JPH07257993A - Method for growing bulky single crystal - Google Patents

Method for growing bulky single crystal

Info

Publication number
JPH07257993A
JPH07257993A JP5052194A JP5052194A JPH07257993A JP H07257993 A JPH07257993 A JP H07257993A JP 5052194 A JP5052194 A JP 5052194A JP 5052194 A JP5052194 A JP 5052194A JP H07257993 A JPH07257993 A JP H07257993A
Authority
JP
Japan
Prior art keywords
crystal
single crystal
growing
seed crystal
cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5052194A
Other languages
Japanese (ja)
Inventor
Hideyuki Doi
秀之 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP5052194A priority Critical patent/JPH07257993A/en
Publication of JPH07257993A publication Critical patent/JPH07257993A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To provide a method for growing a bulky single crystal by which a bulky single crystal with good shape can be formed on a seed crystal in a vapor phase by a chemical transport method with a vertical growth device by covering the peripheral part of the surface of the seed crystal with a cover. CONSTITUTION:When starting material for a crystal is disposed in the upper high-temp. region of a vertical growth vessel and it is sublimed to grow a single crystal on a seed crystal disposed in the lower low-temp. region, the peripheral part of the surface of the seed crystal is covered with a cover preferably coated with a film having properties of subliming crystal nuclei and inhibiting crystal growth. Carbon or SiC is suitable for the coating material. Quartz, carbon, pBN or Al2O3 may be used for the material of the cover but the quartz is especially suitable. The starting material is disposed in the high- temp. region in cobmination with halogen if necessary. This method is fit to obtain a bulky single crystal of a II-VI compd. semiconductor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、昇華法、ハロゲン輸送
法等の化学輸送法(Chemical Vapor Transport法)で種
結晶上にバルク単結晶を気相成長する方法に関し、特
に、ZnSe,ZnS,ZnSSe,CdTe等のII-V
I 族化合物半導体のバルク単結晶の成長に適した方法で
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for vapor phase growing a bulk single crystal on a seed crystal by a chemical transport method such as a sublimation method or a halogen transport method, and more particularly to ZnSe, ZnS, II-V such as ZnSSe and CdTe
This method is suitable for growing bulk single crystals of Group I compound semiconductors.

【0002】[0002]

【従来の技術】図4は、昇華法、ハロゲン輸送法等の化
学輸送法で種結晶上にバルク結晶を気相成長する装置の
概念図である。縦型の石英製の成長容器1には、上方に
原料容器2を設け、その中に原料3である結晶粉末を投
入し、成長容器1の底部に種結晶6を設置する。成長容
器1を密封した後、原料3を温度T1 に加熱し、種結晶
6を温度T2 に加熱し、原料3と種結晶6の間に温度差
ΔT(=T1 −T2 )を設け、図5のような温度勾配を
設けることにより、昇華した原料ガスを種結晶上に輸送
して結晶成長させるものである。なお、上記の温度差△
Tは10℃以内に設定するのが普通である。
2. Description of the Related Art FIG. 4 is a conceptual diagram of an apparatus for vapor phase growing a bulk crystal on a seed crystal by a chemical transportation method such as a sublimation method or a halogen transportation method. A raw material container 2 is provided above a vertical growth container 1 made of quartz, crystal powder as a raw material 3 is charged therein, and a seed crystal 6 is installed at the bottom of the growth container 1. After sealing the growth container 1, the raw material 3 is heated to a temperature T 1 , the seed crystal 6 is heated to a temperature T 2 , and a temperature difference ΔT (= T 1 −T 2 ) is generated between the raw material 3 and the seed crystal 6. By providing the temperature gradient as shown in FIG. 5, the sublimated raw material gas is transported onto the seed crystal for crystal growth. Note that the above temperature difference Δ
T is usually set within 10 ° C.

【0003】[0003]

【発明が解決しようとする課題】本発明者等が、図4の
縦型成長装置を用いて昇華法でZnSeの結晶成長を試
みたが、バルク単結晶を得ることができなかった。高温
領域と低温領域の温度差ΔTを10℃より高く設定する
と、種結晶表面だけでなく、その周辺の成長容器の内壁
面にも、図4のように多結晶が成長し、単結晶を得るこ
とができなかった。また、温度差△Tを、0<△T≦1
0℃の範囲に設定してZnSeの結晶成長を試みたとこ
ろ、成長容器の内壁面には結晶成長が認められなかった
が、種結晶上の結晶は依然として多結晶であった。
The present inventors tried crystal growth of ZnSe by the sublimation method using the vertical growth apparatus of FIG. 4, but could not obtain a bulk single crystal. When the temperature difference ΔT between the high temperature region and the low temperature region is set higher than 10 ° C., a polycrystal grows not only on the seed crystal surface but also on the inner wall surface of the growth container around it as shown in FIG. 4 to obtain a single crystal. I couldn't. In addition, the temperature difference ΔT is 0 <ΔT ≦ 1
When the crystal growth of ZnSe was tried in the range of 0 ° C., no crystal growth was observed on the inner wall surface of the growth container, but the crystals on the seed crystal were still polycrystalline.

【0004】そこで、本発明は、上記の欠点を解消し、
縦型成長装置を用い、昇華法、ハロゲン輸送法等の化学
輸送法で種結晶上に、形状の整ったバルク単結晶を気相
成長する方法を提供しようとするものである。
Therefore, the present invention solves the above-mentioned drawbacks,
An object of the present invention is to provide a method for vapor-depositing a bulk single crystal having a regular shape on a seed crystal by a chemical transport method such as a sublimation method or a halogen transport method using a vertical growth apparatus.

【0005】[0005]

【課題を解決するための手段】本発明は、(1) 結晶原料
を縦型成長容器の上方の高温領域に配置して昇華させ、
下方の低温領域に配置した種結晶上に単結晶を成長させ
る方法において、種結晶表面の周辺部をカバーで被覆し
て成長することを特徴とするバルク単結晶の成長方法、
又は、(2) I,Cl,Br等のハロゲンを結晶原料とと
もに高温領域に配置したことを特徴とする上記(1) 記載
のバルク単結晶の成長方法である。なお、ハロゲンの添
加は、元素の状態で添加するか、結晶を構成する元素の
ハロゲン化物として添加することができる。
According to the present invention, (1) a crystal raw material is placed in a high temperature region above a vertical growth vessel for sublimation,
In a method for growing a single crystal on a seed crystal arranged in a lower temperature region, a method for growing a bulk single crystal, which comprises growing a peripheral portion of a seed crystal surface with a cover,
Alternatively, (2) the method for growing a bulk single crystal according to the above (1), characterized in that halogen such as I, Cl and Br is arranged in a high temperature region together with the crystal raw material. The halogen can be added in the elemental state or as a halide of the element constituting the crystal.

【0006】本発明で使用する種結晶の周辺部被覆用カ
バーは、結晶核を昇華させ、結晶成長を抑制する特性を
有する膜でコーティングされていることが好ましい。コ
ーティング材料としては、カーボン、SiCなどが適し
ている。また、カバー材料は、石英、カーボン、pB
N、Al2 3 等を使用することができる。
It is preferable that the cover for covering the peripheral portion of the seed crystal used in the present invention is coated with a film having a property of sublimating crystal nuclei and suppressing crystal growth. Carbon and SiC are suitable as the coating material. The cover material is quartz, carbon, pB.
N, Al 2 O 3 or the like can be used.

【0007】本発明の成長方法は、II-VI 族化合物半導
体のバルク単結晶を成長するのに適している。これらの
成長においては、高温領域と低温領域の温度差△Tは、
大きい方が原料ガスの輸送速度が速く、単結晶の生産性
は高いが、多結晶化し易いので、30℃以下に保持する
ことが好ましい。上記の膜でコーティングされたカバー
を用いるときには、10〜30℃、特に10〜20℃の
範囲で成長するのがより好ましいが、コーティングされ
ていないカバーを使用するときには、0〜10℃、特に
3〜7℃の範囲で成長するのがより好ましい。
The growth method of the present invention is suitable for growing a bulk single crystal of a II-VI group compound semiconductor. In these growths, the temperature difference ΔT between the high temperature region and the low temperature region is
The larger the rate, the higher the feed rate of the raw material gas and the higher the productivity of the single crystal, but the more likely it is to be polycrystallized. It is more preferred to grow in the range of 10 to 30 ° C, especially 10 to 20 ° C when using the above film coated cover, but 0 to 10 ° C, especially 3 to 10 when using the uncoated cover. More preferably, it grows in the range of -7 ° C.

【0008】[0008]

【作用】本発明者等は、昇華法、ハロゲン輸送法等の化
学輸送法で種結晶上に成長した結晶を、いろいろの角度
から切断してその断面を観察したところ、多結晶の成長
は、種結晶の周辺部、特にエッジ部分から発生している
ことを見いだした。これは、成長初期の段階で種結晶の
エッジ部分で発生した多結晶が種結晶の中央部で成長し
た単結晶を巻き込み、最終的には全体が多結晶化したも
のである。エッジ部分における多結晶の発生は、詳細は
不明であるが、種結晶の準備段階か、成長容器に装着す
るときに生じた種結晶周辺部分の微細な欠けに起因する
ものと思われる。
The inventors of the present invention observed that a crystal grown on a seed crystal by a chemical transport method such as a sublimation method or a halogen transport method was cut from various angles and its cross section was observed. It was found that the seed crystal was generated from the peripheral part, especially the edge part. In this, the polycrystal generated at the edge part of the seed crystal in the initial stage of growth engulfs the single crystal grown in the central part of the seed crystal, and finally the whole is polycrystallized. Although the details of the generation of the polycrystal at the edge portion are not clear, it is considered that it is caused by a fine chipping of the peripheral portion of the seed crystal that occurs at the seed crystal preparation stage or when the seed crystal is mounted in the growth container.

【0009】そこで、本発明では、種結晶の周辺部分を
カバーで被覆して成長することにより、多結晶の発生を
防止することができ、形状の整ったバルク単結晶を得る
ことを可能にした。そして、上記カバーは、その表面を
種結晶表面より高い温度に保持することにより、結晶核
を一度発生しても直ちに昇華し、結晶核の成長を抑制す
ることができる。また、成長容器の径方向に温度勾配を
形成することにより、種結晶への原料ガスの輸送を助長
する特性を有することが好ましい。
Therefore, in the present invention, by covering the peripheral portion of the seed crystal with a cover and growing it, it is possible to prevent the generation of polycrystals, and it is possible to obtain a bulk single crystal having a regular shape. . Further, by keeping the surface of the cover at a temperature higher than that of the seed crystal surface, even if the crystal nuclei are once generated, they are immediately sublimated and the growth of the crystal nuclei can be suppressed. In addition, it is preferable to have a property of promoting transport of the source gas to the seed crystal by forming a temperature gradient in the radial direction of the growth container.

【0010】本発明では、上記特性を確保するために、
カーボン又はSiCでコーティングしたカバーを使用す
ることにより、種結晶表面よりカバー表面温度を高く保
持することができ、その結果、多結晶の発生を防止して
形状の整った単結晶の成長を可能にした。なお、カーボ
ンのコーティングはCVD法や蒸着法などによりカバー
の両面を被覆することができる。また、カバー材料は、
石英、カーボン、pBN、Al2 3 等を使用すること
ができるが、加工性に富み、比較的高純度で入手が容易
な石英が特に適している。
In the present invention, in order to secure the above characteristics,
By using a cover coated with carbon or SiC, the cover surface temperature can be kept higher than the seed crystal surface, and as a result, it is possible to prevent the generation of polycrystals and to grow a well-shaped single crystal. did. The carbon coating may cover both sides of the cover by a CVD method, a vapor deposition method, or the like. Also, the cover material is
Quartz, carbon, pBN, Al 2 O 3 and the like can be used, but quartz is particularly suitable because of its high workability, relatively high purity, and easy availability.

【0011】図1は本発明の方法を実施するための単結
晶成長装置の概念図であり、図2は図1で使用するカバ
ーの平面図である。図3は図1の変形であり、カーボン
膜を備えたカバーを用いた点で図1と相違する。縦型成
長容器1の上方には、原料3を収容する原料容器2が配
置されており、底部の凹部に種結晶6を収容した上に環
状のカバー5を載せ、図5のような温度勾配を保持する
ことにより、種結晶上にバルク単結晶4を形成する。図
3は、表面にカーボン膜がコーティングされた石英製カ
バーが使用されている。
FIG. 1 is a conceptual view of a single crystal growth apparatus for carrying out the method of the present invention, and FIG. 2 is a plan view of a cover used in FIG. FIG. 3 is a modification of FIG. 1, and differs from FIG. 1 in that a cover provided with a carbon film is used. A raw material container 2 for containing a raw material 3 is arranged above the vertical growth container 1, and a ring-shaped cover 5 is placed on the seed crystal 6 in the concave portion at the bottom, and a temperature gradient as shown in FIG. By holding, the bulk single crystal 4 is formed on the seed crystal. In FIG. 3, a quartz cover whose surface is coated with a carbon film is used.

【0012】[0012]

【実施例】【Example】

(実施例1)図1の成長装置を用いて昇華法でZnSe
バルク単結晶を成長させた。円筒形縦型成長容器は内径
30mm、高さ150mmの石英製の容器である。原料
としては、高純度のZnSe粉末50gを原料容器に充
填し、成長容器の底部には、(100)面のZnSe単
結晶(5×5mm)の種結晶を設置した。中央の穴の内
径が4.5mmで、厚さが1mmの環状カバーを種結晶
の上に載せて種結晶表面の周辺部分を被覆した。そし
て、原料を1065℃に、種結晶を1060℃に保持
し、△T=5℃の条件で10日間成長を行ったところ、
10×10×15mm3 の大きさで、形状が整ったZn
Seバルク単結晶を得ることができた。同様の実験を繰
り返したが、その再現性は極めて良好であった。また、
0〜10℃の範囲で△Tを選択して同様の実験を行った
が、この範囲では多結晶化することもなく、上記と同様
の単結晶を得ることができた。
(Example 1) ZnSe by sublimation method using the growth apparatus of FIG.
Bulk single crystals were grown. The cylindrical vertical growth vessel is a quartz vessel having an inner diameter of 30 mm and a height of 150 mm. As a raw material, 50 g of high-purity ZnSe powder was filled in a raw material container, and a (100) -faced ZnSe single crystal (5 × 5 mm) seed crystal was placed at the bottom of the growth container. An annular cover having an inner diameter of the central hole of 4.5 mm and a thickness of 1 mm was placed on the seed crystal to cover the peripheral portion of the seed crystal surface. Then, when the raw material was kept at 1065 ° C. and the seed crystal was kept at 1060 ° C., and growth was performed for 10 days under the condition of ΔT = 5 ° C.,
Zn with a size of 10 × 10 × 15 mm 3 and a regular shape
An Se bulk single crystal could be obtained. The same experiment was repeated, but the reproducibility was extremely good. Also,
A similar experiment was conducted by selecting ΔT in the range of 0 to 10 ° C. However, in this range, polycrystallization did not occur, and a single crystal similar to the above could be obtained.

【0013】(実施例2)実施例1において、カバー表
面に厚さ約10μmのカーボン膜をコーティングし、原
料を1075℃に、種結晶を1060℃に保持した以外
は実施例1と同様にZnSeバルク単結晶を成長させ
た。即ち、△T=15℃の条件で10日間成長を行った
ところ、15×15×20mm3 の大きさで、形状が整
ったZnSeバルク単結晶を得ることができた。同様の
実験を繰り返したが、その再現性は極めて良好であっ
た。また、10〜30℃の範囲で△Tを選択して同様の
実験を行ったが、この範囲では多結晶化することもな
く、上記と同様の単結晶を得ることができた。
(Example 2) In the same manner as in Example 1, except that the surface of the cover was coated with a carbon film having a thickness of about 10 μm, and the raw material was kept at 1075 ° C and the seed crystal was kept at 1060 ° C. Bulk single crystals were grown. That is, when the growth was performed for 10 days under the condition of ΔT = 15 ° C., a ZnSe bulk single crystal having a size of 15 × 15 × 20 mm 3 and a regular shape could be obtained. The same experiment was repeated, but the reproducibility was extremely good. Further, a similar experiment was conducted by selecting ΔT in the range of 10 to 30 ° C. However, in this range, polycrystallization did not occur, and a single crystal similar to the above could be obtained.

【0014】(実施例3)実施例1並びに実施例2で使
用したZnSe種結晶の面方位を(100)から(11
1)A並びに(111)Bに変更した以外は実施例1並
びに実施例2と同様にして結晶成長させたところ、実施
例1並びに実施例2と同様に形状の整ったZnSeバル
ク単結晶を成長させることができた。
(Example 3) The plane orientations of the ZnSe seed crystals used in Examples 1 and 2 were changed from (100) to (11).
1) Crystal growth was carried out in the same manner as in Example 1 and Example 2 except that it was changed to A and (111) B, and a ZnSe bulk single crystal having a regular shape was grown in the same manner as in Example 1 and Example 2. I was able to do it.

【0015】(実施例4)実施例1において、高純度の
ZnSe粉末とともに固体のヨウ素を原料容器に充填
し、原料を855℃に、種結晶を850℃に変更した以
外は実施例1と同様にしてZnSeバルク単結晶を成長
させたところ、実施例1と同様に形状が整ったZnSe
バルク単結晶を得ることができ、その再現性も極めて良
好であった。また、0〜10℃の範囲で△Tを選択して
同様の実験を行ったが、この範囲では多結晶化すること
もなく、上記と同様の単結晶を得ることができた。
(Example 4) Same as Example 1 except that high-purity ZnSe powder and solid iodine were filled in a raw material container and the raw material was changed to 855 ° C and the seed crystal was changed to 850 ° C. When a ZnSe bulk single crystal was grown as described above, the ZnSe having a regular shape as in Example 1 was formed.
A bulk single crystal could be obtained, and its reproducibility was extremely good. Further, a similar experiment was conducted by selecting ΔT in the range of 0 to 10 ° C. However, in this range, polycrystallization did not occur, and a single crystal similar to the above could be obtained.

【0016】(実施例5)実施例1において、高純度の
ZnSe粉末とともにヨウ素を原料容器に充填し、実施
例2で使用したカーボンコーティング石英製カバーを用
いた以外は、実施例1と同様にしてZnSeバルク単結
晶を成長させたところ、実施例1と同様に形状が整った
ZnSeバルク単結晶を得ることができ、その再現性も
極めて良好であった。また、10〜30℃の範囲で△T
を選択して同様の実験を行ったが、この範囲では多結晶
化することもなく、上記と同様の単結晶を得ることがで
きた。
(Example 5) In the same manner as in Example 1, except that the raw material container was filled with iodine together with high-purity ZnSe powder and the carbon-coated quartz cover used in Example 2 was used. When a ZnSe bulk single crystal was grown by using the same, it was possible to obtain a ZnSe bulk single crystal having a regular shape as in Example 1, and the reproducibility was extremely good. Also, within the range of 10 to 30 ° C, ΔT
Was selected and the same experiment was carried out, but within this range, a single crystal similar to the above could be obtained without polycrystallization.

【0017】[0017]

【発明の効果】本発明は、上記の構成を採用することに
より、縦型成長容器の底部に配置した種結晶の周辺部分
及び容器内壁からの多結晶の発生を防止して種結晶上に
高品質のバルク単結晶の成長を可能にした。
According to the present invention, by adopting the above-mentioned structure, it is possible to prevent the generation of polycrystals from the peripheral portion of the seed crystal arranged at the bottom of the vertical growth container and the inner wall of the container, and to prevent the generation of polycrystal on the seed crystal. Enabled the growth of bulk single crystals of quality.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を実施するためのバルク単結晶の
成長装置の概念図である。
FIG. 1 is a conceptual diagram of an apparatus for growing a bulk single crystal for carrying out the method of the present invention.

【図2】図1で使用するカバーの平面図である。FIG. 2 is a plan view of the cover used in FIG.

【図3】カーボン膜を有するカバーを用いた、図1の応
用例であるバルク単結晶の成長装置の概念図である。
FIG. 3 is a conceptual diagram of a bulk single crystal growth apparatus, which is an application example of FIG. 1, using a cover having a carbon film.

【図4】従来のバルク単結晶の成長装置の概念図であ
る。
FIG. 4 is a conceptual diagram of a conventional bulk single crystal growth apparatus.

【図5】図4の縦型成長容器の温度分布を示したグラフ
である。
5 is a graph showing a temperature distribution in the vertical growth container of FIG.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 結晶原料を縦型成長容器の上方の高温領
域に配置して昇華させ、下方の低温領域に配置した種結
晶上に単結晶を成長させる方法において、種結晶表面の
周辺部をカバーで被覆して成長させることを特徴とする
バルク単結晶の成長方法。
1. A method of growing a single crystal on a seed crystal arranged in a high temperature region above a vertical growth container and sublimating the raw material, and arranging a peripheral portion of a seed crystal surface in a peripheral region of the seed crystal surface. A method for growing a bulk single crystal, characterized by covering with a cover and growing.
【請求項2】 ハロゲンを結晶原料とともに高温領域に
配置したことを特徴とする請求項1記載のバルク単結晶
の成長方法。
2. The method for growing a bulk single crystal according to claim 1, wherein halogen is arranged in a high temperature region together with the crystal raw material.
【請求項3】 種結晶表面の周辺部を被覆するカバー
が、結晶核を昇華させ、結晶成長を抑制する機能を有す
る膜でコーティングされていることを特徴とする請求項
1又は2記載のバルク単結晶の成長方法。
3. The bulk according to claim 1, wherein the cover covering the peripheral portion of the seed crystal surface is coated with a film having a function of sublimating crystal nuclei and suppressing crystal growth. Single crystal growth method.
【請求項4】 カーボン膜又はSiC膜でコーティング
された石英、カーボン、pBN又はAl2 3 製のカバ
ーを使用することを特徴とする請求項3記載のバルク単
結晶の成長方法。
4. The method for growing a bulk single crystal according to claim 3 , wherein a cover made of quartz, carbon, pBN or Al 2 O 3 coated with a carbon film or a SiC film is used.
【請求項5】 請求項1〜4のいずれか1項に記載の方
法でII-VI 族化合物半導体のバルク単結晶を成長する方
法。
5. A method for growing a bulk single crystal of a II-VI group compound semiconductor by the method according to any one of claims 1 to 4.
【請求項6】 高温領域と低温領域の温度差を30℃以
下に保持することを特徴とする請求項5記載のバルク単
結晶の成長方法。
6. The method for growing a bulk single crystal according to claim 5, wherein the temperature difference between the high temperature region and the low temperature region is maintained at 30 ° C. or less.
JP5052194A 1994-03-22 1994-03-22 Method for growing bulky single crystal Pending JPH07257993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5052194A JPH07257993A (en) 1994-03-22 1994-03-22 Method for growing bulky single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5052194A JPH07257993A (en) 1994-03-22 1994-03-22 Method for growing bulky single crystal

Publications (1)

Publication Number Publication Date
JPH07257993A true JPH07257993A (en) 1995-10-09

Family

ID=12861291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5052194A Pending JPH07257993A (en) 1994-03-22 1994-03-22 Method for growing bulky single crystal

Country Status (1)

Country Link
JP (1) JPH07257993A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997007265A1 (en) * 1995-08-16 1997-02-27 Siemens Aktiengesellschaft SEED CRYSTAL FOR GROWING MONOCRYSTALS, USE OF THE SEED CRYSTAL AND PROCESS FOR PRODUCING SiC MONOCRYSTALS OR MONOCRYSTALLINE SiC LAYERS

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997007265A1 (en) * 1995-08-16 1997-02-27 Siemens Aktiengesellschaft SEED CRYSTAL FOR GROWING MONOCRYSTALS, USE OF THE SEED CRYSTAL AND PROCESS FOR PRODUCING SiC MONOCRYSTALS OR MONOCRYSTALLINE SiC LAYERS

Similar Documents

Publication Publication Date Title
EP1218572B1 (en) Method and apparatus for growing silicon carbide crystals
US5433167A (en) Method of producing silicon-carbide single crystals by sublimation recrystallization process using a seed crystal
JP2520060B2 (en) Boron Nitride Crucible and Method for Manufacturing the Same
EP0859879A1 (en) A method for epitaxially growing objects and a device for such a growth
US7371281B2 (en) Silicon carbide single crystal and method and apparatus for producing the same
JPH03295898A (en) Method and device for growing silicon carbide single crystal
EP0186213B1 (en) Method for synthesizing compound semiconductor polycrystals and apparatus therefor
JP3087065B1 (en) Method for growing liquid phase of single crystal SiC
JPH07257993A (en) Method for growing bulky single crystal
JPH09157092A (en) Production of silicon carbide single crystal
JPH06219898A (en) Production of n-type silicon carbide single crystal
JPH10167898A (en) Production of semi-insulative gaas single crystal
JPH06298600A (en) Method of growing sic single crystal
JPH10139589A (en) Production of single crystal
JPH06191998A (en) Method for growing silicon carbide single crystal and device for growing the same
JP3717562B2 (en) Single crystal manufacturing method
EP0853689A1 (en) A method for epitaxially growing objects and a device for such a growth
JP2589985B2 (en) Method for growing compound semiconductor crystal
JPH1179896A (en) Production of silicon carbide single crystal
JP2988434B2 (en) Method for growing II-IV compound semiconductor crystal
RU2324019C2 (en) Crucible for silicon carbide epitaxy
JPH01183499A (en) Production of high-purity znse single crystal and apparatus therefor
JPS58176194A (en) Vessel for growing single crystal
JPH09235187A (en) Growth of compound semiconductor single crystal
JPH0656596A (en) Production of silicon carbide single crystal