JPH07257988A - Method for growing ternary compound semiconductor crystal - Google Patents

Method for growing ternary compound semiconductor crystal

Info

Publication number
JPH07257988A
JPH07257988A JP4703494A JP4703494A JPH07257988A JP H07257988 A JPH07257988 A JP H07257988A JP 4703494 A JP4703494 A JP 4703494A JP 4703494 A JP4703494 A JP 4703494A JP H07257988 A JPH07257988 A JP H07257988A
Authority
JP
Japan
Prior art keywords
crystal
compound semiconductor
melt
ternary compound
binary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4703494A
Other languages
Japanese (ja)
Inventor
Takeshi Kato
岳 加藤
Toshihiro Kusuki
敏弘 楠木
Takashi Suzuki
貴志 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4703494A priority Critical patent/JPH07257988A/en
Publication of JPH07257988A publication Critical patent/JPH07257988A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To control effect due to lattice discrepancy of a seed crystal with a growing crystal and obtain a high-quality ternary compd. semiconductor crystal almost free from defects. CONSTITUTION:A binary seed crystal 4 consisting of elements A and B is brought into contact with a binary melt 3 consisting of the same elements A and B as the seed crystal 4 and then the seed crystal 4 is pulled up while feeding a binary compd. semiconductor CB consisting of elements B and C into the melt 3 to grow the objective ternary compd. semiconductor crystal 6 consisting of the elements A, B and C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,3元化合物半導体の結
晶成長方法,特にCZ( Czochralski;チョクラルスキ
ー)法を用いた3元化合物半導体の結晶成長方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crystal growth method for a ternary compound semiconductor, and more particularly to a crystal growth method for a ternary compound semiconductor using the CZ (Czochralski) method.

【0002】従来,化合物半導体装置の製造に際して
は,2元結晶を基板として使用し,その上に2元以上の
化合物半導体の結晶層(例えば3元化合物半導体結晶
層)を成長させたものが使用されていた。しかし,2元
基板と3元結晶との間の格子定数の差に起因する格子不
整合の問題があるため,両者の間に格子整合をはかるた
めの成長層を形成しなければならない。この成長層の形
成は,化合物半導体装置製造のコストアップ要因とな
る。
Conventionally, in manufacturing a compound semiconductor device, a binary crystal is used as a substrate on which a crystal layer of a compound semiconductor of two or more elements (for example, a ternary compound semiconductor crystal layer) is grown. It had been. However, since there is a problem of lattice mismatch due to the difference in lattice constant between the binary substrate and the ternary crystal, it is necessary to form a growth layer between the two to ensure lattice matching. The formation of this growth layer causes an increase in the cost of manufacturing the compound semiconductor device.

【0003】したがって,2元基板と3元結晶との間に
必要とされる成長層の形成を回避するために,3元化合
物半導体の基板が必要とされている。このために,CZ
( Czochralski )法を用いて3元化合物半導体の結晶成
長し,成長結晶から3元化合物半導体基板を作製する方
法が行われているが,結晶成長した3元化合物半導体中
に,2元種結晶との格子不整合に起因する欠陥が発生し
ていた。したがって,良質の3元化合物半導体基板を作
製するためには,格子不整合の影響を抑えることが必要
である。
Therefore, a ternary compound semiconductor substrate is needed to avoid the formation of a growth layer required between the binary substrate and the ternary crystal. Because of this, CZ
A method of growing a ternary compound semiconductor crystal by using the (Czochralski) method and producing a ternary compound semiconductor substrate from the grown crystal has been performed. There was a defect due to the lattice mismatch of the. Therefore, in order to manufacture a high quality ternary compound semiconductor substrate, it is necessary to suppress the influence of lattice mismatch.

【0004】[0004]

【従来の技術】図4は,従来例を示す図であり,従来用
いられていた3元化合物半導体の結晶引き上げ成長装置
の構成を示す図である。
2. Description of the Related Art FIG. 4 is a diagram showing a conventional example, and is a diagram showing a configuration of a crystal pulling growth apparatus for a ternary compound semiconductor which has been used conventionally.

【0005】図中,11は坩堝,12は坩堝11を回転
させるための坩堝回転手段,13は半導体原料の融液,
14は種結晶,15は種結晶14を融液13に接触させ
回転しながら3元化合物半導体の結晶を引き上げる結晶
引き上げ手段,16は成長する3元化合物半導体結晶で
ある。
In the figure, 11 is a crucible, 12 is a crucible rotating means for rotating the crucible 11, 13 is a melt of a semiconductor raw material,
Reference numeral 14 is a seed crystal, 15 is a crystal pulling means for bringing the seed crystal 14 into contact with the melt 13 and pulling the crystal of the ternary compound semiconductor while rotating, and 16 is a growing ternary compound semiconductor crystal.

【0006】以下,図4に示す結晶引き上げ成長装置を
用いて,3元化合物半導体の結晶を成長する方法を説明
する。3元化合物半導体としてInGaAsを結晶成長
させる場合を例にとる。
A method for growing a crystal of a ternary compound semiconductor using the crystal pulling and growing apparatus shown in FIG. 4 will be described below. The case where InGaAs is crystal-grown as a ternary compound semiconductor is taken as an example.

【0007】まず,融液13にはGaAsとInAsと
の混合融液(3元融液)を使用し,種結晶14にはGa
Asの単結晶を使用する。InGaAsの結晶成長は,
結晶16と融液13との固液界面の温度を状態図から算
出した温度プロファイルに従って徐冷しながら,結晶引
き上げ手段15を用いて,種結晶14を融液13に浸漬
して引き上げることにより行う。
First, a mixed melt of GaAs and InAs (ternary melt) is used for the melt 13, and Ga is used for the seed crystal 14.
A single crystal of As is used. InGaAs crystal growth is
The temperature of the solid-liquid interface between the crystal 16 and the melt 13 is gradually cooled according to the temperature profile calculated from the phase diagram, and the seed crystal 14 is immersed in the melt 13 and pulled up using the crystal pulling means 15. .

【0008】[0008]

【発明が解決しようとする課題】図5は,従来例に係る
結晶内の組成分布の概略を示す図であり,種結晶として
GaAs単結晶を使用し,図4に示す引き上げ成長装置
を用いて結晶成長させたInx Ga(1-x) AsのInの
組成xの値の変化を種結晶からの距離の変化に対して描
いた図である。
FIG. 5 is a diagram showing an outline of the composition distribution in the crystal according to the conventional example, in which a GaAs single crystal is used as a seed crystal and the pulling growth apparatus shown in FIG. 4 is used. the change in the value of the composition x of in grown crystal in x Ga (1-x) as is a diagram depicting relative changes in the distance from the seed crystal.

【0009】図5から,GaAs単結晶の種結晶(se
ed)内のInの組成xの値は,当然のことながら0で
あるが,Inx Ga(1-x) Asの成長結晶(bulk)
内のInの組成xの値は,種結晶(seed)と成長結
晶(bulk)との界面で,0から0.03に急激に立
ち上がり,成長結晶(bulk)内部においては,一定
値0.03に保たれていることが分かる。
From FIG. 5, the seed crystal of the GaAs single crystal (se
The value of the composition x of In in ed) is naturally 0, but it is a grown crystal (bulk) of In x Ga (1-x) As.
The value of the composition x of In in the inside rapidly rises from 0 to 0.03 at the interface between the seed crystal (seed) and the grown crystal (bulk), and within the grown crystal (bulk), a constant value 0.03 is obtained. You can see that it is kept at.

【0010】従来の3元化合物半導体の結晶成長方法で
は,結晶成長の開始時から3元融液を用いているため,
図5に示すように,種結晶(seed)と成長する結晶
(bulk)との界面に組成の段差が生じる。その結
果,種結晶と成長結晶との間の格子不整合に起因する歪
みが生じ,成長結晶に欠陥が導入されやすい,という問
題があった。
In the conventional ternary compound semiconductor crystal growth method, since the ternary melt is used from the start of crystal growth,
As shown in FIG. 5, a step difference in composition occurs at the interface between the seed crystal (seed) and the growing crystal (bulk). As a result, there is a problem in that strain is generated due to the lattice mismatch between the seed crystal and the grown crystal, and defects are likely to be introduced into the grown crystal.

【0011】本発明は,上記の問題点を解決して,種結
晶と成長する結晶との格子不整合に起因する影響を抑制
できるようにして,欠陥の少ない良質の3元化合物半導
体結晶が得られるようにした,3元化合物半導体の結晶
成長方法,特にCZ( Czochralski;チョクラルスキ
ー)法を用いた3元化合物半導体の結晶成長方法を提供
することを目的とする。
The present invention solves the above problems and suppresses the influence due to the lattice mismatch between the seed crystal and the growing crystal to obtain a good quality ternary compound semiconductor crystal with few defects. It is an object of the present invention to provide a crystal growth method of a ternary compound semiconductor, particularly a crystal growth method of a ternary compound semiconductor using the CZ (Czochralski) method.

【0012】[0012]

【課題を解決するための手段】上記の目的を達成するた
めに,本発明に係る3元化合物半導体の結晶成長方法
は,次のように構成する。
In order to achieve the above object, the ternary compound semiconductor crystal growth method according to the present invention is configured as follows.

【0013】(1)坩堝の中の半導体原料の融液に種結
晶を接触させた後,該種結晶を引き上げることにより半
導体の結晶成長を行うチョクラルスキー法を用いた3元
化合物半導体の結晶成長方法であって,第1の元素と第
2の元素とから成る2元種結晶を,該2元種結晶と同一
の第1の元素と第2の元素とから成る2元融液に接触さ
せた後,融液中に第2の元素と第3の元素とから成る2
元化合物半導体を供給しながら,前記種結晶を引き上
げ,第1の元素と第2の元素と第3の元素とから成る3
元化合物半導体結晶を成長するように構成する。
(1) A ternary compound semiconductor crystal using the Czochralski method in which a seed crystal is brought into contact with a melt of a semiconductor raw material in a crucible and then the seed crystal is pulled to grow the semiconductor crystal. A growth method, wherein a binary seed crystal containing a first element and a second element is contacted with a binary melt containing the same first element and a second element as the binary seed crystal. And then the second element and the third element are added to the melt.
The seed crystal is pulled up while supplying the original compound semiconductor, and is composed of the first element, the second element, and the third element.
It is configured to grow an original compound semiconductor crystal.

【0014】(2)坩堝の中の半導体原料の融液に種結
晶を接触させた後,該種結晶を引き上げることにより半
導体の結晶成長を行うチョクラルスキー法を用いた3元
化合物半導体の結晶成長方法であって,第1の元素と第
2の元素とから成る2元種結晶を,該2元種結晶と同一
の第1の元素と第2の元素とから成る2元融液に接触さ
せた後,融液中に第1の元素と第2の元素と第3の元素
とから成る3元化合物半導体を供給しながら,前記種結
晶を引き上げ,第1の元素と第2の元素と第3の元素と
から成る3元化合物半導体結晶を成長するように構成す
る。
(2) A ternary compound semiconductor crystal using the Czochralski method in which a seed crystal is brought into contact with a melt of a semiconductor raw material in a crucible and then the crystal is grown by pulling the seed crystal. A growth method, wherein a binary seed crystal containing a first element and a second element is contacted with a binary melt containing the same first element and a second element as the binary seed crystal. After that, while feeding the ternary compound semiconductor composed of the first element, the second element, and the third element into the melt, the seed crystal is pulled up, and the first element and the second element are added. A ternary compound semiconductor crystal composed of the third element is grown.

【0015】(3)前記(1)または(2)において,
成長した3元化合物半導体の組成が所定の値になった
後,融液中に第1の元素と第2の元素とからなる2元化
合物半導体を補給しながら,3元化合物半導体結晶を成
長するように構成する。
(3) In the above (1) or (2),
After the composition of the grown ternary compound semiconductor reaches a predetermined value, a ternary compound semiconductor crystal is grown while replenishing the melt with a binary compound semiconductor composed of a first element and a second element. To configure.

【0016】(4)前記(1)〜(3)のうちの1つに
おいて,第1の元素および第3の元素がIII 族元素であ
り,第2の元素がV族元素であるように構成する。
(4) In one of the above (1) to (3), the first element and the third element are group III elements, and the second element is a group V element. To do.

【0017】(5)前記(1)〜(3)のうちの1つに
おいて,第1の元素がGa,第2の元素がAs,第3の
元素がInであるように構成する。
(5) In one of the above (1) to (3), the first element is Ga, the second element is As, and the third element is In.

【0018】[0018]

【作用】以下では,煩雑さを避けるために,「課題を解
決するための手段」で使用した,第1の元素,第2の元
素,および第3の元素を,それぞれ元素A,元素B,お
よび元素Cとして説明する。
In the following, in order to avoid complication, the first element, the second element, and the third element used in the "means for solving the problem" are replaced by element A, element B, and And element C will be described.

【0019】本発明では,結晶成長開始時の融液を種結
晶ABと同一組成ABの2元融液とし,結晶成長の途中
でもう1つの元素Cを含むCBという組成の2元ソース
を補給して融液の組成を徐々に変化させるようにしてい
る。その結果,結晶成長の初期において連続的な組成勾
配を持つ3元化合物半導体結晶を成長させることが可能
になる。
In the present invention, the melt at the start of crystal growth is a binary melt having the same composition AB as the seed crystal AB, and a binary source having a composition CB containing another element C is supplied during the crystal growth. The composition of the melt is gradually changed. As a result, it becomes possible to grow a ternary compound semiconductor crystal having a continuous composition gradient in the initial stage of crystal growth.

【0020】すなわち,本発明では,ABという組成を
持つ融液にCBという組成を持つ2元ソースを補給し,
結晶成長中の3元融液Cx (1-x) Bの元素Cの組成値
xを0から所定の値xt まで徐々に変化させることによ
り,ABという組成を持つ2元種結晶から所定の組成C
t (1- t ) Bを持つ3元化合物半導体結晶まで,
元素Cの組成値xに連続的な勾配を持たせることができ
る。
That is, in the present invention, a melt having a composition of AB is replenished with a binary source having a composition of CB,
By gradually changing the composition value x of the element C of the ternary melt C x A (1-x) B during crystal growth from 0 to a predetermined value x t , a binary seed crystal having a composition of AB can be obtained. Predetermined composition C
up to a ternary compound semiconductor crystal with x t A (1- x t) B,
The composition value x of the element C can have a continuous gradient.

【0021】その結果,格子定数も連続的に変化するの
で,種結晶と成長する3元化合物半導体結晶との界面に
おける格子不整合に起因する欠陥の発生を抑制すること
が可能になり,欠陥の少ない良質の3元化合物半導体結
晶を得ることができる。
As a result, since the lattice constant also changes continuously, it becomes possible to suppress the generation of defects due to the lattice mismatch at the interface between the seed crystal and the growing ternary compound semiconductor crystal. It is possible to obtain a few good quality ternary compound semiconductor crystals.

【0022】また,結晶成長開始時の融液を種結晶AB
と同一組成ABの2元融液とし,結晶成長の途中でCA
Bという組成の3元ソースを補給して融液の組成を徐々
に変化させるようにしてもよい。こうすることにより,
熱に起因する種々の影響を緩和することが可能になる。
Further, the melt at the start of crystal growth is used as a seed crystal AB.
A binary melt having the same composition AB as
The composition of the melt may be gradually changed by replenishing a ternary source having a composition of B. By doing this,
It is possible to mitigate various effects caused by heat.

【0023】さらに,結晶成長開始時の融液を種結晶A
Bと同一組成ABの2元融液とし,結晶成長の途中で,
CBという組成の2元ソースまたはCABという組成の
3元ソースを補給して融液の組成を徐々に変化させなが
ら,3元化合物半導体CABの結晶成長を行い,3元化
合物半導体CABの組成が所定の値となった後,元素A
と元素Bとから成る2元化合物半導体ABを補給する方
法もある。こうすると,引き上げ方向に対して均一な組
成を持つ3元化合物半導体CABの結晶を成長させるこ
とが可能になる。
Further, the melt at the start of crystal growth is used as a seed crystal A.
A binary melt of the same composition AB as B was prepared, and during the crystal growth,
A binary source having a composition of CB or a ternary source having a composition of CAB is replenished to gradually change the composition of the melt, and crystal growth of the ternary compound semiconductor CAB is performed. After reaching the value of element A
There is also a method of replenishing the binary compound semiconductor AB composed of the element B and the element B. This makes it possible to grow crystals of the ternary compound semiconductor CAB having a uniform composition in the pulling direction.

【0024】[0024]

【実施例】図1は,本発明の一実施例構成を示す図であ
り,本発明の実施に用いる3元化合物半導体の結晶引き
上げ成長装置の構成を示す図である。
FIG. 1 is a diagram showing the configuration of an embodiment of the present invention, and is a diagram showing the configuration of a crystal pulling growth apparatus for a ternary compound semiconductor used for implementing the present invention.

【0025】図中,1は坩堝,2は坩堝1を回転させる
ための坩堝回転手段,3は半導体原料の融液,4は種結
晶,5は種結晶4を融液3に接触させ回転しながら3元
化合物半導体の結晶を引き上げる結晶引き上げ手段,6
は成長する3元化合物半導体結晶,7は補給するソー
ス,8はソース7を融液3中に送入するためのソース送
入手段である。
In the figure, 1 is a crucible, 2 is a crucible rotating means for rotating the crucible 1, 3 is a melt of a semiconductor raw material, 4 is a seed crystal, and 5 is a seed crystal 4 which is brought into contact with the melt 3 and rotated. While pulling crystal of ternary compound semiconductor, 6
Is a growing ternary compound semiconductor crystal, 7 is a replenishing source, and 8 is a source feeding means for feeding the source 7 into the melt 3.

【0026】以下,図1に示す結晶引き上げ成長装置を
用いて,3元化合物半導体の結晶を成長する方法を説明
する。3元化合物半導体としてInGaAsを結晶成長
させた。
A method for growing a crystal of a ternary compound semiconductor using the crystal pulling and growing apparatus shown in FIG. 1 will be described below. InGaAs was grown as a ternary compound semiconductor.

【0027】まず,内径80mmφの坩堝1の中にGa
As118gを入れ,炉の温度を1500℃に加熱して
GaAs融液3を作製した。次に,炉の温度を1430
℃まで降下させた後,結晶引き上げ手段5に固定された
GaAs種結晶4をGaAs融液3に接触させ,炉の温
度を徐冷させながら,結晶引き上げ手段5を2mm/h
の速度で引き上げ,結晶6の直径を徐々に大きくした。
First, Ga is placed in the crucible 1 having an inner diameter of 80 mmφ.
As118 g was put and the temperature of the furnace was heated to 1500 ° C. to prepare a GaAs melt 3. Next, set the furnace temperature to 1430
After the temperature is lowered to ℃, the GaAs seed crystal 4 fixed to the crystal pulling means 5 is brought into contact with the GaAs melt 3 and the temperature of the furnace is gradually cooled while the crystal pulling means 5 is moved to 2 mm / h.
The diameter of the crystal 6 was gradually increased by pulling up at a speed of.

【0028】結晶6の直径が15mmφに到達したら,
ソース送入手段8に固定された断面積9mm□のInA
sソース7を4.4mm/hの速度で融液3中に送入
し,状態図から算出した温度プロファイルに従って徐冷
(例えば,4.4℃/h)しながら,InGaAs結晶
6を成長させた。
When the diameter of the crystal 6 reaches 15 mmφ,
InA with a cross-sectional area of 9 mm □ fixed to the source feeding means 8
The s source 7 is fed into the melt 3 at a rate of 4.4 mm / h, and the InGaAs crystal 6 is grown while being gradually cooled (eg, 4.4 ° C./h) according to the temperature profile calculated from the phase diagram. It was

【0029】図2は,本発明の一実施例に係る成長中に
おける融液の組成変化の概略を示す図であり,上述した
本発明に係る3元化合物半導体の結晶成長方法によりI
xGa(1-x) Asの結晶成長中における融液中のIn
の組成値xの経過時間に対する変化の様子が示されてい
る。図2から,融液中のInの組成値xは,時間の経過
とと共に0から徐々に増大していることが分かる。
FIG. 2 is a diagram showing an outline of the composition change of the melt during the growth according to one embodiment of the present invention, which is performed by the crystal growth method of the ternary compound semiconductor according to the present invention described above.
n x Ga (1-x) As In in the melt during crystal growth
The state of change of the composition value x with respect to the elapsed time is shown. From FIG. 2, it can be seen that the In composition value x in the melt gradually increases from 0 with the passage of time.

【0030】図3は,本発明の一実施例に係る結晶内の
組成分布の概略を示す図であり,上述した本発明に係る
3元化合物半導体の結晶成長方法により結晶成長させた
In x Ga(1-x) Asの結晶(bulk)内におけるI
nの組成値xを種結晶(seed)との界面からの距離
に対してプロットしたものである。図3から,Inx
(1-x) As結晶(bulk)内のInの組成値xは,
種結晶(seed)との界面から離れるに従って0から
徐々に増大しており,従来の方法で作製したInx Ga
(1-x) Asの結晶と異なり,種結晶(seed)とIn
x Ga(1-x) As結晶(bulk)との界面においてI
nの組成値xに段差が無いことが分かる。
FIG. 3 shows the inside of a crystal according to an embodiment of the present invention.
It is a figure showing the outline of composition distribution, and it is related with the above-mentioned present invention.
The crystal was grown by the crystal growth method of the ternary compound semiconductor.
In xGa(1-x)I in the bulk of As
The composition value x of n is the distance from the interface with the seed crystal (seed).
Is plotted against. From FIG. 3, InxG
a(1-x)The composition value x of In in the As crystal (bulk) is
From 0 as the distance from the interface with the seed crystal increases
Increasing gradually, In produced by the conventional methodxGa
(1-x)Unlike As crystals, seed crystals and In
xGa(1-x)I at the interface with the As crystal (bulk)
It can be seen that there is no step in the composition value x of n.

【0031】以上のように,本発明に係る3元化合物半
導体の結晶成長方法により作製した3元化合物半導体結
晶には,種結晶との界面において組成の段差が無いの
で,格子定数の不整合に起因する欠陥の発生が抑制され
る。その結果,本発明によれば,良質の3元化合物半導
体結晶が得られる。
As described above, since the ternary compound semiconductor crystal produced by the method for growing a ternary compound semiconductor crystal according to the present invention has no compositional step at the interface with the seed crystal, the lattice constant is not matched. Occurrence of defects resulting from this is suppressed. As a result, according to the present invention, a good quality ternary compound semiconductor crystal can be obtained.

【0032】上述の実施例では,GaAs種結晶を用い
てInGaAsを結晶成長する例を示したが,本発明
は,これに限ることなく,In,Ga,As,およびP
などのIII 族およびV族の中から選択されたIII −V族
化合物半導体から成る2元種結晶を用いて,In,G
a,As,およびPなどのIII 族およびV族の中から選
択された任意の3元化合物半導体結晶の成長に適用する
ことができる。
In the above-described embodiment, an example of crystal growth of InGaAs using a GaAs seed crystal has been shown, but the present invention is not limited to this, and In, Ga, As, and P are used.
Using a binary seed crystal composed of a group III-V compound semiconductor selected from the group III and V groups such as
It can be applied to the growth of any ternary compound semiconductor crystal selected from group III and group V such as a, As, and P.

【0033】[0033]

【発明の効果】本発明に係る3元化合物半導体の結晶成
長方法においては,2元融液中に他の元素を含む2元化
合物半導体を補給しながら引き上げ結晶成長を行うこと
により,2元種結晶と引き上げる3元化合物半導体結晶
との間の組成を連続的に変化させることが可能になるの
で,組成の急激な変化に起因する欠陥の発生を抑制する
ことができる。
In the crystal growth method for a ternary compound semiconductor according to the present invention, a binary compound semiconductor containing other elements is replenished in the binary melt while pulling up the crystal growth to obtain a binary seed. Since it is possible to continuously change the composition between the crystal and the pulled ternary compound semiconductor crystal, it is possible to suppress the occurrence of defects due to the abrupt change in the composition.

【0034】その結果,本発明によれば,良質の3元化
合物半導体結晶を得ることができる。さらに,本発明に
係る3元化合物半導体の結晶成長方法により作製した3
元化合物半導体結晶から直接3元化合物半導体基板を得
ることができるので,これを用いて高性能の化合物半導
体装置を作製することができる。
As a result, according to the present invention, a good quality ternary compound semiconductor crystal can be obtained. In addition, the ternary compound semiconductor prepared by the method of crystal growth of the present invention 3
Since a ternary compound semiconductor substrate can be obtained directly from the original compound semiconductor crystal, a high-performance compound semiconductor device can be manufactured using this.

【0035】以上のように,本発明は,化合物半導体装
置の性能向上に寄与するところが大きい。
As described above, the present invention largely contributes to the performance improvement of the compound semiconductor device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例構成を示す図である。FIG. 1 is a diagram showing a configuration of an embodiment of the present invention.

【図2】本発明の一実施例に係る成長中における融液の
組成変化の概略を示す図である。
FIG. 2 is a diagram schematically showing a change in composition of a melt during growth according to an example of the present invention.

【図3】本発明の一実施例に係る結晶内の組成分布の概
略を示す図である。
FIG. 3 is a diagram showing an outline of a composition distribution in a crystal according to an example of the present invention.

【図4】従来例を示す図である。FIG. 4 is a diagram showing a conventional example.

【図5】従来例に係る結晶内の組成分布の概略を示す図
である。
FIG. 5 is a diagram showing an outline of a composition distribution in a crystal according to a conventional example.

【符号の説明】[Explanation of symbols]

1 坩堝 2 坩堝回転手段 3 融液 4 種結晶 5 結晶引き上げ手段 6 結晶 7 補給ソース 8 ソース送入手段 1 Crucible 2 Crucible Rotating Means 3 Melt 4 Seed Crystal 5 Crystal Pulling Means 6 Crystals 7 Replenishing Source 8 Source Injecting Means

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 坩堝の中の半導体原料の融液に種結晶を
接触させた後,該種結晶を引き上げることにより半導体
の結晶成長を行うチョクラルスキー法を用いた3元化合
物半導体の結晶成長方法であって,第1の元素と第2の
元素とから成る2元種結晶を,該2元種結晶と同一の第
1の元素と第2の元素とから成る2元融液に接触させた
後,融液中に第2の元素と第3の元素とから成る2元化
合物半導体を供給しながら,前記種結晶を引き上げ,第
1の元素と第2の元素と第3の元素とから成る3元化合
物半導体結晶を成長することを特徴とする3元化合物半
導体の結晶成長方法。
1. Crystal growth of a ternary compound semiconductor using the Czochralski method in which a seed crystal is brought into contact with a melt of a semiconductor raw material in a crucible and then the crystal is grown by pulling the seed crystal. The method comprises contacting a binary seed crystal composed of a first element and a second element with a binary melt composed of a first element and a second element which is the same as the binary seed crystal. Then, while feeding the binary compound semiconductor composed of the second element and the third element into the melt, the seed crystal is pulled up to separate the first element, the second element and the third element. A method for growing a crystal of a ternary compound semiconductor, comprising:
【請求項2】 坩堝の中の半導体原料の融液に種結晶を
接触させた後,該種結晶を引き上げることにより半導体
の結晶成長を行うチョクラルスキー法を用いた3元化合
物半導体の結晶成長方法であって,第1の元素と第2の
元素とから成る2元種結晶を,該2元種結晶と同一の第
1の元素と第2の元素とから成る2元融液に接触させた
後,融液中に第1の元素と第2の元素と第3の元素とか
ら成る3元化合物半導体を供給しながら,前記種結晶を
引き上げ,第1の元素と第2の元素と第3の元素とから
成る3元化合物半導体結晶を成長することを特徴とする
3元化合物半導体の結晶成長方法。
2. Crystal growth of a ternary compound semiconductor using the Czochralski method in which a seed crystal is brought into contact with a melt of a semiconductor raw material in a crucible and then the crystal is grown by pulling the seed crystal. The method comprises contacting a binary seed crystal composed of a first element and a second element with a binary melt composed of a first element and a second element which is the same as the binary seed crystal. After that, while feeding the ternary compound semiconductor composed of the first element, the second element, and the third element into the melt, the seed crystal is pulled up, and the first element, the second element, and the A method for growing a crystal of a ternary compound semiconductor, which comprises growing a ternary compound semiconductor crystal composed of 3 elements.
【請求項3】 請求項1または2において,成長した3
元化合物半導体の組成が所定の値になった後,融液中に
第1の元素と第2の元素とからなる2元化合物半導体を
補給しながら,3元化合物半導体結晶を成長することを
特徴とする3元化合物半導体の結晶成長方法。
3. The grown 3 according to claim 1 or 2.
Characteristic of growing a ternary compound semiconductor crystal while supplying a binary compound semiconductor composed of a first element and a second element into a melt after the composition of the original compound semiconductor reaches a predetermined value And a method for growing a crystal of a ternary compound semiconductor.
【請求項4】 請求項1〜3のうちの1項において,第
1の元素および第3の元素がIII 族元素であり,第2の
元素がV族元素であることを特徴とする3元化合物半導
体の結晶成長方法。
4. The ternary element according to claim 1, wherein the first element and the third element are group III elements and the second element is a group V element. Crystal growth method of compound semiconductor.
【請求項5】 請求項1〜3のうちの1項において,第
1の元素がGa,第2の元素がAs,第3の元素がIn
であることを特徴とする3元化合物半導体の結晶成長方
法。
5. The method according to claim 1, wherein the first element is Ga, the second element is As, and the third element is In.
A method for growing a crystal of a ternary compound semiconductor, comprising:
JP4703494A 1994-03-17 1994-03-17 Method for growing ternary compound semiconductor crystal Withdrawn JPH07257988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4703494A JPH07257988A (en) 1994-03-17 1994-03-17 Method for growing ternary compound semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4703494A JPH07257988A (en) 1994-03-17 1994-03-17 Method for growing ternary compound semiconductor crystal

Publications (1)

Publication Number Publication Date
JPH07257988A true JPH07257988A (en) 1995-10-09

Family

ID=12763896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4703494A Withdrawn JPH07257988A (en) 1994-03-17 1994-03-17 Method for growing ternary compound semiconductor crystal

Country Status (1)

Country Link
JP (1) JPH07257988A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013023391A (en) * 2011-07-15 2013-02-04 Sumitomo Metal Mining Co Ltd Seed crystal for mixed single crystal growth and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013023391A (en) * 2011-07-15 2013-02-04 Sumitomo Metal Mining Co Ltd Seed crystal for mixed single crystal growth and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US5728212A (en) Method of preparing compound semiconductor crystal
JPH07257988A (en) Method for growing ternary compound semiconductor crystal
CN110036143B (en) Method for producing single crystal silicon and single crystal silicon wafer
JP2576131B2 (en) Method for treating compound semiconductor crystal
JP3152322B2 (en) Twinless (Nd, La) GaO3 single crystal and method for producing the same
JPS62256793A (en) Method for pulling compound semiconductor single crystal
JP2781857B2 (en) Single crystal manufacturing method
JP3435118B2 (en) Method for growing compound semiconductor bulk crystal and method for manufacturing compound semiconductor device
JP4200690B2 (en) GaAs wafer manufacturing method
JP3171476B2 (en) Method for producing magnetic garnet single crystal film
JP3202405B2 (en) Epitaxial growth method
JP3557690B2 (en) Crystal growth method
JP3419208B2 (en) Single crystal manufacturing method
JPH07172973A (en) Production of single crystal of mixed crystal
JP2001072488A (en) Method for producing solid solution single crystal
JPS6389497A (en) Production of silicon-added gallium arsenic single crystal
JP2856458B2 (en) Method for manufacturing compound semiconductor crystal
JPH06128097A (en) Production of gallium arsenide single crystal
JPS6321288A (en) Production of single crystal of compound semiconductor
JPH0517196B2 (en)
JPH09249479A (en) Method for growing compound semiconductor single crystal
JP2001072487A (en) Production of solid solution
JPS63176397A (en) Production of iii-v compound semiconductor single crystal
JPH0631192B2 (en) Method and apparatus for manufacturing semiconductor single crystal
JPH0547683A (en) Manufacture of fused liquid for liquid-phase epitaxy

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605