媒温度を検出する複数の温
度検出器と、これらの温度検出器により検出された冷媒
温度の差温と凝縮器出口から温度検出器までの距離の差
との比により凝縮器内における冷媒温度変化の匂配を求
め、該匂配に基づいて凝縮器出口における冷媒の凝縮飽
和温度を求める第1演算手段と、該第1演算手段により
求められた凝縮飽和温度および前記圧力検出器により検
出された吐出圧力に基づいて冷媒の混合比を求める第2
演算手段とを備えた構成を基本構成としている。
DISCLOSURE OF THE INVENTION The present invention relates to a refrigerating apparatus in which a non-azeotropic mixed refrigerant is circulated in a refrigerant circuit connecting a compressor, a condenser, an expansion mechanism and an evaporator. And a plurality of temperature detectors for detecting the refrigerant temperature at a plurality of locations (two or more locations) apart from the condenser outlet in the condenser by a predetermined temperature detector. Obtain the odor of the refrigerant temperature change in the condenser by the ratio of the difference in the detected refrigerant temperature and the difference in the distance from the condenser outlet to the temperature detector, and based on the odor, the refrigerant at the condenser outlet A first calculation means for obtaining a condensation saturation temperature, and a second calculation means for obtaining a refrigerant mixture ratio based on the condensation saturation temperature obtained by the first calculation means and the discharge pressure detected by the pressure detector.
The basic configuration is a configuration including a computing means.

【0010】[0010]

【作用】本願発明では、凝縮器内において凝縮器出口か
ら所定距離離れた複数個所(2個所あるいは3個所以上)
の冷媒温度を検出する複数の温度検出器により検出され
た冷媒温度の差温と凝縮器出口から温度検出器までの距
離の差との比により凝縮器内における冷媒温度変化の匂
配が求められ、該匂配に基づいて凝縮器出口における冷
媒の凝縮飽和温度が求められる。つまり、凝縮器出口側
の所定領域における冷媒温度変化の匂配が一定であると
ころから、冷媒温度変化の匂配を求めれば、凝縮器出口
における冷媒の凝縮飽和温度は自ずと求まるのである。
In the present invention, a plurality of locations (two or more locations) in the condenser, which are separated from the condenser outlet by a predetermined distance.
The ratio of the difference in the refrigerant temperatures detected by the temperature detectors that detect the refrigerant temperature to the difference in the distance from the condenser outlet to the temperature detector determines the scent of the refrigerant temperature change in the condenser. , The condensation saturation temperature of the refrigerant at the outlet of the condenser is obtained based on the odor distribution. In other words, when the temperature distribution of the refrigerant temperature change is constant in the predetermined region on the outlet side of the condenser, the condensation saturation temperature of the refrigerant at the condenser outlet is naturally obtained if the temperature distribution of the refrigerant temperature change is obtained.

【0011】凝縮器の出口側には、若干の過冷却域が存
しているため、冷媒温度検出個所を2個所とした場合に
は、過冷却域の長さを無視する必要があるが、一般に凝
縮器の出口側における冷媒温度は数度だけ過冷却されて
いるにすぎないので、過冷却域に近い温度検出器から凝
縮器出口までの距離を十分に長くとれば、凝縮飽和温度
が精度良く得られる。冷媒温度検出個所を3個所以上と
した場合、前記過冷却域の長さを演算の過程において消
去できるため、過冷却域に影響されることなく、正確な
凝縮飽和温度が得られる。
Since there is a slight supercooling zone on the outlet side of the condenser, if the refrigerant temperature detection points are two, the length of the supercooling zone must be ignored. Generally, the refrigerant temperature on the outlet side of the condenser is only supercooled by a few degrees, so if the distance from the temperature detector near the supercooling area to the condenser outlet is sufficiently long, the condensation saturation temperature will be accurate. Well obtained. When the number of refrigerant temperature detection points is three or more, the length of the supercooling zone can be deleted in the process of calculation, so that an accurate condensation saturation temperature can be obtained without being affected by the supercooling zone.

【0012】しかる後、前記のようにして凝縮器出口に
おける凝縮飽和温度が求められると、該凝縮飽和温度と
その時の圧力(即ち、圧縮機の吐出圧力)とに基づいて冷
媒の混合比が得られる。この冷媒混合比は、例えば、非
共沸混合冷媒の等圧気液平衡線図から得られる。なお、
凝縮器における圧力損失は小さいので、凝縮器出口の圧
力として圧縮機の吐出圧力を用いても何等支障はない。
Thereafter, when the condensation saturation temperature at the condenser outlet is obtained as described above, the mixture ratio of the refrigerant is obtained based on the condensation saturation temperature and the pressure at that time (that is, the discharge pressure of the compressor). To be This refrigerant mixture ratio is obtained from, for example, an isobaric vapor-liquid equilibrium diagram of a non-azeotropic mixed refrigerant. In addition,
Since the pressure loss in the condenser is small, there is no problem even if the discharge pressure of the compressor is used as the pressure at the outlet of the condenser.

【0013】[0013]

【発明の効果】本願発明によれば、非共沸混合冷媒を用
いた冷凍装置において、凝縮器内において凝縮器出口か
ら所定距離離れた複数個所(2個所あるいは3個所以上)
の冷媒温度を検出する複数の温度検出器により検出され
た冷媒温度の差温と凝縮器出口から温度検出器までの距
離の差との比により凝縮器内における冷媒温度変化の匂
配を求め、該匂配に基づいて凝縮器出口における冷媒の
凝縮飽和温度を求め、かくして求められた凝縮飽和温度
および圧力検出器により検出された吐出圧力に基づいて
冷媒の混合比を求めるようにしたので、凝縮器出口側の
所定領域においては一定である冷媒温度変化匂配を求め
るだけで、凝縮器出口における凝縮飽和温度が精度良く
求まるところから、冷凍装置の運転中における正確な冷
媒混合比が得られるという優れた効果がある。
EFFECTS OF THE INVENTION According to the present invention, in a refrigerating apparatus using a non-azeotropic mixed refrigerant, a plurality of locations (two or more locations) apart from a condenser outlet by a predetermined distance in a condenser.
Of the temperature difference of the refrigerant temperature detected by a plurality of temperature detectors to detect the refrigerant temperature and the ratio of the difference in the distance from the condenser outlet to the temperature detector to obtain the scent of the refrigerant temperature change in the condenser, Since the condensation saturation temperature of the refrigerant at the outlet of the condenser is obtained based on the scent, and the mixing ratio of the refrigerant is obtained based on the condensation saturation temperature thus obtained and the discharge pressure detected by the pressure detector. It is said that an accurate refrigerant mixture ratio during operation of the refrigeration system can be obtained from the fact that the condensation saturation temperature at the condenser outlet can be accurately obtained by simply obtaining the refrigerant temperature change pattern that is constant in the predetermined region on the outlet side of the refrigerator. It has an excellent effect.

【0014】なお、冷媒温度検出個所を2個所とした場
合には、凝縮器の出口側には、若干の過冷却域が存して
いるため、該過冷却域の長さを無視する必要があるが、
一般に凝縮器の出口側における冷媒温度は数度だけ過冷
却されているにすぎないので、過冷却域に近い温度検出
器から凝縮器出口までの距離を十分に長くとれば、凝縮
飽和温度が精度良く得られ、冷媒混合比の検出精度が低
下することはない。
If there are two refrigerant temperature detection points, there is a slight supercooling zone on the outlet side of the condenser, so the length of the subcooling zone must be ignored. But
Generally, the refrigerant temperature on the outlet side of the condenser is only supercooled by a few degrees, so if the distance from the temperature detector near the supercooling area to the condenser outlet is sufficiently long, the condensation saturation temperature will be accurate. Good results are obtained, and the accuracy of detecting the refrigerant mixture ratio does not decrease.

【0015】冷媒温度検出個所を3個所以上とした場
合、前記過冷却領域の長さを演算の過程において消去で
きるため、過冷却領域に影響されることなく、正確な凝
縮飽和温度が得られ、冷媒混合比の検出精度がより向上
する。
When the number of refrigerant temperature detection points is three or more, the length of the supercooling region can be deleted in the process of calculation, so that an accurate condensation saturation temperature can be obtained without being affected by the subcooling region. The accuracy of detecting the refrigerant mixture ratio is further improved.

【0016】[0016]

【実施例】以下、添付の図面を参照して、本願発明の幾
つかの好適な実施例を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Some preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

【0017】実施例1 図1および図2には、本願発明の実施例1にかかる非共
沸混合冷媒を用いた冷凍装置が示されている。
Embodiment 1 FIGS. 1 and 2 show a refrigerating apparatus using a non-azeotropic mixed refrigerant according to Embodiment 1 of the present invention.

【0018】本実施例の冷凍装置は、図1に示すよう
に、圧縮機1、凝縮器2、膨張機構として作用する電気
式膨張弁3および蒸発器4を接続した冷媒回路Aを備
え、該冷媒回路Aに非共沸混合冷媒を流通させて、凝縮
器2において被加熱流体と熱交換する非共沸混合冷媒を
凝縮液化させ、蒸発器4において被冷却流体と熱交換す
る非共沸混合冷媒を蒸発気化させることとされている。
As shown in FIG. 1, the refrigerating apparatus of this embodiment comprises a refrigerant circuit A in which a compressor 1, a condenser 2, an electric expansion valve 3 acting as an expansion mechanism, and an evaporator 4 are connected. The non-azeotropic mixed refrigerant is circulated in the refrigerant circuit A to condense and liquefy the non-azeotropic mixed refrigerant that exchanges heat with the fluid to be heated in the condenser 2 and the non-azeotropic mixture that exchanges heat with the fluid to be cooled in the evaporator 4. It is supposed to evaporate the refrigerant.

【0019】前記圧縮機1の吐出側には、吐出圧力P1
を検出する吐出圧力検出器5が設けられ、前記圧縮機1
の吸入側には、吸入圧力P2を検出する吸入圧力検出器
6が設けられている。また、前記凝縮器2において凝縮
器2の出口2aから所定距離離れた2個所には、当該個
所における冷媒温度T1,T2を検出する2個の温度検出
器7,8がそれぞれ設けられ、前記蒸発器4の出口側に
は、過熱度制御用の温度検出器9が設けられている。
On the discharge side of the compressor 1, the discharge pressure P 1
Is provided with a discharge pressure detector 5 for detecting the
A suction pressure detector 6 for detecting the suction pressure P 2 is provided on the suction side of. Further, in the condenser 2, two temperature detectors 7 and 8 for detecting the refrigerant temperatures T 1 and T 2 at the respective locations are provided at two locations apart from the outlet 2a of the condenser 2 by a predetermined distance, A temperature detector 9 for controlling the degree of superheat is provided on the outlet side of the evaporator 4.

【0020】前記温度検出器7,8は、図4に示すよう
に、凝縮器2の出口2aから所定距離a,bだけ離れ且つ気
液2相域内となる2個所に設けられるが、凝縮器2の出
口側に位置する温度検出器7と凝縮器出口2aとの距離a
は、凝縮器2の出口側に若干の過冷却域(凝縮器2の出
口2aから距離cの領域)が存するため、a≫cとなるよう
に設定するのが望ましい。なお、前記過冷却域の距離c
は、凝縮器2の全長Lに比して極めて小さい。
As shown in FIG. 4, the temperature detectors 7 and 8 are provided at two positions apart from the outlet 2a of the condenser 2 by a predetermined distance a and b and within the gas-liquid two-phase region. The distance a between the temperature detector 7 located on the outlet side of 2 and the condenser outlet 2a
Since there exists a slight supercooling region (region of a distance c from the outlet 2a of the condenser 2) on the outlet side of the condenser 2, it is desirable to set so that a >> c. In addition, the distance c of the supercooling area
Is extremely smaller than the total length L of the condenser 2.

【0021】また、前記冷媒回路Aには、後述する冷媒
混合比検出のための各種演算と過熱度制御のための演算
および制御信号出力を行うコントローラ10が付設され
ている。
Further, the refrigerant circuit A is additionally provided with a controller 10 for performing various calculations for detecting a refrigerant mixture ratio, which will be described later, and calculations for superheat degree control and a control signal output.

【0022】該コントローラ10は、例えばマイクロコ
ンピュータからなっており、図2に示すように、前記温
度検出器7,8により検出された冷媒温度T1,T2の差温
(T2−T1)と凝縮器出口2aから温度検出器7,8までの
距離a,bの差(b−a)との比(T2−T1)/(b−a)により凝
縮器2内における冷媒温度変化の匂配を求め、該匂配に
基づいて凝縮器出口2aにおける冷媒の凝縮飽和温度Tc
を求める第1演算手段11と、該第1演算手段11によ
り求められた凝縮飽和温度Tcおよび前記吐出圧力検出
器5により検出された吐出圧力P1に基づいて冷媒の混
合比Cを求める第2演算手段12と、該第2演算手段1
2により求められた冷媒混合比Cに基づいて蒸発器4の
出口における過熱度を一定に制御するように前記電気式
膨張弁3に対して制御信号を出力する過熱度制御手段1
3とを備えている。
The controller 10 comprises, for example, a microcomputer, and as shown in FIG. 2, the temperature difference between the refrigerant temperatures T 1 and T 2 detected by the temperature detectors 7 and 8.
(T 2 -T 1) and the condenser distance a from the outlet 2a to the temperature detector 7 and 8, the ratio of the difference of b (b-a) (T 2 -T 1) / (b-a) by condensation The temperature distribution of the refrigerant in the condenser 2 is calculated, and the condensation saturation temperature Tc of the refrigerant at the condenser outlet 2a is calculated based on the temperature distribution.
And a second calculating means 11 for calculating the refrigerant mixture ratio C based on the condensation saturation temperature Tc calculated by the first calculating means 11 and the discharge pressure P 1 detected by the discharge pressure detector 5. Computing means 12 and the second computing means 1
Superheat degree control means 1 for outputting a control signal to the electric expansion valve 3 so as to control the superheat degree at the outlet of the evaporator 4 to be constant based on the refrigerant mixture ratio C obtained by 2.
3 and 3.

【0023】次に図3に示すフローチャートを参照し
て、本実施例の冷凍装置におけるコントローラ10の作
用を説明する。
Next, the operation of the controller 10 in the refrigerating apparatus of this embodiment will be described with reference to the flow chart shown in FIG.

【0024】ステップS1において、圧力検出器5,6に
より検出された圧力P1,P2、温度検出器7,8により検
出された冷媒温度T1,T2が入力され、ステップS2にお
いて第1演算手段11により凝縮器出口2aにおける冷
媒の凝縮飽和温度Tcが算出される。
In step S 1 , the pressures P 1 and P 2 detected by the pressure detectors 5 and 6 and the refrigerant temperatures T 1 and T 2 detected by the temperature detectors 7 and 8 are input, and in step S 2 . The first calculator 11 calculates the condensation saturation temperature Tc of the refrigerant at the condenser outlet 2a.

【0025】この凝縮飽和温度Tcの算出は次のように
してなされる。
The condensation saturation temperature Tc is calculated as follows.

【0026】まず、凝縮器2における冷媒の温度変化の
匂配が図5に示すように一定であることから、温度検出
器7,8間における冷媒の温度変化匂配と、温度検出器
7と過冷却域の上流端との間における冷媒の温度変化匂
配が等しいこととなり、次式が成立する。
First, since the temperature variation of the refrigerant in the condenser 2 is constant as shown in FIG. 5, the temperature variation of the refrigerant between the temperature detectors 7 and 8 and the temperature detector 7 are The temperature change odor of the refrigerant is equal to that of the upstream end of the supercooling region, and the following equation is established.

【0027】 (T2−T1)/(b−a)=(T1−Tc)/(a−c) ここで、未知の値は凝縮飽和温度Tcと過冷却域の距離c
とであるが、一般に凝縮器2の出口側における冷媒温度
は数度だけ過冷却されているにすぎないので、温度検出
器7から凝縮器出口2aまでの距離aを十分長くとってい
ることから、過冷却域の距離cを無視することができ
る。従って、上式から凝縮器出口2aにおける凝縮飽和
温度Tcが得られる。
(T 2 −T 1 ) / (b−a) = (T 1 −Tc) / (a−c) where the unknown value is the distance c between the condensation saturation temperature Tc and the supercooling region.
However, since the refrigerant temperature on the outlet side of the condenser 2 is generally only supercooled by a few degrees, the distance a from the temperature detector 7 to the condenser outlet 2a is sufficiently long. , The distance c in the supercooling zone can be ignored. Therefore, the condensation saturation temperature Tc at the condenser outlet 2a can be obtained from the above equation.

【0028】ついで、ステップS3において、上記のよ
うにして得られた凝縮飽和温度Tc、吐出圧力検出器5
により検出された吐出圧力P1および乾き度(この場合、
凝縮終了位置なので、乾き度=0)をコントローラ10
内に設けた混合比算出マップ(図6参照)に照合すること
により非共沸混合冷媒の混合比Cが第2演算手段12に
より求められる。即ち、図6の混合比算出マップ(圧力
一定=吐出圧力P1、乾き度=0)において、凝縮飽和温
度Tcにおける沸点を求めれば、その時の混合比Cが求
まるのである。なお、凝縮器2での圧力損失が小さいた
め凝縮器出口2aにおける圧力は吐出圧力P1とほぼ等し
い。
Then, in step S 3 , the condensation saturation temperature Tc and the discharge pressure detector 5 obtained as described above are measured.
Discharge pressure P 1 and dryness detected by (in this case,
Since the condensation end position, dryness = 0) controller 10
The second computing means 12 obtains the mixing ratio C of the non-azeotropic mixed refrigerant by collating with the mixing ratio calculation map (see FIG. 6) provided therein. That is, if the boiling point at the condensation saturation temperature Tc is obtained in the mixture ratio calculation map (constant pressure = discharge pressure P 1 , dryness = 0) in FIG. 6, the mixture ratio C at that time can be obtained. Since the pressure loss in the condenser 2 is small, the pressure at the condenser outlet 2a is almost equal to the discharge pressure P 1 .

【0029】次に、ステップS4において、過熱度制御
手段13により過熱度制御が実行されるが、該過熱度制
御のためには、蒸発器4の出口での蒸発飽和温度Teが
必要となる。この蒸発飽和温度Teは、吸入圧力検出器
6により検出された吸入圧力P2、乾き度(この場合、蒸
発終了位置なので乾き度=1.0)およびステップS3
おいて求められた冷媒混合比Cを蒸発飽和温度算出マッ
プ(図7参照)に照合することにより算出される。即ち、
図7の蒸発飽和温度算出マップ(圧力一定=吸入圧力
2、乾き度=1.0)において、混合比Cにおける露点
を求めれば、その時の蒸発飽和温度Teが求まるのであ
る。このようにして算出された蒸発飽和温度Teと過熱
度制御用の温度検出器9により検出された冷媒温度との
差温が一定となるように電気式膨張弁3に対して開度制
御信号が出力される。
Next, in step S 4 , the superheat control means 13 executes the superheat control. For the superheat control, the evaporation saturation temperature Te at the outlet of the evaporator 4 is required. . This evaporation saturation temperature Te is the suction pressure P 2 detected by the suction pressure detector 6, the dryness (in this case, the dryness is 1.0 because it is the evaporation end position), and the refrigerant mixture ratio C obtained in step S 3 . Is compared with the evaporation saturation temperature calculation map (see FIG. 7). That is,
If the dew point at the mixing ratio C is found in the evaporation saturation temperature calculation map of FIG. 7 (constant pressure = suction pressure P 2 , dryness = 1.0), the evaporation saturation temperature Te at that time can be found. The opening control signal is sent to the electric expansion valve 3 so that the temperature difference between the evaporation saturation temperature Te calculated in this way and the refrigerant temperature detected by the superheat degree control temperature detector 9 becomes constant. Is output.

【0030】上記したように、本実施例によれば、凝縮
器2内において凝縮器出口2aから所定距離a,bだけ離れ
た2個所に設けられた温度検出器7,8により検出され
た冷媒温度から温度変化勾配を求め、該温度変化勾配か
ら凝縮器出口2aにおける冷媒の凝縮飽和温度Tcを求
め、かくして求められた凝縮飽和温度Tcから冷媒の混
合比Cを求めるようにしているので、冷凍装置の運転中
における冷媒混合比Cが容易且つ精度良く求められるの
である。なお、本実施例の場合、凝縮器2の出口側に
は、若干の過冷却域が存しているため、該過冷却域の長
さcを無視する必要があるが、一般に凝縮器2の出口側
における冷媒温度は数度だけ過冷却されているにすぎな
いので、過冷却域に近い温度検出器7から凝縮器出口2
aまでの距離aを十分に長くとれば、凝縮飽和温度が精度
良く得られ、冷媒混合比の検出精度が低下することはな
い。
As described above, according to the present embodiment, the refrigerant detected by the temperature detectors 7 and 8 provided in the condenser 2 at two positions separated from the condenser outlet 2a by the predetermined distances a and b. The temperature change gradient is obtained from the temperature, the condensation saturation temperature Tc of the refrigerant at the condenser outlet 2a is obtained from the temperature change gradient, and the mixture ratio C of the refrigerant is obtained from the thus obtained condensation saturation temperature Tc. The refrigerant mixture ratio C during the operation of the device can be easily and accurately obtained. In addition, in the case of the present embodiment, since there is a slight supercooling region on the outlet side of the condenser 2, the length c of the subcooling region needs to be ignored. Since the temperature of the refrigerant on the outlet side is only supercooled by a few degrees, the temperature detector 7 close to the supercooled region is connected to the condenser outlet 2
If the distance a to a is sufficiently long, the condensation saturation temperature can be obtained with high accuracy, and the accuracy of detecting the refrigerant mixture ratio will not be reduced.

【0031】実施例2 図8および図9には、本願発明の実施例2にかかる冷凍
装置が示されている。
Embodiment 2 FIGS. 8 and 9 show a refrigerating apparatus according to Embodiment 2 of the present invention.

【0032】本実施例の場合、凝縮器2内において凝縮
器出口2aから所定距離a,b,dだけ離れた3個所に温度検
出器7,8,14が設けられている(図10参照)。従っ
て、第1演算手段11には、温度検出器7,8,14から
の温度情報(即ち、冷媒温度T1,T2,T3)が入力される
こととなっている。その他の構成は実施例1と同様なの
で説明を省略する。
In the case of this embodiment, temperature detectors 7, 8 and 14 are provided at three locations inside the condenser 2 which are separated from the condenser outlet 2a by a predetermined distance a, b and d (see FIG. 10). . Therefore, the temperature information (that is, the refrigerant temperatures T 1 , T 2 , T 3 ) from the temperature detectors 7, 8, 14 is input to the first computing means 11. The other configuration is similar to that of the first embodiment, and thus the description is omitted.

【0033】本実施例の場合、図3のフローチャートに
おけるステップS2において、凝縮器出口2aにおける凝
縮飽和温度Tcを求める際に、第1演算手段11により
次のような演算が行なわれる。
In the case of the present embodiment, when the condensation saturation temperature Tc at the condenser outlet 2a is obtained in step S 2 in the flowchart of FIG. 3, the first computing means 11 carries out the following computation.

【0034】即ち、温度検出器7,8間における冷媒の
温度変化匂配と、温度検出器8,14間における冷媒の
温度変化匂配と、温度検出器7および8と過冷却域の上
流端との間における冷媒の温度変化匂配とが等しいこと
となり、次の2式が成立する(図10および図11参
照)。
That is, the temperature variation of the refrigerant between the temperature detectors 7 and 8, the temperature variation of the refrigerant between the temperature detectors 8 and 14, the temperature detectors 7 and 8 and the upstream end of the supercooling region. And the temperature variation pattern of the refrigerant are equal to each other, and the following two expressions are established (see FIGS. 10 and 11).

【0035】 (T2−T1)/(b−a)=(T1−Tc)/(a−c) (T3−T2)/(d−b)=(T2−Tc)/(b−c) ここで、未知の値は冷媒飽和温度Tcと過冷却域の距離c
とであるが、上記2式により過冷却域の長さcは消去さ
れ、凝縮器出口2aにおける凝縮飽和温度Tcが得られ
る。
(T 2 −T 1 ) / (b−a) = (T 1 −Tc) / (a−c) (T 3 −T 2 ) / (d−b) = (T 2 −Tc) / (b−c) Here, the unknown value is the distance c between the refrigerant saturation temperature Tc and the supercooling region.
However, the length c of the supercooling zone is eliminated by the above equation 2 and the condensation saturation temperature Tc at the condenser outlet 2a is obtained.

【0036】従って、本実施例の場合、実施例1におけ
るように過冷却域の長さcを近似的に0とする必要がな
いところから、より精度の良い凝縮飽和温度Tcが算出
できるのである。
Therefore, in the case of the present embodiment, since it is not necessary to make the length c of the subcooling zone approximately 0 as in the first embodiment, the condensation saturation temperature Tc can be calculated with higher accuracy. .

【0037】なお、その他の作用効果は実施例1と同様
なので説明を省略する。
The other functions and effects are the same as those of the first embodiment, and the description thereof will be omitted.

【0038】また、凝縮器2内において凝縮器出口2a
から所定距離だけ離れた4個所以上に温度検出器を設け
る場合には、上記と同様な方法により得られた凝縮飽和
温度の平均値を計算することによりさらに測定精度を向
上させることが可能となる。
In the condenser 2, the condenser outlet 2a
When the temperature detectors are provided at four or more positions separated by a predetermined distance from, the measurement accuracy can be further improved by calculating the average value of the condensation saturation temperature obtained by the same method as above. .

【0039】上記実施例では、冷房専用の冷凍装置につ
いて説明したが、本願発明は、ヒートポンプ式冷凍装置
にも適用可能である。
In the above embodiment, the refrigerating device dedicated to cooling is explained, but the present invention is also applicable to a heat pump type refrigerating device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願発明の実施例1にかかる冷凍装置の冷媒回
路図である。
FIG. 1 is a refrigerant circuit diagram of a refrigeration system according to a first embodiment of the present invention.

【図2】本願発明の実施例1にかかる冷凍装置における
コントローラの内容を示すブロック図である。
FIG. 2 is a block diagram showing the contents of a controller in the refrigerating apparatus according to the first embodiment of the present invention.

【図3】本願発明の実施例1にかかる冷凍装置における
コントローラの作用を説明するフローチャートである。
FIG. 3 is a flowchart illustrating the operation of the controller in the refrigerating apparatus according to the first embodiment of the present invention.

【図4】本願発明の実施例1にかかる冷凍装置における
冷媒の状態を示すモリエル線図である。
FIG. 4 is a Mollier diagram showing the state of the refrigerant in the refrigerating apparatus according to the first embodiment of the present invention.

【図5】本願発明の実施例1にかかる冷凍装置における
凝縮器内の冷媒温度変化を示す特性図である。
FIG. 5 is a characteristic diagram showing a refrigerant temperature change in the condenser in the refrigerating apparatus according to the first embodiment of the present invention.

【図6】本願発明の実施例1にかかる冷凍装置に使用さ
れる非共沸混合冷媒の混合比算出マップである。
FIG. 6 is a mixture ratio calculation map of the non-azeotropic mixed refrigerant used in the refrigeration apparatus according to the first embodiment of the present invention.

【図7】本願発明の実施例1にかかる冷凍装置に使用さ
れる非共沸混合冷媒の蒸発飽和温度算出マップである。
FIG. 7 is an evaporation saturation temperature calculation map of a non-azeotropic mixed refrigerant used in the refrigerating apparatus according to the first embodiment of the present invention.

【図8】本願発明の実施例2にかかる冷凍装置の冷媒回
路図である。
FIG. 8 is a refrigerant circuit diagram of the refrigerating apparatus according to the second embodiment of the present invention.

【図9】本願発明の実施例2にかかる冷凍装置における
コントローラの内容を示すブロック図である。
FIG. 9 is a block diagram showing the contents of a controller in the refrigerating apparatus according to the second embodiment of the present invention.

【図10】本願発明の実施例2にかかる冷凍装置におけ
る冷媒の状態を示すモリエル線図である。
FIG. 10 is a Mollier diagram showing the state of the refrigerant in the refrigerating apparatus according to the second embodiment of the present invention.

【図11】本願発明の実施例2にかかる冷凍装置におけ
る凝縮器内の冷媒温度変化を示す特性図である。
FIG. 11 is a characteristic diagram showing a change in refrigerant temperature in the condenser in the refrigerating apparatus according to the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1は圧縮機、2は凝縮器、2aは凝縮器出口、3は膨張
機構(電気式膨張弁)、4は蒸発器、5は吐出圧力検出
器、7,8は温度検出器、10はコントローラ、11は
第1演算手段、12は第2演算手段、13は過熱度制御
手段、14は温度検出器。
1 is a compressor, 2 is a condenser, 2a is a condenser outlet, 3 is an expansion mechanism (electrical expansion valve), 4 is an evaporator, 5 is a discharge pressure detector, 7 and 8 are temperature detectors, and 10 is a controller. , 11 is a first calculation means, 12 is a second calculation means, 13 is a superheat control means, and 14 is a temperature detector.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、凝縮器、膨張機構および蒸発器
を接続してなる冷媒回路に非共沸混合冷媒を流通させる
冷凍装置であって、前記圧縮機の吐出圧力を検出する圧
力検出器と、前記凝縮器内において凝縮器出口から所定
距離離れた複数個所の冷媒温度を検出する複数の温度検
出器と、これらの温度検出器により検出された冷媒温度
の差温と凝縮器出口から温度検出器までの距離の差との
比により凝縮器内における冷媒温度変化の匂配を求め、
該匂配に基づいて凝縮器出口における冷媒の凝縮飽和温
度を求める第1演算手段と、該第1演算手段により求め
られた凝縮飽和温度および前記圧力検出器により検出さ
れた吐出圧力に基づいて冷媒の混合比を求める第2演算
手段とを備えていることを特徴とする冷凍装置。
1. A refrigeration system for circulating a non-azeotropic mixed refrigerant in a refrigerant circuit connecting a compressor, a condenser, an expansion mechanism and an evaporator, the pressure detector detecting a discharge pressure of the compressor. And a plurality of temperature detectors for detecting the refrigerant temperature at a plurality of locations separated by a predetermined distance from the condenser outlet in the condenser, and the temperature difference from the condenser outlet and the temperature difference between the refrigerant temperatures detected by these temperature detectors. The ratio of the difference in the distance to the detector and the ratio of the refrigerant temperature change in the condenser are calculated,
First computing means for obtaining the condensation saturation temperature of the refrigerant at the outlet of the condenser based on the odor, and refrigerant based on the condensation saturation temperature obtained by the first computation means and the discharge pressure detected by the pressure detector. And a second calculation means for obtaining the mixing ratio of the refrigeration system.
【請求項2】 前記温度検出器を2個所に設けたことを
特徴とする前記請求項1記載の冷凍装置。
2. The refrigerating apparatus according to claim 1, wherein the temperature detectors are provided at two locations.
【請求項3】 前記温度検出器を3個所以上に設けたこ
とを特徴とする前記請求項1記載の冷凍装置。
3. The refrigerating apparatus according to claim 1, wherein the temperature detectors are provided at three or more places.
JP5600894A 1994-03-25 1994-03-25 Refrigerating device Pending JPH07260264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5600894A JPH07260264A (en) 1994-03-25 1994-03-25 Refrigerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5600894A JPH07260264A (en) 1994-03-25 1994-03-25 Refrigerating device

Publications (1)

Publication Number Publication Date
JPH07260264A true JPH07260264A (en) 1995-10-13

Family

ID=13015031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5600894A Pending JPH07260264A (en) 1994-03-25 1994-03-25 Refrigerating device

Country Status (1)

Country Link
JP (1) JPH07260264A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080688A (en) * 2009-10-07 2011-04-21 Mitsubishi Electric Corp Waste heat regenerative system
WO2016170650A1 (en) * 2015-04-23 2016-10-27 三菱電機株式会社 Refrigeration cycle device
JP2017062082A (en) * 2015-09-25 2017-03-30 東芝キヤリア株式会社 Multi-air conditioner
WO2018155513A1 (en) * 2017-02-27 2018-08-30 三菱重工サーマルシステムズ株式会社 Composition abnormality detection device and composition abnormality detection method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080688A (en) * 2009-10-07 2011-04-21 Mitsubishi Electric Corp Waste heat regenerative system
WO2016170650A1 (en) * 2015-04-23 2016-10-27 三菱電機株式会社 Refrigeration cycle device
JPWO2016170650A1 (en) * 2015-04-23 2017-11-30 三菱電機株式会社 Refrigeration cycle equipment
CN107532835A (en) * 2015-04-23 2018-01-02 三菱电机株式会社 Refrigerating circulatory device
US20180038621A1 (en) * 2015-04-23 2018-02-08 Mitsubishi Electric Corporation Refrigeration cycle apparatus
EP3287719A4 (en) * 2015-04-23 2018-10-24 Mitsubishi Electric Corporation Refrigeration cycle device
CN107532835B (en) * 2015-04-23 2020-03-24 三菱电机株式会社 Refrigeration cycle device
US10684051B2 (en) 2015-04-23 2020-06-16 Mitsubishi Electric Corporation Refrigeration cycle apparatus determining refrigerant condenser amount
JP2017062082A (en) * 2015-09-25 2017-03-30 東芝キヤリア株式会社 Multi-air conditioner
WO2018155513A1 (en) * 2017-02-27 2018-08-30 三菱重工サーマルシステムズ株式会社 Composition abnormality detection device and composition abnormality detection method

Similar Documents

Publication Publication Date Title
KR100325927B1 (en) Refrigerating and air-conditoning apparatus and method of determining refrigerant composition of refrigerating and air-conditioning appartus
US7146819B2 (en) Method of monitoring refrigerant level
KR100876024B1 (en) How to predict inlet and outlet air conditions of HBC system
EP3287719B1 (en) Refrigeration cycle device
Chen et al. Calculating circulation concentration of zeotropic refrigerant mixtures
JPH01501652A (en) How to analyze and control the cooling process
CN105874289B (en) Method for the cold-producing medium supply based on Temperature Measure Control to evaporator
Shen et al. Improved methodologies for simulating unitary air conditioners at off-design conditions
JP5921776B1 (en) Refrigeration cycle equipment
JPH07260264A (en) Refrigerating device
EP3502593A1 (en) Composition abnormality detection device and composition abnormality detection method
US7681407B2 (en) Method and a device for detecting flash gas
JPH06101911A (en) Refrigerating cycle using non-azeotropic mixed refrigerant
JPH0875280A (en) Freezing and air conditioning device with non-azeotropic mixture refrigerant
JP2005106314A (en) Refrigeration unit
Harms et al. The impact of modeling complexity and two-phase flow parameters on the accuracy of system modeling for unitary air conditioners
WO2020066001A1 (en) Refrigeration cycle device
JP4131509B2 (en) Refrigeration cycle controller
JP2000321103A (en) Tester for refrigerating compressor
US11933528B2 (en) Methods and systems for determining phase state or subcooling state
JPH0550666B2 (en)
JPH07280397A (en) Refrigerating capacity measuring method for refrigerator
He et al. An Oil Circulation Observer for Estimating Oil Concentration and Oil Amount in Refrigerant Compressors.
JPH0610571B2 (en) Appropriate refrigerant filling amount detection device
SU1241037A1 (en) Method of estimating cooling power of refrigerant compressor and rig for estimating cooling power