JPH07258817A - Heat resistant member - Google Patents

Heat resistant member

Info

Publication number
JPH07258817A
JPH07258817A JP6054296A JP5429694A JPH07258817A JP H07258817 A JPH07258817 A JP H07258817A JP 6054296 A JP6054296 A JP 6054296A JP 5429694 A JP5429694 A JP 5429694A JP H07258817 A JPH07258817 A JP H07258817A
Authority
JP
Japan
Prior art keywords
layer
heat
heat resistant
partially stabilized
stabilized zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6054296A
Other languages
Japanese (ja)
Inventor
Masayuki Ito
昌行 伊藤
Takao Suzuki
隆夫 鈴木
Kazuhiro Yasuda
一浩 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6054296A priority Critical patent/JPH07258817A/en
Publication of JPH07258817A publication Critical patent/JPH07258817A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a heat resistant member having a heat resistant coating layer formed via a binding layer to the surface of a metal as a base material. CONSTITUTION:This member is a heat resistant member which has a layer 3, formed via a binding layer 2 on the surface of a metallic base material 1 and composed essentially of partially stabilized zirconium oxide, and a layer 4 composed essentially of aluminum oxide and formed on the surface of the layer composed essentially of partially stabilized zirconium oxide. By this method, this member has a heat resistant coating layer excellent in steam corrosion resistance and high temp. erosion resistance as well as in thermal insulation effect even under high temp. conditions and also a remarkable effect of having superior durability at high temp. can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属基材にセラミック
耐熱被覆施した耐熱部材に関わり、特に高温耐久性を向
上した耐熱部材に関わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat resistant member obtained by coating a metal base material with a ceramic heat resistant coating, and more particularly to a heat resistant member having improved high temperature durability.

【0002】[0002]

【従来の技術】従来、ガスタービンを構成する部材など
耐熱性が要求される部材としては、耐熱合金からなる部
材が使用されているが、近年、その要求される耐熱温度
が高くなっている。例えば、ガスタービン部材の場合、
ガスタービン中のガス温度が1400℃以上にも達する
ため、その過酷な使用条件に耐える高温耐熱部材が必要
とされている。
2. Description of the Related Art Conventionally, a member made of a heat-resistant alloy has been used as a member that is required to have heat resistance such as a member that constitutes a gas turbine, but in recent years, the required heat-resistant temperature has been increased. For example, in the case of gas turbine components,
Since the gas temperature in the gas turbine reaches 1400 ° C. or higher, there is a need for a high temperature heat resistant member that can withstand the harsh conditions of use.

【0003】耐熱性に優れた耐熱部材に関し、種々の検
討が成された結果、(1)耐熱合金に代えて窒化ケイ素
(Si34 )や炭化ケイ素などの低熱伝導性の耐熱性
セラミック材料を耐熱部材として使用する方法、(2)
耐熱合金部材を中空形状とし、冷却用の気体を流通させ
て部材を冷却しながら使用するなど、冷却用の機構を備
えた耐熱合金部材を使用する方法、及び(3)耐熱合金
基材表面にセラミックからなる耐熱被覆を施し、基材合
金を高熱から保護する方法、などの技術が提案されてい
る。
As a result of various studies on heat resistant members having excellent heat resistance, (1) heat resistant ceramic materials having low thermal conductivity such as silicon nitride (Si 3 N 4 ) and silicon carbide instead of heat resistant alloys. Method of using as a heat-resistant member, (2)
A method of using a heat-resistant alloy member having a cooling mechanism, such as using the heat-resistant alloy member in a hollow shape and cooling the member by circulating a cooling gas, and (3) the heat-resistant alloy substrate surface Techniques such as a method of applying a heat resistant coating made of ceramic to protect the base alloy from high heat have been proposed.

【0004】しかしながら、上記(1)の方法の場合、
材料の強度の面が合金部材に及ばず、未だ実用化されて
いない。また、(2)の方法の場合、部材を冷却に伴
い、系全体の熱効率が低下するという問題点がある。結
局、強度面、熱効率面の見地から(3)の方法が現在最
も有望視されている。
However, in the case of the above method (1),
Since the strength of the material does not reach that of alloy members, it has not yet been put to practical use. Further, in the case of the method (2), there is a problem that the thermal efficiency of the entire system decreases as the member is cooled. After all, the method (3) is currently regarded as the most promising from the viewpoints of strength and thermal efficiency.

【0005】しかしながら、セラミックは一般に金属に
比べて熱膨張係数が小さいため、耐熱合金基材にセラミ
ック耐熱被覆を施した耐熱部材を高温条件下で使用する
と、基材金属とセラミック被覆との熱膨張差に起因して
セラミック層の剥離が生じやすい。したがって、耐熱被
覆に適用されるセラミックは単に熱伝導度が低いだけで
は無く、熱膨脹係数も耐熱合金の熱膨脹係数に近い値を
有することが望まれる。
However, since the coefficient of thermal expansion of ceramics is generally smaller than that of metals, when a heat resistant member obtained by applying a ceramic heat resistant coating to a heat resistant alloy base material is used under high temperature conditions, the thermal expansion of the base metal and the ceramic coating is performed. Due to the difference, peeling of the ceramic layer is likely to occur. Therefore, it is desired that the ceramic applied to the heat resistant coating has not only a low thermal conductivity but also a thermal expansion coefficient close to that of the heat resistant alloy.

【0006】この観点から熱伝導度が低く、しかもセラ
ミックのなかでは、比較的熱膨張係数が耐熱合金に近い
部分安定化酸化ジルコニウム(ZrO2 ・Y23 )を
耐熱被覆として用いることが「溶射ハンドブック」P.
516(編集:日本溶射協会、発行:(株)新技術開発
センター)に開示されている。
From this point of view, it is preferable to use partially stabilized zirconium oxide (ZrO 2 .Y 2 O 3 ) as a heat-resistant coating because of its low thermal conductivity, and among the ceramics, the coefficient of thermal expansion is relatively close to that of a heat-resistant alloy. Thermal Spray Handbook "P.
516 (edit: Japan Thermal Spray Association, published by: New Technology Development Center Co., Ltd.).

【0007】しかしながら、部分安定化酸化ジルコニウ
ム(ZrO2 ・Y23 )は高温化が進むとしゃ熱効果
が十分ではなくなり、また、耐磨耗性が低く耐高温エロ
ージョン特性に劣っている。また、水蒸気雰囲気中で使
用すると腐食を生じやすい、という点が問題となってい
た。
However, the partially stabilized zirconium oxide (ZrO 2 .Y 2 O 3 ) has an insufficient heat-shielding effect as the temperature rises, and has low wear resistance and poor high-temperature erosion resistance. Further, there is a problem that corrosion is likely to occur when used in a steam atmosphere.

【0008】[0008]

【発明が解決しようとする課題】本発明の課題は、上記
した従来の耐熱部材の欠点を解消するものであり、高温
条件下においてもしゃ熱効果に優れ、耐水蒸気腐食性、
および耐高温エロージョン特性にも優れた耐熱被覆層を
有する高温耐久性に優れた耐熱部材を提供することを本
願発明の目的とする。
The object of the present invention is to eliminate the above-mentioned drawbacks of the conventional heat-resistant member, and is excellent in the heat-shielding effect even under high temperature conditions, and is resistant to steam corrosion.
Another object of the present invention is to provide a heat-resistant member having a high-temperature durability that has a heat-resistant coating layer that is also excellent in high-temperature erosion resistance.

【0009】[0009]

【課題を解決するための手段】本発明は、金属基材と、
前記金属基材表面に結合層を介して設けられた耐熱被覆
層を有する耐熱部材であって、前記耐熱被覆層は、金属
基材表面に結合層を介して設けられた部分安定化酸化ジ
ルコニウムを主体とする層と、部分安定化酸化ジルコニ
ウムを主体とする層の表面に設けられた酸化アルミニウ
ムを主体とする層を備えたことを特徴とする耐熱部材で
ある。
SUMMARY OF THE INVENTION The present invention comprises a metal substrate,
A heat-resistant member having a heat-resistant coating layer provided on the surface of the metal substrate via a bonding layer, wherein the heat-resistant coating layer comprises partially stabilized zirconium oxide provided on the surface of the metal substrate via the bonding layer. A heat-resistant member comprising a layer mainly composed of a layer and a layer mainly composed of aluminum oxide provided on a surface of the layer mainly composed of partially stabilized zirconium oxide.

【0010】以下に本発明を詳細に説明する。まず、本
発明に係る金属基材としては、用途により種々の耐熱合
金を適宜選択して使用することができるが、実用上、N
i基超合金やCo基超合金が強度が高く好ましい。Ni
基合金としては、具体的には組成がCr:12〜20重
量%〜20重量%、Co:5〜10重量%、Mo:1〜
3重量%、W:2〜6重量%、Ta:1〜3重量%、A
l:2〜5重量%、Ti:2〜5重量%、Ni:残部、
のIN738やIN738LC、IN939、MAR−
M247などの合金が挙げられる。
The present invention will be described in detail below. First, as the metal base material according to the present invention, various heat-resistant alloys can be appropriately selected and used according to the application.
An i-base superalloy and a Co-base superalloy are preferable because of their high strength. Ni
As the base alloy, specifically, the composition is Cr: 12 to 20% by weight to 20% by weight, Co: 5 to 10% by weight, Mo: 1 to 1%.
3% by weight, W: 2 to 6% by weight, Ta: 1 to 3% by weight, A
1: 2-5% by weight, Ti: 2-5% by weight, Ni: balance,
IN738, IN738LC, IN939, MAR-
Examples include alloys such as M247.

【0011】また、Co基超合金としては、具体的には
組成がNi:5〜15重量%、Cr:25〜35重量
%、W:5〜10重量%、Fe:0.5〜3重量%、C
o:残部のFSX−414、などのCo基合金も強度が
高く好ましい。具体的にはX−40,MAR−M50
9,FSX−414などの合金が挙げられる。
Further, as the Co-based superalloy, specifically, the composition is Ni: 5 to 15% by weight, Cr: 25 to 35% by weight, W: 5 to 10% by weight, Fe: 0.5 to 3% by weight. %, C
o: Co-based alloys such as the balance FSX-414 are also preferable because of their high strength. Specifically, X-40, MAR-M50
9, alloy such as FSX-414.

【0012】また、本願発明に係る耐熱部材は金属基材
表面に結合層を介して耐熱被覆層を有する。結合層は
1.金属基材の耐高温腐食特性を向上させる、2.金属
基材と耐熱被覆層との熱膨張差に起因して発生する熱応
力を緩和する、作用がある。
Further, the heat-resistant member according to the present invention has a heat-resistant coating layer on the surface of the metal base material via a bonding layer. The tie layer is 1. 1. To improve the high temperature corrosion resistance of metal substrates It has an effect of relaxing the thermal stress generated due to the difference in thermal expansion between the metal base material and the heat resistant coating layer.

【0013】結合層としては、上記1、2の特性に優れ
たNi基MCrAlY合金やCo基MCrAlY合金が
挙げられる。具体的にNi基MCrAlY合金として
は、例えばCo:10〜40重量%、Cr:10〜40
重量%、Al:5〜20重量%、Y:0.1〜3重量
%、Ni:残部、の組成を有する合金、あるいは、A
l:5〜30重量%,Y:0.1〜5.0重量%、N
i:残部、の組成を有する合金が挙げられる。また、C
o基MCrAlY合金としては、例えば、Cr:10〜
40重量%,Al:5〜20重量%,Y:0.1〜3重
量%、Co:残部の組成を有する合金、あるいは、A
l:5〜30重量%,Y:0.1〜5.0重量%、C
o:残部、の組成を有する合金などが挙げられる。
Examples of the bonding layer include Ni-based MCrAlY alloys and Co-based MCrAlY alloys having excellent characteristics 1 and 2 above. Specifically, as the Ni-based MCrAlY alloy, for example, Co: 10 to 40 wt%, Cr: 10 to 40
Alloy having a composition of wt%, Al: 5 to 20 wt%, Y: 0.1 to 3 wt%, Ni: balance, or A
1: 5 to 30% by weight, Y: 0.1 to 5.0% by weight, N
An alloy having a composition of i: balance is included. Also, C
As the o-based MCrAlY alloy, for example, Cr: 10-
40% by weight, Al: 5 to 20% by weight, Y: 0.1 to 3% by weight, Co: alloy having the composition of the balance, or A
1: 5 to 30% by weight, Y: 0.1 to 5.0% by weight, C
Examples include alloys having a composition of o: balance.

【0014】結合層の厚さは50μm以上、300μm
以下であることが望ましい。結合層の厚さが小さすぎる
と基材と耐熱被覆層との間に発生する熱応力の緩和効果
の低下、及び結合力の低下が生じ、厚すぎると結合層と
しての性能は向上しない。
The thickness of the bonding layer is 50 μm or more and 300 μm
The following is desirable. If the thickness of the binding layer is too small, the effect of relaxing the thermal stress generated between the base material and the heat resistant coating layer will be reduced, and the binding force will be reduced, and if it is too thick, the performance as a binding layer will not be improved.

【0015】また、本願発明に係る耐熱被覆層は、
(a)基材金属表面に結合層を介して設けられた部分安
定化酸化ジルコニウムを主体とする層(以下、「A層」
とする。)、(b)前記部分安定化酸化ジルコニウムを
主体とする層の表面に設けられた酸化アルミニウムを主
体とする層(以下、「B層」とする。)とからなる。
The heat resistant coating layer according to the present invention is
(A) A layer mainly composed of partially stabilized zirconium oxide provided on the surface of the base metal via a bonding layer (hereinafter, referred to as “A layer”).
And ) And (b) a layer containing aluminum oxide as a main component (hereinafter referred to as “B layer”) provided on the surface of the layer containing mainly partially stabilized zirconium oxide.

【0016】前記A層は酸化イットリウムで安定化され
た部分安定化酸化ジルコニウム(ZrO2 ・Y23
を主体とする。この部分安定化酸化ジルコニウムは、Y
23 の固溶量4重量%〜20重量%であることが好ま
しい。この範囲であると安定化の効果が強く、水蒸気腐
食量が少なくなる。さらにY23 は6重量%〜12重
量%の範囲で固溶していることが望ましい。さらに部分
安定化酸化ジルコニウムはMgO,CaO,CeO2
Yb23 、Sc23 、In23 、Nd23 の群
から選ばれる少なくとも一種の化合物が固溶したもので
あると、機械的強度が向上し好ましい。上記固溶化合物
は、0.05重量%以上5.0重量%以下の固溶量であ
ることがであることが好ましい。
The layer A is a partially stabilized zirconium oxide (ZrO 2 .Y 2 O 3 ) stabilized with yttrium oxide.
Mainly. This partially stabilized zirconium oxide is
The solid solution amount of 2 O 3 is preferably 4% by weight to 20% by weight. Within this range, the stabilizing effect is strong and the amount of steam corrosion is small. Further, it is desirable that Y 2 O 3 be solid-solved in the range of 6% by weight to 12% by weight. Further, the partially stabilized zirconium oxide is MgO, CaO, CeO 2 ,
It is preferable that at least one compound selected from the group of Yb 2 O 3 , Sc 2 O 3 , In 2 O 3 and Nd 2 O 3 is solid-solved, because the mechanical strength is improved. It is preferable that the solid solution compound has a solid solution amount of 0.05% by weight or more and 5.0% by weight or less.

【0017】本願発明においては、A層の厚さは100
μm以上、500μm以下であることが好ましい。10
0μm未満ではしや熱効果が低下して高温耐久性が低下
する。500μmを越えると被覆層の接着強度が低下
し、剥離しやすくなる。
In the present invention, the thickness of layer A is 100.
It is preferably at least μm and at most 500 μm. 10
If it is less than 0 μm, the heat effect is lowered and the high temperature durability is lowered. When it exceeds 500 μm, the adhesive strength of the coating layer is lowered, and peeling easily occurs.

【0018】また、B層は、酸化アルミニウム(Al2
3 )を主体とする。B層の厚さは50μm以上、30
0μm以下であることが好ましい。50μm未満である
としゃ熱効果、耐高温エロージョン特性、水蒸気腐食防
止効果が低下する傾向にあり、300μmを越えると被
覆層の接着強度が低下し剥離しやすくなる傾向がある。
The B layer is made of aluminum oxide (Al 2
Mainly O 3 ). The thickness of layer B is 50 μm or more, 30
It is preferably 0 μm or less. If it is less than 50 μm, the heat-shielding effect, high temperature erosion resistance and steam corrosion prevention effect tend to be reduced, and if it exceeds 300 μm, the adhesive strength of the coating layer tends to be low and peeling tends to occur easily.

【0019】また、上記A層とB層の境界部でA層から
B層に向かって、部分安定化酸化ジルコニウム量に対し
酸化アルミニウムの含有量を少しずつ多くした傾斜組成
としても良い。それによりA層とB層の接着強度を向上
させ耐熱衝撃性を向上させることができる。A層とB層
の境界部が部分安定化酸化ジルコニウムと酸化アルミニ
ウムの組成を傾斜させる場合、A層の厚さは100μm
以上500μm以下、B層の厚さは50μm以上300
μm以下、境界部の厚さは50μm以上、200μm以
下であることが望ましい。境界部の厚さが厚すぎると耐
熱被覆層全体の厚さが大きくなり剥離が生じやすくな
る、また薄すぎると接着強度向上の効果が薄くなる。
A graded composition may be used in which the content of aluminum oxide is gradually increased from the amount of partially stabilized zirconium oxide from the layer A to the layer B at the boundary between the layers A and B. Thereby, the adhesive strength between the A layer and the B layer can be improved and the thermal shock resistance can be improved. When the boundary between the A layer and the B layer has a graded composition of partially stabilized zirconium oxide and aluminum oxide, the thickness of the A layer is 100 μm.
Or more and 500 μm or less, and the thickness of the B layer is 50 μm or more and 300
It is desirable that the thickness is less than or equal to μm, and the thickness of the boundary portion is greater than or equal to 50 μm and less than or equal to 200 μm. If the thickness of the boundary portion is too thick, the thickness of the entire heat resistant coating layer becomes large and peeling easily occurs, while if it is too thin, the effect of improving the adhesive strength becomes weak.

【0020】本願発明の耐熱部材は、所望の形状の基材
金属表面に結合層、A層、B層を順次、溶射法、CVD
法、PVD法などの手段で形成することにより得る事が
できる。溶射法を適用する場合、結合層の形成前に基材
金属表面にAl23 粒子などを用いてサンドブラスト
処理を施すと、基材金属表面が粗面化し被覆層の形成に
適した状態となるため好ましい。
In the heat resistant member of the present invention, the bonding layer, the A layer, and the B layer are sequentially formed on the surface of the base metal having a desired shape by the thermal spraying method and the CVD method.
It can be obtained by forming by a method such as a PVD method or a PVD method. In the case of applying the thermal spraying method, if the base metal surface is subjected to sandblasting using Al 2 O 3 particles or the like before forming the bonding layer, the base metal surface becomes rough and a state suitable for forming the coating layer is obtained. Therefore, it is preferable.

【0021】結合層の形成は、特にプラズマ溶射法で行
うと、被覆層が緻密化し、耐高温エロージョン特性が向
上し、また形成速度が速いため好ましい。また、最終的
に得られた耐熱部材の被覆層の最外表面をレーザで最溶
融凝固すると、被覆層表面が緻密化及び平滑化し、さら
に耐水蒸気腐食性、耐高温エロージョン特性を向上させ
ることができる。
The formation of the bonding layer is particularly preferably carried out by the plasma spraying method, because the coating layer is densified, the high temperature erosion resistance is improved, and the forming speed is high. Further, when the outermost surface of the coating layer of the finally obtained heat-resistant member is remelted and solidified by laser, the coating layer surface is densified and smoothed, and further steam corrosion resistance and high temperature erosion resistance can be improved. it can.

【0022】[0022]

【作用】本願発明においては、金属基材表面に結合層を
介して設けられた耐熱被覆層が(a)基材金属表面に結
合層を介して設けられた部分安定化酸化ジルコニウムを
主体とする層(A層)と、(b)前記部分安定化酸化ジ
ルコニウムを主体とする層の表面に設けられた酸化アル
ミニウムを主体とする層(B層)を有する。それにより
部材の高温耐久性を優れたものとすることができる。
In the present invention, the heat resistant coating layer provided on the surface of the metal base material via the bonding layer is mainly composed of (a) partially stabilized zirconium oxide provided on the metal surface of the base material via the bonding layer. A layer (A layer); and (b) a layer mainly containing aluminum oxide (B layer) provided on the surface of the layer mainly containing partially stabilized zirconium oxide. Thereby, the high temperature durability of the member can be made excellent.

【0023】すなわち上記A層の表面に熱放射率、熱反
射率の高い酸化アルミニウム(Al23 )を主体とす
る層を設けることにより、耐熱被覆層のしゃ熱特性が向
上させることができる。また、酸化アルミニウム(Al
23 )を主体とする層は耐高温エロージョン特性や耐
水蒸気腐食特性が良好であり、最外表面層として酸化ア
ルミニウム(Al23 )を適用することにより、耐熱
部材の耐高温エロージョン特性や耐水蒸気腐食特性を向
上させることができる。また、本願発明に係る結合層及
び耐熱被覆層を構成する材料の熱膨張係数についてみる
と結合層−A層−B層の順で順次に熱膨張係数が低なっ
ているため、高温条件下にあっても被覆層を構成する材
料の熱膨脹差に起因する被覆層の剥離が生じ難くなる。
That is, by providing a layer mainly containing aluminum oxide (Al 2 O 3 ) having a high thermal emissivity and a high thermal reflectance on the surface of the A layer, the heat-shielding property of the heat resistant coating layer can be improved. . In addition, aluminum oxide (Al
The layer mainly composed of 2 O 3 ) has good high temperature erosion resistance and steam corrosion resistance, and by applying aluminum oxide (Al 2 O 3 ) as the outermost surface layer, the high temperature erosion resistance of the heat resistant member can be improved. And the steam corrosion resistance can be improved. Further, regarding the coefficient of thermal expansion of the material forming the bonding layer and the heat-resistant coating layer according to the present invention, the coefficient of thermal expansion gradually decreases in the order of bonding layer-A layer-B layer. Even if there is, peeling of the coating layer due to the difference in thermal expansion of the material forming the coating layer is less likely to occur.

【0024】[0024]

【実施例】【Example】

(実施例1、比較例1、比較例2)図1は本実施例に係
る耐熱部材の断面斜視図である。図1において1は基材
である。基材1は、IN738LC(組成16Cr−
8.5Co−2.6W−1.7Mo−3.4Ti−1.
7Ta−残部Ni)からなるNi基合金製パイプであ
る。
(Example 1, Comparative Example 1, Comparative Example 2) FIG. 1 is a cross-sectional perspective view of a heat-resistant member according to this Example. In FIG. 1, 1 is a base material. The base material 1 is IN738LC (composition 16Cr-
8.5Co-2.6W-1.7Mo-3.4Ti-1.
It is a pipe made of Ni-based alloy composed of 7Ta-the balance Ni).

【0025】まず、Al23 粒子を用いて基材1の表
面にサンドブラスト処理を施し、粗面化した。次に基材
1の表面に結合層2をプラズマ溶射法により150μm
の厚さで形成した。結合層の組成はCo:24重量%、
Cr:16重量%、Al:12重量%、Y:0.5重量
%Ni:残部とした。
First, the surface of the substrate 1 was sandblasted using Al 2 O 3 particles to roughen it. Next, the bonding layer 2 was formed on the surface of the base material 1 by plasma spraying to a thickness of 150 μm.
Formed with a thickness of. The composition of the bonding layer is Co: 24% by weight,
Cr: 16% by weight, Al: 12% by weight, Y: 0.5% by weight, Ni: balance.

【0026】次に耐熱被覆層を形成した。まず、8重量
%Y23 、残部ZrO2 の組成を有する部分安定化酸
化ジルコニウム粉末を用い、結合層2表面にプラズマ溶
射法で250μmの厚さの部分安定化酸化ジルコニウム
層3を形成した。さらに酸化アルミニウム粉末を用い、
部分安定化酸化ジルコニウム層3上にプラズマ溶射法で
100μmの厚さの酸化アルミニウム層4を形成した。
Next, a heat resistant coating layer was formed. First, a partially stabilized zirconium oxide layer 3 having a thickness of 250 μm was formed on the surface of the bonding layer 2 by a plasma spraying method using a partially stabilized zirconium oxide powder having a composition of 8 wt% Y 2 O 3 and the balance ZrO 2 . . Furthermore, using aluminum oxide powder,
An aluminum oxide layer 4 having a thickness of 100 μm was formed on the partially stabilized zirconium oxide layer 3 by plasma spraying.

【0027】以上のような手順で図1に示す耐熱部材
(パイプ)を製造した。この様にして得られた耐熱部材
を用いてしゃ熱特性の測定試験を行った。試験は上記パ
イプ表面を1100℃に加熱し、パイプ内面に熱伝対を
設置し、パイプ内に毎分25リッターの空気を流して冷
却しながらパイプ内面の温度測定を行った。本実施例の
パイプの内面の温度は795℃であった。
The heat resistant member (pipe) shown in FIG. 1 was manufactured by the above procedure. Using the heat-resistant member thus obtained, a heat-shielding characteristic measurement test was conducted. In the test, the surface of the pipe was heated to 1100 ° C., a thermocouple was installed on the inner surface of the pipe, and the temperature of the inner surface of the pipe was measured while cooling the air by flowing 25 liters of air per minute into the pipe. The temperature of the inner surface of the pipe of this example was 795 ° C.

【0028】比較例1として、最外表面に酸化アルミニ
ウム層4を施していない点以外は実施例1と同様な耐熱
部材を作成した。本比較例の耐熱部材に対して実施例と
同様にしゃ熱特性を測定したところ、パイプ内面温度は
825℃であった。
As Comparative Example 1, a heat-resistant member similar to that of Example 1 was prepared except that the aluminum oxide layer 4 was not applied to the outermost surface. When the heat-shielding characteristics of the heat-resistant member of this comparative example were measured in the same manner as in the example, the pipe inner surface temperature was 825 ° C.

【0029】比較例2として、結合層2及び耐熱被覆層
を施さない実施例1として基材1として使用したNi基
合金製のパイプについて、実施例1と同様にしゃ熱特性
を測定したところ、パイプ内面温度は910℃であっ
た。
As Comparative Example 2, the heat-shielding property was measured in the same manner as in Example 1 with respect to the pipe made of the Ni-based alloy used as the substrate 1 in Example 1 in which the bonding layer 2 and the heat-resistant coating layer were not applied. The pipe inner surface temperature was 910 ° C.

【0030】以上の結果より本願発明に係る耐熱被覆を
施した耐熱部材はしゃ熱特性に優れていることが明らか
である。 (実施例2、比較例3)図2は本実施例に係る耐熱部材
の断面図である。図2において1は基材である。基材1
は、IN738LCからなる50mm×50mm×5m
m(厚さ)のNi基合金製部材である。
From the above results, it is clear that the heat-resistant member provided with the heat-resistant coating according to the present invention has excellent heat-shielding properties. (Example 2 and Comparative Example 3) FIG. 2 is a sectional view of a heat-resistant member according to this example. In FIG. 2, 1 is a base material. Substrate 1
Is 50mm x 50mm x 5m made of IN738LC
It is a member made of Ni-based alloy of m (thickness).

【0031】まず、Al23 粒子を用いて基材1の表
面にサンドブラスト処理を施し、粗面化した。次に基材
1の表面に結合層2をプラズマ溶射法により150μm
の厚さで形成した。結合層の組成はCo:24重量%、
Cr:16重量%、Al:12重量%、Y:0.5重量
%、Ni:残部とした。
First, the surface of the substrate 1 was sandblasted using Al 2 O 3 particles to roughen it. Next, the bonding layer 2 was formed on the surface of the base material 1 by plasma spraying to a thickness of 150 μm.
Formed with a thickness of. The composition of the bonding layer is Co: 24% by weight,
Cr: 16% by weight, Al: 12% by weight, Y: 0.5% by weight, Ni: balance.

【0032】次に耐熱被覆層を形成した。まず、8重量
%Y23 、残部ZrO2 の組成を有する部分安定化酸
化ジルコニウム粉末を用い、結合層2表面にプラズマ溶
射法で250μmの厚さの部分安定化酸化ジルコニウム
層3を形成した。さらに酸化アルミニウム粉末を用い、
部分安定化酸化ジルコニウム層3上にプラズマ溶射法で
150μmの厚さの酸化アルミニウム層4を形成した。
Next, a heat resistant coating layer was formed. First, a partially stabilized zirconium oxide layer 3 having a thickness of 250 μm was formed on the surface of the bonding layer 2 by a plasma spraying method using a partially stabilized zirconium oxide powder having a composition of 8 wt% Y 2 O 3 and the balance ZrO 2 . . Furthermore, using aluminum oxide powder,
An aluminum oxide layer 4 having a thickness of 150 μm was formed on the partially stabilized zirconium oxide layer 3 by plasma spraying.

【0033】以上のような手順で図2に示す耐熱部材を
製造した。得られた耐熱部材を用いて高温エロージョン
試験を行った。試験は耐熱部材を900℃に加熱して、
耐熱被覆層に直径約10μmのAl23 粒子を圧力4
気圧、流速10m/sの条件で1時間衝突させた結果、
部材の減少量は2mg/cm2 であった。
The heat resistant member shown in FIG. 2 was manufactured by the above procedure. A high temperature erosion test was performed using the obtained heat resistant member. The test heats the heat resistant member to 900 ° C,
Al 2 O 3 particles having a diameter of about 10 μm were applied to the heat-resistant coating layer at a pressure of 4
As a result of collision for 1 hour under the condition of atmospheric pressure and flow velocity of 10 m / s,
The reduction amount of the member was 2 mg / cm 2 .

【0034】また、本実施例の耐熱部材を用いて水蒸気
腐食試験を行った。試験はオートクレーブ試験機を用
い、耐熱部材を試験機に設置した後、200℃、15気
圧の水蒸気に部材を暴露させた。この試験片の耐熱被覆
層の表面、及び断面を顕微鏡で観察した結果、水蒸気腐
食は観察されなかった。
A steam corrosion test was conducted using the heat-resistant member of this example. For the test, an autoclave tester was used, and after the heat resistant member was installed in the tester, the member was exposed to water vapor at 200 ° C. and 15 atm. As a result of observing the surface and the cross section of the heat resistant coating layer of this test piece with a microscope, steam corrosion was not observed.

【0035】比較例3として、最外表面に酸化アルミニ
ウム層4を施していない点以外は実施例2と同様な耐熱
部材を作成した。本比較例の耐熱部材に対して実施例と
同様に高温エロージョン試験を行ったところ、部材の減
少量は3.2mg/cm2 であった。
As Comparative Example 3, a heat-resistant member similar to that of Example 2 was prepared except that the aluminum oxide layer 4 was not applied to the outermost surface. When the high temperature erosion test was performed on the heat resistant member of this comparative example in the same manner as in the example, the reduction amount of the member was 3.2 mg / cm 2 .

【0036】また、比較例3の耐熱部材を用いて水蒸気
腐食試験を行った。試験はオートクレーブ試験機を用
い、耐熱部材を試験機に設置した後、200℃、15気
圧の水蒸気に部材を暴露させた。この試験片の耐熱被覆
層の表面、及び断面を顕微鏡で観察した結果、水蒸気腐
食によりクラックが多数発生した組織であった。
A steam corrosion test was conducted using the heat resistant member of Comparative Example 3. For the test, an autoclave tester was used, and after the heat resistant member was installed in the tester, the member was exposed to water vapor at 200 ° C. and 15 atm. As a result of observing the surface and cross section of the heat-resistant coating layer of this test piece with a microscope, it was a structure in which many cracks were generated due to steam corrosion.

【0037】以上の結果より本発明に係る耐熱被覆を施
した耐熱部材は耐エロージョン特性、耐水蒸気腐食特性
に優れていることが明らかである。 (実施例3)実施例2で使用した基材と同じ基材を用意
した。次に基材の表面に結合層をプラズマ溶射法により
150μmの厚さで形成した。結合層の組成はCo:2
4重量%、Cr:16重量%、Al:12重量%、Y:
0.5重量%、Ni:残部とした。次に耐熱被覆層を形
成した。まず、8重量%Y23 、残部ZrO2 の組成
を有する部分安定化酸化ジルコニウム粉末を用い、結合
層表面にプラズマ溶射法で200μmの厚さの部分安定
化酸化ジルコニウム層を形成した。次に溶射用粉末とし
て酸化アルミニウム粉末を用いプラズマ溶射法にて、部
分安定化酸化ジルコニウム層表面に酸化アルミニウム層
を形成したが、その際溶射用粉末の組成を調節しながら
溶射を行い、部分安定化ジルコニウム層と酸化アルミニ
ウム層の境界部に於いては、部分安定化ジルコニウム層
から酸化アルミニウム層に向かって部分安定化ジルコニ
ウム量に対して酸化アルミニウムの含有量を徐々に増や
した傾斜組成の層を約100μm形成した。最外表面の
酸化アルミニウムのみの溶射層は100μmの厚さとし
た。
From the above results, it is clear that the heat resistant member provided with the heat resistant coating according to the present invention is excellent in erosion resistance and steam corrosion resistance. (Example 3) The same substrate as that used in Example 2 was prepared. Next, a bonding layer having a thickness of 150 μm was formed on the surface of the base material by the plasma spraying method. The composition of the bonding layer is Co: 2
4% by weight, Cr: 16% by weight, Al: 12% by weight, Y:
0.5% by weight, Ni: balance. Next, a heat resistant coating layer was formed. First, a partially stabilized zirconium oxide powder having a composition of 8 wt% Y 2 O 3 and the balance ZrO 2 was used to form a partially stabilized zirconium oxide layer having a thickness of 200 μm on the surface of the bonding layer by plasma spraying. Next, an aluminum oxide layer was formed on the surface of the partially stabilized zirconium oxide layer by a plasma spraying method using aluminum oxide powder as the thermal spraying powder. At that time, thermal spraying was performed while adjusting the composition of the thermal spraying powder to partially stabilize the powder. At the boundary between the zirconium oxide layer and the aluminum oxide layer, a layer having a graded composition in which the aluminum oxide content is gradually increased from the partially stabilized zirconium layer toward the aluminum oxide layer is provided. About 100 μm was formed. The thickness of the sprayed layer of aluminum oxide alone on the outermost surface was 100 μm.

【0038】以上のような手順で図2に示す耐熱部材を
製造した。得られた耐熱部材を用いて熱衝撃試験を行っ
た。熱衝撃試験は耐熱部材を1100℃に30分保持−
室温に30分保持−の繰り返しを行い耐熱被覆層の剥離
までの回数を測定した。実施例3の耐熱部材は3000
回繰り返しを行っても剥離を起こさなかった。
The heat resistant member shown in FIG. 2 was manufactured by the above procedure. A thermal shock test was performed using the obtained heat resistant member. In the thermal shock test, the heat resistant member was kept at 1100 ° C for 30 minutes.
Retaining for 30 minutes at room temperature was repeated and the number of times until peeling of the heat resistant coating layer was measured. The heat-resistant member of Example 3 is 3000
Peeling did not occur even after repeated times.

【0039】一方実施例2の耐熱部材に対しても同様に
熱衝撃試験を行ったところ2650回で剥離が認められ
た。従って、部分安定化酸化ジルコニウム層と酸化アル
ミニウム層の境界部に傾斜組成の層を備えることにより
熱衝撃性が向上することがわかる。
On the other hand, when the heat-resistant member of Example 2 was similarly subjected to the thermal shock test, peeling was recognized after 2650 times. Therefore, it is understood that the thermal shock resistance is improved by providing the layer having the gradient composition at the boundary between the partially stabilized zirconium oxide layer and the aluminum oxide layer.

【0040】[0040]

【発明の効果】以上述べた如く本発明の耐熱部材は、高
温条件下においてもしゃ熱効果に優れ、耐水蒸気腐食
性、および耐高温エロージョン特性にも優れた耐熱被覆
層を有する高温耐久性に優れているという顕著な効果を
有している。
INDUSTRIAL APPLICABILITY As described above, the heat-resistant member of the present invention has excellent heat-shielding effect even under high-temperature conditions, excellent steam corrosion resistance, and excellent high-temperature durability with a heat-resistant coating layer having excellent high-temperature erosion resistance. Has a remarkable effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1に係る耐熱部材の断面斜視図FIG. 1 is a sectional perspective view of a heat-resistant member according to a first embodiment.

【図2】 実施例2に係る耐熱部材の断面図FIG. 2 is a cross-sectional view of a heat resistant member according to a second embodiment.

【符号の説明】[Explanation of symbols]

1…基材 2…結合層 3…部分安定化酸化ジルコニウム層 4…酸化アルミニウム層 DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... Bonding layer 3 ... Partially stabilized zirconium oxide layer 4 ... Aluminum oxide layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】金属基材と、前記基材金属表面に結合層を
介して設けられた耐熱被覆層を有する耐熱部材であっ
て、前記耐熱被覆層は、金属基材表面に結合層を介して
設けられた部分安定化酸化ジルコニウムを主体とする層
と、部分安定化酸化ジルコニウムを主体とする層の表面
に設けられた酸化アルミニウムを主体とする層を備えた
ことを特徴とする耐熱部材。
1. A heat resistant member comprising a metal base material and a heat resistant coating layer provided on the surface of the base metal via a bonding layer, wherein the heat resistant coating layer is bonded to the surface of the metal base material via the bonding layer. A heat-resistant member, comprising: a layer mainly composed of partially stabilized zirconium oxide and a layer mainly composed of aluminum oxide provided on the surface of the layer mainly composed of partially stabilized zirconium oxide.
【請求項2】耐熱被覆層の部分安定化ジルコニウム層と
酸化アルミニウム層との境界部を部分安定化酸化ジルコ
ニウムと酸化アルミニウムの傾斜組成にしたことを特徴
とする請求項1記載の耐熱部材。
2. The heat resistant member according to claim 1, wherein a boundary portion between the partially stabilized zirconium layer and the aluminum oxide layer of the heat resistant coating layer has a gradient composition of partially stabilized zirconium oxide and aluminum oxide.
JP6054296A 1994-03-25 1994-03-25 Heat resistant member Pending JPH07258817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6054296A JPH07258817A (en) 1994-03-25 1994-03-25 Heat resistant member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6054296A JPH07258817A (en) 1994-03-25 1994-03-25 Heat resistant member

Publications (1)

Publication Number Publication Date
JPH07258817A true JPH07258817A (en) 1995-10-09

Family

ID=12966613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6054296A Pending JPH07258817A (en) 1994-03-25 1994-03-25 Heat resistant member

Country Status (1)

Country Link
JP (1) JPH07258817A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009538399A (en) * 2006-05-26 2009-11-05 プラクスエア・テクノロジー・インコーポレイテッド Blade tip coating using high-purity powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009538399A (en) * 2006-05-26 2009-11-05 プラクスエア・テクノロジー・インコーポレイテッド Blade tip coating using high-purity powder

Similar Documents

Publication Publication Date Title
EP1640477B2 (en) High temperature component with thermal barrier coating and gas turbine using the same
RU2147624C1 (en) Protective layer for protecting part against corrosion, oxidation, and thermal overloading, and method of preparation thereof
JP4072213B2 (en) A method for producing a product suitable for use in a gas turbine engine, which increases the adhesion between a thermal barrier coating and a bond coat by generating an α-Al 2 O 3 scale
JP3302589B2 (en) Ceramic coated gas turbine blade
CN101198713B (en) Layer system for a component comprising a thermally insulating layer and a metallic anti-erosion layer, method for the production and method for the operation of a steam turbine
JP3464003B2 (en) Erosion and corrosion protection coatings for hot components
KR101519131B1 (en) Metal alloy compositions and articles comprising the same
JP3434504B2 (en) Insulation method for metal substrate
US5413871A (en) Thermal barrier coating system for titanium aluminides
EP1995350A1 (en) High temperature component with thermal barrier coating
JP2000119868A (en) Heat insulating coating system and its production
JP2009515048A (en) Thermal barrier layer for components in the hot gas section of a gas turbine
JPH11124691A (en) Gradient bonding coat for thermal barrier coating
JP7232295B2 (en) Adhesion-promoting layer for bonding high-temperature protective layer onto substrate, and method for producing same
JP3530768B2 (en) Forming method of heat shielding film
JPH0715141B2 (en) Heat resistant parts
JPH0251978B2 (en)
EP0992614B1 (en) Coatings for turbine components
JP4226669B2 (en) Heat resistant material
US6521053B1 (en) In-situ formation of a protective coating on a substrate
GB2159838A (en) Surface strengthening of overlay coatings
JPH09316622A (en) Gas turbine member and its thermal insulation coating method
US6964818B1 (en) Thermal protection of an article by a protective coating having a mixture of quasicrystalline and non-quasicrystalline phases
JPS62210329A (en) Ceramic coated heat-resistant material and manufacture thereof
JPH07258817A (en) Heat resistant member