JPH07257211A - Four-wheel drive vehicle - Google Patents

Four-wheel drive vehicle

Info

Publication number
JPH07257211A
JPH07257211A JP4914794A JP4914794A JPH07257211A JP H07257211 A JPH07257211 A JP H07257211A JP 4914794 A JP4914794 A JP 4914794A JP 4914794 A JP4914794 A JP 4914794A JP H07257211 A JPH07257211 A JP H07257211A
Authority
JP
Japan
Prior art keywords
driven
drive
fluid pressure
pressure
side fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4914794A
Other languages
Japanese (ja)
Other versions
JP3196485B2 (en
Inventor
Jun Watanabe
純 渡辺
Kenro Takahashi
建郎 高橋
Yorito Nakao
頼人 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP04914794A priority Critical patent/JP3196485B2/en
Priority to US08/405,673 priority patent/US5687808A/en
Priority to DE19510046A priority patent/DE19510046C2/en
Publication of JPH07257211A publication Critical patent/JPH07257211A/en
Application granted granted Critical
Publication of JP3196485B2 publication Critical patent/JP3196485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Motor Power Transmission Devices (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

PURPOSE:To provide a four-wheel drive vehicle which can simplify a capacity control mechanism while suppressing occurrence of cavitation. CONSTITUTION:Driving force of an engine 1 is transmitted to front wheels 5 and a rotary shaft 6a of a piston pump 6 via a transmission 2 and a differential gear 3. A discharge port 6c and a suction port 6b of the pump 6 are connected to ports P and T of a selector valve for changing over forward and backward advance 9 which is built in a swash plate type variable capacity pump motor 10 via a high pressure pipe 8H and a low pressure pipe 8L to constitute a hydraulic C transmission device. A rotary shaft 10c of the pump motor 10 is connected to rear wheels 19 via a differential gear 17. Differential pressure between front and rear parts of an orifice for detecting differential pressure 11 which is provided in the low pressure pipe 8L on the tank port T side of the selector valve 9 is supplied to a swash plate variable mechanism 12 of the pump motor 10 and is maintained at the maximum flow rate which is set in advance when discharge flow rate of the pump motor 10 exceeds a predetermined value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主原動機の回転駆動力
を前輪及び後輪に伝達するようにした四輪駆動車に係
り、特に駆動力の伝達を流体圧伝動機構で行うようにし
た四輪駆動車に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a four-wheel drive vehicle in which a rotational driving force of a main engine is transmitted to front wheels and rear wheels, and particularly, the driving force is transmitted by a fluid pressure transmission mechanism. It relates to four-wheel drive vehicles.

【0002】[0002]

【従来の技術】この種の四輪駆動車にあっては、パート
タイム式のように手動で二輪駆動と四輪駆動との機械的
な連結を切換える四輪駆動車の場合、その切換え操作が
面倒である他、タイトコーナーブレーキング現象などの
不具合を生じ乗用車には不向きである。これに対してフ
ルタイム式四輪駆動車はタイトコーナーブレーキング現
象は解消できるが、センタデフに差動制限装置が必要と
なり装置が複雑になる。また、パートタイム式及びフル
タイム式にかかわらず現在の乗用車に用いられている駆
動方式ではプロペラシャフトを有することから、これが
前輪駆動車に対する重量の増加、車室内スペースへの悪
影響、燃費の悪化、騒音や振動の悪化をもたらし、後輪
駆動車の場合でも重量増、燃費の悪化を免れない。
2. Description of the Related Art In a four-wheel drive vehicle of this type, in the case of a four-wheel drive vehicle in which the mechanical connection between two-wheel drive and four-wheel drive is manually switched like a part-time system, the switching operation is Besides being troublesome, it is not suitable for passenger cars due to problems such as tight corner braking. On the other hand, a full-time four-wheel drive vehicle can eliminate the tight corner braking phenomenon, but it requires a differential limiting device for the center differential, which complicates the device. Further, regardless of the part-time type and the full-time type, since the drive system used in the current passenger cars has a propeller shaft, this increases the weight of the front-wheel drive vehicle, adversely affects the vehicle interior space, and deteriorates fuel efficiency. Noise and vibration are worsened, and even in the case of a rear-wheel drive vehicle, there is an unavoidable increase in weight and fuel consumption.

【0003】そこで、従来、構成部材の重量軽減を図る
目的で、例えば特開平3−224830号公報(以下、
第1従来例と称す)に記載されているように、原動機で
直接的に駆動される前輪と、流体圧で作動するクラッチ
を介して駆動される後輪とを有する四輪駆動車両の動力
伝達装置であって、前記前輪に連動して駆動される第1
流体圧ポンプと、前記後輪に連動して駆動される第2流
体圧ポンプと、前記第1流体圧ポンプの吐出ポートと前
記第2流体圧ポンプの吸入ポートとを連通接続する連結
油路と、この連結油路と前記流体圧クラッチの作動油圧
室とを連通接続する油圧供給油路とを備えた構成を有
し、前輪側及び後輪側の回転速度差による第1流体圧ポ
ンプ及び第2流体圧ポンプの流量差に応じてクラッチを
制御することにより、駆動力の伝達を制御するようにし
た四輪駆動車が提案されている。
[0003] Therefore, conventionally, for the purpose of reducing the weight of the constituent members, for example, JP-A-3-224830 (hereinafter, referred to as
Power transmission of a four-wheel drive vehicle having front wheels that are directly driven by a prime mover and rear wheels that are driven via a clutch operated by fluid pressure, as described in the first conventional example). A device, which is driven in association with the front wheels
A fluid pressure pump, a second fluid pressure pump that is driven in conjunction with the rear wheel, and a connecting oil passage that connects the discharge port of the first fluid pressure pump and the suction port of the second fluid pressure pump. A first fluid pressure pump and a first fluid pressure pump due to a difference in rotation speed between the front wheel side and the rear wheel side, and a hydraulic pressure supply oil passage that connects and connects the connecting oil passage and the working hydraulic chamber of the fluid pressure clutch. A four-wheel drive vehicle has been proposed in which the transmission of driving force is controlled by controlling a clutch according to the flow rate difference between two fluid pressure pumps.

【0004】また、プロペラシャフトに代えて油圧伝動
装置を利用して駆動力の伝達を行う目的で、例えば特開
平1−223030号公報(以下、第2従来例と称す)
に記載されているように、前輪と連動回転し、回転速度
に応じた油圧を発生する例えばベーンポンプで構成され
る第1の油圧ポンプと、後輪と連動回転し、回転速度に
応じた油圧を発生する同様にベーンポンプで構成される
第2の油圧ポンプと、前記第1,第2の油圧ポンプの一
方の吐出口と他方の吸込口とを夫々連通する油路とを備
えた構成を有するものが提案されている。
Further, for the purpose of transmitting a driving force by using a hydraulic power transmission device instead of a propeller shaft, for example, Japanese Patent Laid-Open No. 1-223030 (hereinafter referred to as a second conventional example).
As described in (1), the first hydraulic pump configured by, for example, a vane pump that rotates in conjunction with the front wheels and generates oil pressure according to the rotation speed, and the rotation in conjunction with the rear wheels generate oil pressure according to the rotation speed. A configuration having a second hydraulic pump that is similarly formed of a vane pump and an oil passage that connects one of the discharge ports of the first and second hydraulic pumps and the other suction port, respectively. Is proposed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記第
1従来例の四輪駆動車にあっては、伝達トルクを制限す
ることにより、プロペラシャフトを軽量化することはで
きるが、プロペラシャフトを省略することはできないの
で、軽量化には一定の限度があり、また車室内スペース
への悪影響に対しては全く改善することができないとい
う未解決の課題がある。
However, in the four-wheel drive vehicle of the first conventional example, the propeller shaft can be reduced in weight by limiting the transmission torque, but the propeller shaft is omitted. Therefore, there is an unsolved problem that the weight reduction has a certain limit, and the adverse effect on the vehicle interior space cannot be improved at all.

【0006】また、第2従来例の四輪駆動車にあって
は、油圧伝動装置を利用しているので、プロペラシャフ
トを省略して軽量化、車室内スペースの確保、燃費の向
上、騒音や振動の低下等を図ることができるが、高速走
行時には前後輪が共に高速回転することにより、油圧ポ
ンプの吐出流量が多くなり、これによって配管抵抗が増
大し、そのためシステムの引きずり抵抗が増大して圧力
損失が増大することにより、燃費の悪化を招く他、シス
テムにおける油温の上昇や第2の油圧ポンプの吸入口で
作動油の吸込みが追いつかなくなり圧力が異常に低下す
ることにより気泡が発生するキャビテーションを起こし
易くなるという未解決の課題がある。ここで、流量増大
時の配管抵抗を減じるには配管を大径化すればよいが、
スペースやコスト等を考えるとそれにも一定の限度があ
る。
In addition, in the four-wheel drive vehicle of the second conventional example, since the hydraulic transmission is used, the propeller shaft is omitted and the weight is reduced, the vehicle interior space is secured, the fuel consumption is improved, and noise and noise are reduced. Although vibration can be reduced, the front and rear wheels both rotate at high speed during high-speed travel, which increases the discharge flow rate of the hydraulic pump, which increases pipe resistance, which increases drag resistance of the system. The increase in pressure loss causes deterioration of fuel consumption, and also causes bubbles due to an increase in oil temperature in the system and an abnormal decrease in pressure because the suction of hydraulic oil cannot catch up at the suction port of the second hydraulic pump. There is an unsolved problem that cavitation is likely to occur. Here, in order to reduce the piping resistance when the flow rate increases, the diameter of the piping should be increased,
Considering space and cost, there is a certain limit.

【0007】このような高速走行時の燃費悪化を抑制す
るために、第2の油圧ポンプを可変容量化し、ある車速
以上では流量を頭打ちにさせることが考えられるが、第
2従来例にあっては、油圧ポンプとしてベーンポンプを
採用している関係で、回転軸の回転方向によって吸込口
と吐出口とが反転することから、第1の油圧ポンプ及び
第2の油圧ポンプ間を連通する一対の流路の一方は例え
ば前進時には高圧側となり、後進時には低圧側となり、
他方は前進時に低圧側となり、後進時には高圧側となっ
て車両の進行方向によって低圧側と高圧側とが反転する
ことになるため、可変容量ポンプの吐出量を差圧によっ
て検出する場合に、一対の流路の双方に差圧検出手段を
設け、これらを車両の進行方向に応じて選択する必要が
あり、構成が複雑となると共に、前後輪の回転速度が略
等しく駆動力を伝達していない無負荷作動時には、高圧
側に設けられた差圧検出手段が油圧ポンプの吸込みに対
して抵抗となり、キャビテーションを起こし易くなると
いう新たな課題を生じることになる。
In order to suppress such deterioration of fuel consumption during high-speed traveling, it is conceivable that the second hydraulic pump is made to have a variable capacity so that the flow rate is leveled off at a certain vehicle speed or higher. Since the vane pump is used as the hydraulic pump, the suction port and the discharge port are reversed depending on the rotation direction of the rotating shaft, so that the pair of flow paths communicating between the first hydraulic pump and the second hydraulic pump are connected. For example, one side of the road becomes the high pressure side when moving forward, and the low pressure side when moving backward.
The other side becomes a low pressure side when moving forward and becomes a high pressure side when moving backward, which means that the low pressure side and the high pressure side are reversed depending on the traveling direction of the vehicle. It is necessary to provide the differential pressure detection means in both of the flow paths of the above, and to select them according to the traveling direction of the vehicle, which complicates the configuration and the rotation speeds of the front and rear wheels are substantially equal and the driving force is not transmitted. At the time of no-load operation, the differential pressure detecting means provided on the high pressure side becomes a resistance against the suction of the hydraulic pump, which causes a new problem that cavitation easily occurs.

【0008】そこで、この発明は、上記従来例の未解決
の課題に着目してなされたものであり、キャビテーショ
ンの発生を抑制しながら容量制御機構の簡素化を図るこ
とができる四輪駆動車を提供することを目的としてい
る。
Therefore, the present invention has been made by paying attention to the unsolved problem of the above-mentioned conventional example, and provides a four-wheel drive vehicle capable of simplifying the capacity control mechanism while suppressing the occurrence of cavitation. It is intended to be provided.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に係る四輪駆動車は、主原動機により駆動
される駆動車軸と、該駆動車軸に連動して駆動される駆
動側流体圧駆動手段と、従動車軸に連動して駆動される
従動側流体圧駆動手段とを有し、前記駆動側流体圧駆動
手段及び従動側流体圧駆動手段とを高圧流路及び低圧流
路で連通させて流体圧伝動機構を構成した四輪駆動車に
おいて、前記低圧流路に差圧検出手段を配設すると共
に、前記従動側流体圧駆動手段にその容量を前記差圧検
出手段の差圧検出値に基づいて可変制御する可変制御機
構を設けたことを特徴としている。
In order to achieve the above-mentioned object, a four-wheel drive vehicle according to a first aspect of the present invention comprises a drive axle driven by a main motor and a drive side driven in conjunction with the drive axle. A fluid pressure drive means and a driven side fluid pressure drive means that is driven in conjunction with the driven axle, and the drive side fluid pressure drive means and the driven side fluid pressure drive means are formed by a high pressure passage and a low pressure passage. In a four-wheel drive vehicle in which a fluid pressure transmission mechanism is configured to communicate with each other, a differential pressure detecting means is disposed in the low pressure passage, and the driven side fluid pressure driving means has a capacity of the differential pressure detecting means. It is characterized in that a variable control mechanism for performing variable control based on the detected value is provided.

【0010】また、請求項2に係る四輪駆動車は、主原
動機により駆動される駆動車軸と、該駆動車軸に連動し
て駆動される駆動側流体圧駆動手段と、従動車軸に連動
して駆動される従動側流体圧駆動手段とを有し、前記駆
動側流体圧駆動手段及び従動側流体圧駆動手段とを高圧
流路及び低圧流路で連通させて流体圧伝動機構を構成し
た四輪駆動車において、前記従動側流体圧駆動手段側に
おける高圧流路及び低圧流路に前後進切換用切換弁を介
挿し、該前後進切換用切換弁の駆動側流体圧駆動手段側
における前記低圧流路に差圧検出手段を配設すると共
に、前記従動側流体圧駆動手段にその容量を前記差圧検
出手段の差圧検出値に基づいて可変制御する可変制御機
構を設けたことを特徴としている。
According to another aspect of the present invention, there is provided a four-wheel drive vehicle having a drive axle driven by a main motor, a drive side fluid pressure drive means driven in conjunction with the drive axle, and a driven axle. Four wheels having driven fluid pressure driving means to be driven, wherein the driving fluid pressure driving means and the driven fluid pressure driving means are communicated with each other through a high pressure passage and a low pressure passage to form a fluid pressure transmission mechanism. In a drive vehicle, a forward / reverse switching switching valve is inserted in the high pressure passage and the low pressure passage on the driven fluid pressure driving means side, and the low pressure flow on the driving fluid pressure driving means side of the forward / reverse switching switching valve. The differential pressure detecting means is disposed in the path, and the driven-side fluid pressure driving means is provided with a variable control mechanism for variably controlling the capacity thereof based on the differential pressure detection value of the differential pressure detecting means. .

【0011】さらに、請求項3に係る四輪駆動車は、前
記可変制御機構が、差圧検出手段の差圧検出値が所定値
未満であるには従動側流体圧駆動手段の容量を車輪速に
比例させて増加させ、所定値以上となると最大容量に維
持するように構成されていることを特徴としている。さ
らにまた、請求項4に係る四輪駆動車は、前記従動側流
体圧駆動手段が、従動車軸に連動して回転する斜板型可
変容量ポンプモータで構成されていることを特徴として
いる。
Further, in the four-wheel drive vehicle according to a third aspect of the present invention, the variable control mechanism sets the capacity of the driven side fluid pressure drive means to the wheel speed when the differential pressure detection value of the differential pressure detection means is less than a predetermined value. It is characterized in that it is configured to be increased in proportion to, and to be maintained at the maximum capacity when it exceeds a predetermined value. Furthermore, the four-wheel drive vehicle according to claim 4 is characterized in that the driven-side fluid pressure drive means is composed of a swash plate type variable displacement pump motor that rotates in conjunction with the driven axle.

【0012】また、請求項5に係る四輪駆動車は、前記
駆動側流体圧駆動手段が、駆動車軸に連動して回転する
吸入絞り型ピストンポンプで構成されていることを特徴
としている。
A four-wheel drive vehicle according to a fifth aspect of the invention is characterized in that the drive-side fluid pressure drive means is composed of an intake throttle piston pump that rotates in conjunction with the drive axle.

【0013】[0013]

【作用】請求項1に係る四輪駆動車においては、主原動
機により駆動される駆動車軸の回転によって駆動側流体
圧駆動手段から回転速度に応じた流量の作動流体が吐出
され、これが高圧流路を通じて従動車軸の回転によって
駆動される従動側流体圧駆動手段の吸込側に供給され、
この従動側流体圧駆動手段から吐出される作動流体が低
圧流路を通じて駆動側流体圧駆動手段に戻される。この
とき、駆動車軸及び従動車軸の回転数差が小さいときに
は、伝達トルクは殆どなく二輪駆動状態を維持するが、
回転数差が大きくなるに従って、伝達トルクが大きくな
って四輪駆動状態に移行する。このとき、低圧流路に差
圧検出手段が設けられ、この差圧検出値が可変容量化さ
れた従動側流体圧駆動手段の可変制御機構に供給される
ことにより、高流量時に従動側流体圧駆動手段の吐出流
量を頭打ちとしてキャビテーションの発生を抑制する。
In the four-wheel drive vehicle according to the first aspect, the working fluid having a flow rate corresponding to the rotational speed is discharged from the drive side fluid pressure drive means by the rotation of the drive axle driven by the main prime mover, and this is the high pressure passage. Is supplied to the suction side of the driven side fluid pressure drive means driven by the rotation of the driven axle through
The working fluid discharged from the driven-side fluid pressure driving means is returned to the driving-side fluid pressure driving means through the low pressure passage. At this time, when the rotational speed difference between the drive axle and the driven axle is small, there is almost no transmitted torque and the two-wheel drive state is maintained.
As the rotational speed difference increases, the transmission torque increases and the four-wheel drive state is entered. At this time, differential pressure detection means is provided in the low-pressure flow path, and this differential pressure detection value is supplied to the variable control mechanism of the driven-side fluid pressure drive means that has a variable capacity, so that the driven-side fluid pressure at high flow rates is increased. The discharge flow rate of the drive means is capped to suppress the occurrence of cavitation.

【0014】請求項2に係る四輪駆動車においては、従
動側流体圧駆動手段側の高圧流路及び低圧流路に前後進
切換用切換弁が介挿されることにより、従動側流体圧駆
動手段で従動軸の回転方向の変化による吸込口及び吐出
口が変化した場合でも、高圧流路及び低圧流路を切り割
けることができ、この前後進切換用切換弁の駆動側流体
圧駆動手段側に差圧検出手段を設けることにより、従動
側流体圧駆動手段の吐出流量に応じた差圧を従動車軸の
回転方向の変化にかかわらず常に正確に検出して、可変
制御機構を正確に駆動する。
In the four-wheel drive vehicle according to the second aspect, the forward / reverse switching switching valve is inserted in the high pressure passage and the low pressure passage on the driven fluid pressure driving means side, whereby the driven fluid pressure driving means is inserted. Even if the suction port and the discharge port change due to the change in the rotation direction of the driven shaft, the high-pressure flow passage and the low-pressure flow passage can be cut. By providing the differential pressure detecting means in the differential pressure detecting means, the differential pressure according to the discharge flow rate of the driven fluid pressure driving means is always accurately detected regardless of the change in the rotation direction of the driven axle, and the variable control mechanism is accurately driven. .

【0015】請求項3に係る四輪駆動車においては、可
変制御機構で、差圧検出手段の差圧検出値が所定値未満
であるには従動側流体圧駆動手段の容量を車輪速に比例
させて増加させ、所定値以上となると最大容量に維持す
ることにより、高流量時に従動側流体圧駆動手段の吐出
流量を頭打ちとしてキャビテーションの発生を抑制す
る。
In the four-wheel drive vehicle according to a third aspect of the present invention, the capacity of the driven fluid pressure drive means is proportional to the wheel speed in order for the differential pressure detection value of the differential pressure detection means to be less than the predetermined value in the variable control mechanism. When the flow rate is increased to a predetermined value or more and maintained at the maximum capacity, the discharge flow rate of the driven-side fluid pressure drive means is capped and the occurrence of cavitation is suppressed when the flow rate is high.

【0016】請求項4に係る四輪駆動車においては、従
動側流体圧駆動手段が斜板型可変容量ポンプモータで構
成されているので、前後輪の回転数差が少ないときに
は、流体圧ポンプとして作動して従動軸に駆動力の伝達
を行わない二輪駆動状態とし、前後輪の回転数差が大き
いときには、流体圧モータとして作動して従動軸に駆動
力の伝達を行って四輪駆動状態とする。
In the four-wheel drive vehicle according to the fourth aspect, since the driven-side fluid pressure drive means is composed of the swash plate type variable displacement pump motor, when the difference in the rotational speeds of the front and rear wheels is small, the fluid pressure pump is used. When it is in a two-wheel drive state in which driving force is not transmitted to the driven shaft, and there is a large difference in the rotational speed of the front and rear wheels, it operates as a fluid pressure motor to transmit driving force to the driven shaft and becomes a four-wheel drive state. To do.

【0017】請求項5に係る四輪駆動車においては、駆
動側流体圧駆動手段が、駆動車軸に連動して回転する吸
入絞り型ピストンポンプで構成されているため駆動車軸
の回転方向の変化によっても吐出口が変化せず高圧流路
及び低圧流路に流れる作動流体の圧力が入れ替わること
を防止する。
In the four-wheel drive vehicle according to the fifth aspect, since the drive side fluid pressure drive means is composed of the suction throttle type piston pump which rotates in conjunction with the drive axle, the rotation direction of the drive axle changes. Also, it prevents the pressure of the working fluid flowing through the high-pressure passage and the low-pressure passage from being exchanged without changing the discharge port.

【0018】[0018]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1は本発明を前輪駆動車をベースとした四輪駆
動車に適用した場合の第1実施例を示す概略構成図であ
って、図中、1は主原動機としてのエンジンであって、
このエンジン1の回転駆動力が変速機2を介して前輪側
差動装置3に入力され、この差動装置3の出力側に駆動
車軸としての前車軸4を介して前輪5が連結されてい
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram showing a first embodiment when the present invention is applied to a four-wheel drive vehicle based on a front-wheel drive vehicle, in which 1 is an engine as a main engine,
The rotational driving force of the engine 1 is input to the front wheel side differential device 3 via the transmission 2, and the front wheels 5 are connected to the output side of the differential device 3 via a front axle 4 as a drive axle. .

【0019】前輪側差動装置3は、デファレンシャギヤ
ケース3aに形成されたリングギヤ3bが変速機2の出
力側に連結されたギヤ2aに噛合されて回転駆動され、
このディファレンシャルギヤケース3a内に形成された
一対のピニオンシャフト3cにピニオン3dが取付けら
れ、これらピニオン3dに一対のサイドギヤ3eが噛合
し、これらサイドギヤ3eに前車軸4が連結されてい
る。
In the front wheel side differential device 3, a ring gear 3b formed in a differential gear case 3a is meshed with a gear 2a connected to an output side of the transmission 2, and is rotationally driven.
A pinion 3d is attached to a pair of pinion shafts 3c formed in the differential gear case 3a, a pair of side gears 3e mesh with these pinion 3d, and a front axle 4 is connected to these side gears 3e.

【0020】また、ディファレンシャルギヤケース3a
にリングギヤ3bと並列に形成されたリングギヤ3fが
これに噛合するギヤ3gを介して駆動側流体圧駆動手段
を構成する流体圧ポンプとしての吸入絞り型ピストンポ
ンプ6の回転軸6aに連結されている。この吸入絞り型
ピストンポンプ6は、その吸込口6bがリザーバタンク
7内に配設されたストレーナ7aに連結されていると共
に、低圧流路としての低圧配管8Lを通じて2位置4ポ
ートの電磁方向切換弁9のタンクポートTに接続され、
吐出口6cが高圧流路としての高圧配管8Hを通じて前
後進切換用の電磁方向切換弁9のポンプポートPに接続
されている。ここで、吸入絞り型ピストンポンプ6は、
回転軸6aの回転方向によって吸入口と吐出口とが入れ
替わることがなく、その吐出流量は、図2で特性曲線L
1 で示すように、回転速度が“0”から所定値V1 に達
するまでの間では、回転速度の増加に比例して増加し、
所定値V1以上では最大吐出流量Q1MAXで飽和するよう
に設定されている。
Further, the differential gear case 3a
A ring gear 3f formed in parallel with the ring gear 3b is connected to a rotary shaft 6a of a suction throttle type piston pump 6 as a fluid pressure pump constituting a drive side fluid pressure driving means via a gear 3g meshing with the ring gear 3f. . The suction throttle piston pump 6 has a suction port 6b connected to a strainer 7a arranged in a reservoir tank 7 and a 2-position 4-port electromagnetic directional control valve through a low-pressure pipe 8L serving as a low-pressure passage. 9 is connected to the tank port T,
The discharge port 6c is connected to the pump port P of the electromagnetic directional control valve 9 for forward / backward switching through a high pressure pipe 8H as a high pressure flow path. Here, the suction throttle type piston pump 6 is
The suction port and the discharge port do not interchange depending on the rotation direction of the rotating shaft 6a, and the discharge flow rate is shown by the characteristic curve L in FIG.
As indicated by 1 , in the period from when the rotation speed reaches “0” to the predetermined value V 1 , the rotation speed increases in proportion to the increase of the rotation speed,
It is set to saturate at the maximum discharge flow rate Q 1MAX at a predetermined value V 1 or more.

【0021】前後進切換用の電磁方向切換弁9は、ソレ
ノイド9aが非通電状態であるノーマル位置でポンプポ
ートPを出力ポートAに、タンクポートTを出力ポート
Bに夫々連通し、ソレノイド9aが通電状態であるオフ
セット位置でポンプポートPを出力ポートBに、タンク
ポートTを出力ポートAに夫々連通し、出力ポートA及
びBが従動側流体圧駆動手段を構成する流体圧ポンプモ
ータとしての斜板型可変容量ポンプモータ10の吸入・
吐出口10a及び10bに接続されており、ノーマル位
置で高圧配管8Hの高圧油を可変容量ポンプモータ10
の吸入・吐出口10aに、低圧配管8Lを吸入・吐出口
10bに連通させて回転軸10cを前進走行時の回転方
向例えば左側面からみて時計方向に回転駆動し、逆にオ
フセット位置で高圧配管8Hの高圧油を可変容量ポンプ
モータ10の吸入・吐出口10bに、低圧配管8Lを吸
入・吐出口10aに連通させて回転軸10cを前進走行
時の回転方向例えば左側面からみて反時計方向に回転駆
動する。
In the electromagnetic directional control valve 9 for switching between forward and reverse, the pump port P communicates with the output port A and the tank port T communicates with the output port B at the normal position where the solenoid 9a is in the non-energized state. When the pump port P is in communication with the output port B and the tank port T is in communication with the output port A at the offset position which is in the energized state, the output ports A and B are oblique as a fluid pressure pump motor constituting driven side fluid pressure driving means. Intake of plate type variable displacement pump motor 10
Connected to the discharge ports 10a and 10b, the high-pressure oil in the high-pressure pipe 8H is supplied to the variable displacement pump motor 10 at the normal position.
The low-pressure pipe 8L is communicated with the suction / discharge port 10a, and the rotary shaft 10c is rotationally driven in the rotation direction during forward traveling, for example, clockwise when viewed from the left side surface, and conversely with the high-pressure pipe at the offset position. The high-pressure oil of 8H communicates with the suction / discharge port 10b of the variable displacement pump motor 10 and the low-pressure pipe 8L communicates with the suction / discharge port 10a to rotate the rotary shaft 10c in the forward rotation direction, for example, counterclockwise when viewed from the left side surface. Drive to rotate.

【0022】なお、電磁方向切換弁9は、斜板型可変容
量ポンプモータ10に内蔵され、出力ポートA及びBが
配管を介することなくポンプモータ10の吸入・吐出口
10a及び10bに連結されている。また、電磁方向切
換弁9のソレノイド9aへの通電、ソレノイド9aが図
示しないがシフトレバーで後進を選択したときに、オン
状態となるシフト位置検出スイッチ9bを介して直流電
源9cに接続されることにより、前進走行時には非通電
状態に、後進走行時には通電状態に夫々制御される。
The electromagnetic directional control valve 9 is built in the swash plate type variable displacement pump motor 10, and the output ports A and B are connected to the suction / discharge ports 10a and 10b of the pump motor 10 without a pipe. There is. Further, the solenoid 9a of the electromagnetic directional control valve 9 is energized, and the solenoid 9a is connected to the DC power source 9c via the shift position detection switch 9b which is turned on when the reverse lever is selected by the shift lever (not shown). Thus, the vehicle is controlled to be in a non-energized state during forward traveling and to be energized during backward traveling.

【0023】この可変容量ポンプモータ10の流量は、
電磁方向切換弁9のタンクポートT近傍の低圧配管8L
に介挿された差圧検出用オリフィス11の両端に発生す
る差圧で油圧シリンダ12aを含んで構成される可変制
御機構としての斜板可変機構12を制御することによ
り、図2で特性曲線L2 で示すように、回転速度がV1
に達するまでの間では回転速度の増加に比例して増加し
て回転速度V1 に達したときに、ピストンポンプ6の最
大吐出流量Q1MAXより多い最大吐出流量Q2MAXとなり、
その後回転速度の増加にかかわらず最大吐出流量Q2MAX
を維持する。ここで、可変容量ポンプモータ10の吐出
流量とピストンポンプ6の吐出流量とは、図2に示すよ
うに、同一車輪速度に対して可変容量ポンプモータ10
の吐出流量がピストンポンプ6の吐出流量より多くなる
ように固有吐出流量、回転軸に連結されたギヤのギヤ比
が設定されている。
The flow rate of the variable displacement pump motor 10 is
Low pressure pipe 8L near the tank port T of the electromagnetic directional control valve 9
By controlling the swash plate variable mechanism 12 as a variable control mechanism configured to include the hydraulic cylinders 12a by the differential pressure generated at both ends of the differential pressure detecting orifice 11 inserted in the characteristic curve L in FIG. As indicated by 2 , the rotation speed is V 1
Until reaching the rotational speed V 1 in proportion to the increase in the rotational speed, the maximum discharge flow rate Q 2MAX , which is larger than the maximum discharge flow rate Q 1MAX of the piston pump 6, becomes
After that, regardless of the increase in rotation speed, the maximum discharge flow rate Q 2MAX
To maintain. Here, the discharge flow rate of the variable displacement pump motor 10 and the discharge flow rate of the piston pump 6 are, as shown in FIG.
The specific discharge flow rate and the gear ratio of the gear connected to the rotating shaft are set so that the discharge flow rate of the piston pump 6 is higher than the discharge flow rate of the piston pump 6.

【0024】また、吸入絞り型ピストンポンプ6の吸込
口6b及び吐出口6c間にトルク制限手段としてのピス
トンポンプ6の吐出圧の上限を定めるリリーフ弁13が
介挿されていると共に、油圧ポンプ6及び電磁方向切換
弁9間における高圧配管8H及び低圧配管8L間を連通
する連通配管14Aに低圧配管8L側から高圧配管8H
側への流体流れを許容する逆止弁15が介挿されている
と共に、連通配管14Aと並列に配設された連通配管1
4Bに逆止弁15と並列関係に固定オリフィス16が接
続されている。
Further, a relief valve 13 for limiting the upper limit of the discharge pressure of the piston pump 6 as a torque limiting means is interposed between the suction port 6b and the discharge port 6c of the suction throttle type piston pump 6, and the hydraulic pump 6 is also provided. And the high-pressure pipe 8H from the low-pressure pipe 8L side to the communication pipe 14A that communicates between the high-pressure pipe 8H and the low-pressure pipe 8L between the electromagnetic direction switching valves 9.
A communication pipe 1 in which a check valve 15 that allows a fluid flow to the side is inserted and is arranged in parallel with the communication pipe 14A.
A fixed orifice 16 is connected to 4B in parallel relationship with the check valve 15.

【0025】一方、斜板型可変容量ポンプモータ10の
回転軸10cにギヤ10dが取付けられ、このギヤ10
dに後輪側差動装置17のディファレンシャルギヤケー
ス17aに形成されたリングギヤ17bが噛合されてい
る。この後輪側差動装置17は、前述した前輪側差動装
置3と略同様の構成を有し、ディファレンシャルギヤケ
ース17a内に形成された一対のピニオンシャフト17
cにピニオン17dが取付けられ、これらピニオン17
dに一対のサイドギヤ17eが噛合し、これらサイドギ
ヤ17eに後車軸18が連結され、この後車軸18に後
輪19が連結されている。
On the other hand, a gear 10d is attached to the rotary shaft 10c of the swash plate type variable displacement pump motor 10.
A ring gear 17b formed in a differential gear case 17a of the rear wheel side differential device 17 is meshed with d. The rear wheel side differential device 17 has a configuration similar to that of the front wheel side differential device 3 described above, and a pair of pinion shafts 17 formed in the differential gear case 17a.
pinion 17d is attached to c, and these pinion 17
A pair of side gears 17e meshes with d, a rear axle 18 is connected to these side gears 17e, and a rear wheel 19 is connected to this rear axle 18.

【0026】次に、上記実施例の動作を説明する。今、
車両が乾燥路面等の高摩擦係数路で停車して、エンジン
1がアイドリング状態にある制動状態で、前進走行を開
始する場合には、シフトレバーを前進走行側に切換える
ことにより、発進可能状態とすることができるが、この
とき後進走行側のシフト位置検出スイッチ9bはオフ状
態を維持するため、前後進切換用電磁方向切換弁9のソ
レノイド9aは非通電状態を維持して、切換位置が図1
に示すノーマル位置を継続する。この状態で、ブレーキ
ペダルを解放してアクセルペダルを踏込むことにより、
エンジン1の回転力が変速機2を介して前輪側差動装置
3に伝達され、この前輪側作動装置3で前輪5を前進方
向に回転駆動することにより、前進を開始する。このと
き、吸入絞り型ピストンポンプ6の回転軸6aが左側面
からみて時計方向に回転駆動されることにより、このピ
ストンポンプ6から回転速度に応じた吐出流量の作動油
が吐出され、これが高圧配管8Hを介し、前後進切換用
電磁方向切換弁9を介して斜板型可変容量ポンプモータ
10の吸入・吐出口10aに供給されるが、車両の発進
により後輪19も前輪5と同方向に同一回転速度で回転
駆動されるので、後輪側差動装置17を介して斜板型可
変容量ポンプモータ10の回転軸10cが左側面からみ
て時計方向に回転し、これによって吸入・吐出口10a
から作動油が吸入され、吸入・吐出口10bから作動油
が吐出される。ここで、吸入絞り型ピストンポンプ6と
斜板型可変容量ポンプモータ10の吐出流量は、図2に
示すように、同一回転速度Vr では、可変容量ポンプモ
ータ10の吐出流量がピストンポンプ6に比較して多く
なるように設定されているので、ピストンポンプ6から
吐出された高圧作動油は可変容量ポンプモータ10によ
り吸い込まれしまうため、高圧配管8Hの圧力は上がら
ない。すなわち、可変容量ポンプモータ10は油圧モー
タとして作用せず後輪19に駆動力が伝達されることは
なく、前輪駆動車と同様な状態で前進走行する。このと
き、可変容量ポンプモータ10の吸入流量は、ピストン
ポンプ6の吐出流量を上回ることになるため、不足分は
低圧配管8L、連通配管14A、逆止弁15を介して補
給される。
Next, the operation of the above embodiment will be described. now,
When the vehicle stops on a high friction coefficient road such as a dry road surface and starts forward traveling in a braking state in which the engine 1 is in an idling state, by switching the shift lever to the forward traveling side, the vehicle can be started. However, at this time, the shift position detection switch 9b on the reverse traveling side is maintained in the OFF state, so that the solenoid 9a of the forward / reverse switching electromagnetic directional control valve 9 is maintained in the non-energized state, and the switching position is changed. 1
Continue the normal position shown in. In this state, release the brake pedal and step on the accelerator pedal,
The rotational force of the engine 1 is transmitted to the front wheel side differential device 3 via the transmission 2, and the front wheel side actuating device 3 rotationally drives the front wheels 5 in the forward direction to start the forward movement. At this time, the rotary shaft 6a of the suction throttle type piston pump 6 is rotationally driven in the clockwise direction as viewed from the left side surface, so that the piston pump 6 discharges a hydraulic fluid at a discharge flow rate according to the rotation speed, which is the high pressure pipe. It is supplied to the suction / discharge port 10a of the swash plate type variable displacement pump motor 10 via the forward / reverse switching electromagnetic directional control valve 9 via 8H, but the rear wheel 19 also moves in the same direction as the front wheel 5 when the vehicle starts. Since it is driven to rotate at the same rotation speed, the rotary shaft 10c of the swash plate type variable displacement pump motor 10 rotates clockwise through the rear wheel side differential device 17 when viewed from the left side surface, whereby the suction / discharge port 10a.
The hydraulic oil is sucked in from the suction / discharge port 10b. Here, as shown in FIG. 2, the discharge flow rate of the suction throttle type piston pump 6 and the swash plate type variable displacement pump motor 10 is the same as that of the piston pump 6 at the same rotation speed Vr. Since the high pressure hydraulic oil discharged from the piston pump 6 is sucked by the variable displacement pump motor 10, the pressure in the high pressure pipe 8H does not rise. That is, the variable displacement pump motor 10 does not act as a hydraulic motor, the driving force is not transmitted to the rear wheels 19, and the variable displacement pump motor 10 travels forward in a state similar to that of a front-wheel drive vehicle. At this time, since the suction flow rate of the variable displacement pump motor 10 exceeds the discharge flow rate of the piston pump 6, the shortage is replenished via the low pressure pipe 8L, the communication pipe 14A, and the check valve 15.

【0027】このピストンポンプ6及び可変容量ポンプ
モータ10の吐出流量差は、タイヤの摩耗による径変化
などにより生じる前後車軸4,18の回転数差を許容す
ることにもなり、異径タイヤで生じる回転数差程度では
駆動力は伝達されず、前輪駆動車状態が維持され、燃費
を悪化させることを抑制することができる。次に、凍結
路、降雪路等の低摩擦係数路で発進する場合には、前述
したように、先ず前輪5が回転駆動されるが、低摩擦係
数路であるため、前輪5がスリップして、前輪5及び後
輪19との間に前輪5が高回転数となる回転数差が生じ
て、吸入絞り型ピストンポンプ6の吐出流量が斜板型可
変容量ポンプモータ10の吐出流量を上回ることになる
と、可変容量ポンプモータ10の抵抗が負荷となり高圧
配管8Hの作動油圧が上昇することになるため、可変容
量ポンプモータ10が油圧モータとして作動することな
って、高圧配管8Hの圧力に応じた駆動力が後輪側差動
装置17を介して後輪19に伝達される。
The difference in the discharge flow rate between the piston pump 6 and the variable displacement pump motor 10 also allows a difference in the number of rotations of the front and rear axles 4 and 18 caused by a diameter change due to wear of the tire, and occurs in a tire having a different diameter. The driving force is not transmitted when the rotational speed difference is about the same, the front-wheel drive vehicle state is maintained, and it is possible to suppress deterioration of fuel consumption. Next, when the vehicle starts on a low friction coefficient road such as an icy road or a snowfall road, the front wheels 5 are first driven to rotate as described above, but since the road is a low friction coefficient road, the front wheels 5 slip. , The front wheel 5 and the rear wheel 19 have a high rotational speed difference between the front wheel 5 and the rear wheel 19, and the discharge flow rate of the suction throttle type piston pump 6 exceeds the discharge flow rate of the swash plate type variable displacement pump motor 10. Then, the resistance of the variable displacement pump motor 10 becomes a load, and the operating oil pressure of the high-pressure pipe 8H rises. Therefore, the variable displacement pump motor 10 operates as a hydraulic motor, and the pressure of the high-pressure pipe 8H is adjusted accordingly. The driving force is transmitted to the rear wheel 19 via the rear wheel side differential device 17.

【0028】すなわち、後輪19側に伝達されるトルク
は、図3に示すように、前後輪にある回転数差が生じて
初めて発生し、回転数差の増大と共に急増し、リリーフ
弁13による圧力制限によって最大トルクTMAX が規制
されることになる。このトルク制限作用により、後輪側
差動装置17、ドライブシャフトなどの構成部材の強度
を従来の四輪駆動車に比べて下げることが可能となり、
重量、燃費、コストの低減を図ることができる。
That is, as shown in FIG. 3, the torque transmitted to the rear wheel 19 side is generated only when there is a difference in the number of rotations between the front and rear wheels, and rapidly increases with an increase in the difference in the number of rotations. The pressure limit limits the maximum torque T MAX . Due to this torque limiting action, it becomes possible to reduce the strength of the components such as the rear wheel differential device 17 and the drive shaft, as compared with the conventional four-wheel drive vehicle.
Weight, fuel consumption, and cost can be reduced.

【0029】また、後輪19側に伝達されるトルクは、
図3に示すように、低速時ほど少ない回転数差で駆動力
を発生し易い特性を有し、これは図2に示すように、吸
入絞り型ピストンポンプ6と斜板型可変容量ポンプモー
タ10の吐出流量特性の固有域における流量が、車輪速
が高いほどその流量差が大きくなることにより起因して
いる。この図2の流量特性とすることにより、流量差が
高速になるほど大きくなるため四輪駆動になる必要のな
い高速走行時には四輪駆動車になりずらい特性となり、
図2において車輪速度が0〜Vr 間は車速が大きいほど
トルク立ち上がり回転数差が大きくなるが、車輪速度が
Vr 以上ではトルクは生じない。
The torque transmitted to the rear wheel 19 side is
As shown in FIG. 3, it has a characteristic that a driving force is easily generated with a smaller rotational speed difference at lower speeds. As shown in FIG. 2, this is due to the suction throttle piston pump 6 and the swash plate type variable displacement pump motor 10. The flow rate in the proper range of the discharge flow rate characteristic is caused by the fact that the flow rate difference increases as the wheel speed increases. By adopting the flow rate characteristic of FIG. 2, the flow rate difference becomes larger as the speed becomes higher, so that it becomes a characteristic that a four-wheel drive vehicle is less likely to become a four-wheel drive vehicle at the time of high-speed traveling in which it is not necessary
In FIG. 2, when the vehicle speed is between 0 and Vr, the higher the vehicle speed is, the larger the torque rising rotational speed difference becomes, but when the wheel speed is Vr or higher, no torque is generated.

【0030】さらに、電磁方向切換弁9のタンクポート
Tに接続された低圧配管8Lに介挿された差圧検出用オ
リフィス11の前後の差圧を斜板可変機構12に導入し
て、斜板型可変容量ポンプモータ10の吐出流量が増加
してオリフィス11の前後の差圧が大きくなると斜板型
可変容量ポンプモータ10の斜板角を変更して、図2に
示すように、所定車輪速度Vr より速く車輪速度V1
り遅い所定車輪速度V 2 未満では車輪速度の増加に応じ
て増加し、所定車輪速度V2 以上となると可変容量ポン
プモータ10の固有吐出量を最大吐出流量Q2MAXに維持
するようにしているので、高速走行時での過大な流量増
を抑制して、バルブや配管の大径化を行うことなく、配
管抵抗の増大によるシステムの圧力損失即ち引きずり抵
抗の増大を確実に抑制し、燃費の悪化を防止することが
できると共に、可変容量ポンプモータ10の吸込側には
差圧検出用オリフィス10が介挿されることがないの
で、油温の上昇や可変容量ポンプモータ10の吸込側で
作動油の吸込みが追いつかなくなり圧力が異常に低下す
ることにより気泡が発生してキャビテーションを起こす
ことを確実に抑制することができ、しかも低圧配管8L
に差圧検出用オリフィス11が介挿されているので、こ
のオリフィス11の前後で極端に大きな差圧が生じるこ
とも防止することができる。
Further, the tank port of the electromagnetic directional control valve 9
The differential pressure detection switch inserted in the low pressure pipe 8L connected to T
Introducing the differential pressure before and after the refill 11 into the swash plate variable mechanism 12
The discharge flow rate of the swash plate type variable displacement pump motor 10 increases.
If the differential pressure before and after the orifice 11 increases, the swash plate type
By changing the swash plate angle of the variable displacement pump motor 10,
As shown, the wheel speed V is faster than the predetermined wheel speed Vr.1Yo
Slower predetermined wheel speed V 2Less than depending on increasing wheel speed
Increase to a predetermined wheel speed V2When it is above, the variable capacity pon
The specific discharge amount of the pump motor 10 is set to the maximum discharge flow rate Q.2MAXMaintained in
Therefore, the flow rate increases excessively when driving at high speed.
Control and increase the diameter of valves and pipes without increasing the diameter.
System pressure loss or drag due to increased tube resistance.
It is possible to reliably suppress the increase in resistance and prevent deterioration of fuel efficiency.
It is possible and on the suction side of the variable displacement pump motor 10,
The differential pressure detecting orifice 10 is not inserted.
At the suction side of the variable displacement pump motor 10
The suction of hydraulic oil cannot catch up and the pressure drops abnormally.
Causes air bubbles to cause cavitation
That can be reliably suppressed, and low pressure piping 8L
Since the differential pressure detection orifice 11 is inserted in the
An extremely large differential pressure is generated before and after the orifice 11 of
Both can be prevented.

【0031】因みに、図4に示すように、高圧配管8H
の電磁方向切換弁9のポンプポートP側に差圧検出用オ
リフィス11を介挿した場合には、前後輪の回転数差が
少ない状態で、ピストンポンプ6から可変容量ポンプモ
ータ10に対する駆動力の伝達が殆どない無負荷の作動
状態では、可変容量ポンプモータ10の吸込側の吸込み
に対して抵抗となり、キャビテーションを起こし易くな
り、初期の目的を達成することができないものである。
Incidentally, as shown in FIG. 4, the high pressure pipe 8H
When the differential pressure detecting orifice 11 is inserted on the pump port P side of the electromagnetic directional control valve 9, the driving force from the piston pump 6 to the variable displacement pump motor 10 is reduced with a small difference in the rotational speeds of the front and rear wheels. In a no-load operation state where there is almost no transmission, the variable displacement pump motor 10 becomes a resistance against suction on the suction side, cavitation is likely to occur, and the initial purpose cannot be achieved.

【0032】さらに、図3におけるトルクの立ち上がり
は、高圧配管8H及び低圧配管8Lを連通する連通配管
14Bに介挿された固定オリフィス16により高圧配管
8Hから低圧配管8Lへの漏れ量を管理し、圧力の立ち
上がりを変えることで特性を任意に設定可能である。そ
して、オリフィスが有する作動油の粘性変化に伴う温度
特性により高温時に比べて低温時は漏れ量が減り駆動力
が発生し易い特性になるため、四輪駆動車としての機能
を要求される機会の多い冬期に四輪駆動になり易くなる
という利点がある。
Further, the rising of the torque in FIG. 3 manages the amount of leakage from the high pressure pipe 8H to the low pressure pipe 8L by the fixed orifice 16 inserted in the communication pipe 14B which connects the high pressure pipe 8H and the low pressure pipe 8L. The characteristics can be set arbitrarily by changing the rise of pressure. Due to the temperature characteristics associated with the viscosity change of the hydraulic oil possessed by the orifice, the amount of leakage decreases and the driving force is more likely to be generated at low temperatures than at high temperatures. There is an advantage that it becomes easy to use four-wheel drive in winter.

【0033】次に、車両を後進させる場合には、シフト
レバーを後進位置に切換えることにより、シフト位置検
出スイッチ9bがオン状態となるため、前後進切換用電
磁方向切換弁9のソレノイド9aが通電状態となり、図
4に示すように、切換位置がノーマル位置からオフセッ
ト位置に切換えられ、これによって高圧配管8Hの作動
油を斜板型可変容量ポンプモータ10の吸入・吐出口1
0bに供給し、吸入・吐出口10aから吐出される作動
油を低圧配管8L側に戻すことにより、可変容量ポンプ
モータ10の回転軸10cを前進走行時とは逆転させ
て、後輪19を逆回転させる。このため、後進時におい
ても、駆動力の伝達については前進時と全く同様であ
り、前輪5がスリップして前後車軸4,18にある回転
数差が生じた時のみ高圧配管8Hに圧力が発生し、駆動
力が後輪19に伝達されると共に、前後車軸4,18の
回転数差が小さい場合における斜板型可変容量ポンプモ
ータ10の吸入量不足分は低圧配管8L、連通配管14
A及び逆止弁15を介して補給される。
Next, when the vehicle is moved backward, the shift position detection switch 9b is turned on by switching the shift lever to the reverse position, so that the solenoid 9a of the forward-reverse switching electromagnetic directional control valve 9 is energized. As shown in FIG. 4, the switching position is switched from the normal position to the offset position, whereby the working oil in the high-pressure pipe 8H is transferred to the suction / discharge port 1 of the swash plate type variable displacement pump motor 10.
0b, and the working oil discharged from the suction / discharge port 10a is returned to the low-pressure pipe 8L side, whereby the rotary shaft 10c of the variable displacement pump motor 10 is reversed from that during forward traveling, and the rear wheel 19 is reversed. Rotate. Therefore, when the vehicle is moving backward, the transmission of the driving force is exactly the same as when moving forward, and pressure is generated in the high-pressure pipe 8H only when the front wheel 5 slips and the rotational speed difference between the front and rear axles 4 and 18 occurs. However, when the driving force is transmitted to the rear wheel 19 and the difference in the rotational speeds of the front and rear axles 4 and 18 is small, the insufficient intake amount of the swash plate type variable displacement pump motor 10 is the low pressure pipe 8L and the communication pipe 14.
It is replenished via A and the check valve 15.

【0034】このとき、前輪側の吸入絞り型ピストンポ
ンプ6は、前述したように、回転方向が逆転してもポン
プの吸入口と吐出口とが入れ替わることはないと共に、
前後進切換用電磁方向切換弁9が可変容量ポンプモータ
10に内蔵されているため、高価な高耐圧配管は高圧配
管8Hに使用するだけで済むと共に、リリーフ弁13、
逆止弁15、オリフィス16なども一方向の流れのみに
対応できるように設ければよいので、他の方式のポンプ
を用いた場合に比べて油路構成を極めて簡略化すること
ができる。
At this time, as described above, in the suction throttle type piston pump 6 on the front wheel side, the suction port and the discharge port of the pump are not interchanged even if the rotation direction is reversed, and
Since the forward / backward switching electromagnetic directional switching valve 9 is built in the variable displacement pump motor 10, expensive high pressure piping can be used only for the high pressure piping 8H, and the relief valve 13,
Since the check valve 15, the orifice 16 and the like may be provided so as to handle only one direction of flow, the oil passage structure can be extremely simplified as compared with the case of using a pump of another system.

【0035】また、前輪駆動車ベースのアンチスキッド
制御装置装着車においては、制動時に前輪の回転数は後
輪の回転数より小さくなるため、油圧伝達機構による駆
動力は発生されず、アンチスキッド制御装置との干渉を
小さくすることができる利点がある。なお、上記第1実
施例においては、差圧検出用オリフィス11の前後の差
圧を斜板可変機構12に供給する場合について説明した
が、これに限定されるものではなく、低圧配管8L側に
差圧検出用オリフィス11を介挿した場合には、差圧検
出用オリフィス11の出側の圧力は大気圧となるので、
可変容量ポンプ10内のドレーン圧と同一であるため、
図5に示すように、差圧検出用オリフィス11の高圧側
即ち電磁方向切換弁9のタンクポートT側の圧力のみを
斜板可変機構12の油圧シリンダ12aのヘッドカバー
側油圧室12bに導入するようにしてもよく、この場合
には油圧配管数を減少させることができる利点がある。
Further, in a vehicle equipped with a front wheel drive vehicle-based anti-skid control device, the rotation speed of the front wheels becomes smaller than the rotation speed of the rear wheels during braking, so that the driving force by the hydraulic transmission mechanism is not generated and the anti-skid control is performed. There is an advantage that interference with the device can be reduced. In addition, in the said 1st Example, although the case where the differential pressure before and behind the orifice 11 for differential pressure detection was supplied to the swash plate variable mechanism 12 was demonstrated, it is not limited to this, and it connects to the low pressure piping 8L side. When the differential pressure detecting orifice 11 is inserted, the pressure on the outlet side of the differential pressure detecting orifice 11 becomes atmospheric pressure.
Since it is the same as the drain pressure in the variable displacement pump 10,
As shown in FIG. 5, only the pressure on the high pressure side of the differential pressure detection orifice 11, that is, the pressure on the tank port T side of the electromagnetic directional control valve 9 is introduced into the head cover side hydraulic chamber 12b of the hydraulic cylinder 12a of the swash plate variable mechanism 12. However, in this case, there is an advantage that the number of hydraulic pipes can be reduced.

【0036】次に、本発明の第2実施例を図6について
説明する。この第2実施例は、前後輪の回転数差が少な
く可変容量ポンプモータ10の吐出流量がピストンポン
プ6の吐出流量より多い場合に可変容量ポンプモータ1
0の吸込口10a側の圧力低下を抑制するようにしたも
のである。したがって、第2実施例においては、図6に
示すように、低圧配管8Lの連通配管14Aより下流側
に差圧検出用オリフィス11が介挿されていることを除
いては前述した第1実施例と同様の構成を有し、図1と
の対応部分には同一符号を付し、その詳細説明はこれを
省略する。
Next, a second embodiment of the present invention will be described with reference to FIG. In the second embodiment, the variable displacement pump motor 1 is used when the rotation speed difference between the front and rear wheels is small and the discharge flow rate of the variable displacement pump motor 10 is higher than the discharge flow rate of the piston pump 6.
The pressure drop on the suction port 10a side of 0 is suppressed. Therefore, in the second embodiment, as shown in FIG. 6, the first embodiment described above except that the differential pressure detecting orifice 11 is inserted downstream of the communication pipe 14A of the low pressure pipe 8L. 1 has the same configuration as that of FIG. 1, and the corresponding portions to those of FIG. 1 are denoted by the same reference numerals and detailed description thereof will be omitted.

【0037】この第2実施例によると、前車軸4と後車
軸18とが略等しい回転をしているときには、ピストン
ポンプ6の吐出流量に比較して可変容量ポンプモータ1
0の吐出流量が多く設定されているので、前述したよう
に可変容量ポンプモータ10の吸入流量が不足すること
になり、この不足分が連通配管14A及び逆止弁15を
介して補給されることになるが、このとき連通配管14
Aの低圧配管8Lとの接続点が差圧検出用オリフィス1
1より上流側となり、このオリフィス11の上流側の圧
力がドレーン圧力に対して上昇しているため、可変容量
ポンプモータ10の前進側吸入口10a又は後進側吸入
口10bの吸込圧力が低下することを確実に阻止するこ
とができ、前述した第1実施例に比較してよりキャビテ
ーションの発生を抑制することができる。
According to the second embodiment, when the front axle 4 and the rear axle 18 rotate substantially equally, the variable displacement pump motor 1 is compared with the discharge flow rate of the piston pump 6.
Since the discharge flow rate of 0 is set to a large amount, the suction flow rate of the variable displacement pump motor 10 becomes insufficient as described above, and this shortage is replenished via the communication pipe 14A and the check valve 15. However, at this time, the communication pipe 14
The differential pressure detection orifice 1 is connected to the low pressure pipe 8L of A.
1, the pressure on the upstream side of the orifice 11 rises with respect to the drain pressure, so the suction pressure of the forward suction port 10a or the reverse suction port 10b of the variable displacement pump motor 10 decreases. Can be reliably prevented, and the occurrence of cavitation can be suppressed more than in the first embodiment described above.

【0038】この第2実施例においても、前述した第1
実施例と同様に差圧検出用オリフィス11の下流側の圧
力が大気圧となっているので、図5の場合と同様に、差
圧検出用オリフィス11と連通配管14Bとの間の上流
側圧力のみを斜板可変機構12を構成する油圧シリンダ
12aのヘッドカバー側油圧室12bに供給するように
してもよく、この場合には油圧配管を減少させることが
できる。
Also in this second embodiment, the above-mentioned first
Since the pressure on the downstream side of the differential pressure detection orifice 11 is atmospheric pressure as in the embodiment, the upstream pressure between the differential pressure detection orifice 11 and the communication pipe 14B is the same as in the case of FIG. Alternatively, only the head cover side hydraulic chamber 12b of the hydraulic cylinder 12a that constitutes the swash plate variable mechanism 12 may be supplied. In this case, the hydraulic piping can be reduced.

【0039】なお、上記第1及び第2実施例において
は、伝達トルク制限手段としてリリーフ弁13を適用し
た場合について説明したが、これに限定されるものでは
なく、図7に示すように、ピストンポンプ6の吐出圧を
容量制御圧として入力し、これに応じてピストンポンプ
6の吸入口6b側の吸入通路の開度を吐出圧が所定圧以
上となったときに小さく制御する吸入絞り弁21を設け
るようにしてもよく、この場合にはポンプ吐出圧が規定
の圧力以上となるとポンプ吸入量が減少することによ
り、ポンプ吐出圧が減少してトルク制限を行うことがで
き、これと同時にリリーフ弁を用いた場合には連続高負
荷使用時に油温上昇を生じるが、吸入絞り弁21を設け
た場合には、吐出流量が減少することから発熱の抑制を
図ることができる。
In the first and second embodiments, the case where the relief valve 13 is applied as the transmission torque limiting means has been described, but the present invention is not limited to this, and as shown in FIG. The discharge pressure of the pump 6 is input as a displacement control pressure, and in response to this, a suction throttle valve 21 for controlling the opening degree of the suction passage on the suction port 6b side of the piston pump 6 to be small when the discharge pressure exceeds a predetermined pressure. May be provided. In this case, when the pump discharge pressure becomes equal to or higher than the specified pressure, the pump suction amount decreases, so that the pump discharge pressure decreases and the torque can be limited. When the valve is used, the oil temperature rises during continuous high load use, but when the suction throttle valve 21 is provided, the discharge flow rate is reduced, so that heat generation can be suppressed.

【0040】また、上記第1及び第2実施例において
は、後輪側差動装置17を設けた場合について説明した
が、これに限定されるものではなく、図8に示すよう
に、後輪差動装置17を省略し、これに代えて左右後輪
19L,19Rの左右車軸18L,18Rに個別に斜板
型可変容量ポンプモータ10L及び10Rを設けるよう
に構成してもよく、この場合には、旋回時などで左右輪
で異なる負荷となる場合には、各可変容量ポンプモータ
10L,10Rで自然にその差に応じた吐出流量差を生
じることから差動装置と同等の差動機能を発揮すること
ができ、この場合もトルク制限手段としては、図示のリ
リーフ弁13でも図7に示す吸入絞り弁21の何れであ
ってもよい。
In the first and second embodiments, the case where the rear wheel side differential device 17 is provided has been described, but the present invention is not limited to this, and as shown in FIG. The differential device 17 may be omitted, and instead, the left and right axles 18L and 18R of the left and right rear wheels 19L and 19R may be respectively provided with the swash plate type variable displacement pump motors 10L and 10R. In this case, When the left and right wheels have different loads during turning, etc., each of the variable displacement pump motors 10L and 10R naturally produces a discharge flow rate difference corresponding to the difference, so that a differential function equivalent to that of a differential device is provided. In this case as well, the torque limiting means may be either the relief valve 13 shown or the suction throttle valve 21 shown in FIG. 7.

【0041】さらに、上記第1及び第2実施例において
は、流体圧ポンプとして回転軸6aの回転方向にかかわ
らず吸入口6bと吐出口6cとが変化しない吸入絞り型
ピストンポンプ6を適用した場合について説明したが、
これに限定されるものではなく、図9に示すように、回
転軸30aがギヤ3gに連結された油圧ポンプ30の吸
込口30b及び吐出口30cに夫々ポンプポートP及び
タンクポートTを接続し、出力ポートA及びBを高圧配
管8H及び8Lに接続した前後進切換用電磁方向切換弁
9と同様の前後進切換用電磁方向切換弁31を設けるよ
うにすれば、前後進で吐出方向が切り換わるギヤポンプ
やベーンポンプ等の他の油圧ポンプを適用することがで
き、この場合の油圧ポンプとしては固定容量式でも図9
に示すように低圧配管8Lに介挿された差圧発生用オリ
フィス32の前後差圧が入力される油圧シリンダ33a
を含む可変機構33を備えた可変容量式の何れであって
もよく、さらに差動機構17を省略して図8に示すよう
に2組の斜板型可変容量ポンプモータ10L及び10R
を適用するようにしてもよい。
Further, in the first and second embodiments, when the suction throttle type piston pump 6 in which the suction port 6b and the discharge port 6c do not change regardless of the rotation direction of the rotary shaft 6a is applied as the fluid pressure pump. I explained about
As shown in FIG. 9, the pump port P and the tank port T are connected to the suction port 30b and the discharge port 30c of the hydraulic pump 30 in which the rotary shaft 30a is connected to the gear 3g, respectively, as shown in FIG. If a forward / backward switching electromagnetic directional control valve 31 similar to the forward / backward switching electromagnetic directional control valve 9 in which the output ports A and B are connected to the high-pressure pipes 8H and 8L is provided, the discharge direction is switched forward / backward. Other hydraulic pumps such as gear pumps and vane pumps can be applied. In this case, the hydraulic pump can be a fixed displacement type, as shown in FIG.
The hydraulic cylinder 33a into which the differential pressure across the differential pressure generating orifice 32 inserted in the low pressure pipe 8L is input as shown in FIG.
It may be of any variable displacement type including a variable mechanism 33 including the above, and the differential mechanism 17 is omitted, and two sets of swash plate type variable displacement pump motors 10L and 10R are provided as shown in FIG.
May be applied.

【0042】さらにまた、上記第1及び第2実施例にお
いては、前後進切換用電磁方向切換弁9をポンプモータ
10に内蔵させた場合について説明したが、これに限定
されるものではなく、ポンプモータ10の外側に別設す
るようにしてもよい。また、上記第1及び第2実施例に
おいては、前輪駆動車をベースとした実施例について説
明したが、これに限らず後輪駆動車をベースとした場合
にも、ポンプ6を後輪側に、ポンプモータ10を前輪側
に配置することで、上記実施例と同様の作用効果を得る
ことができる。
Furthermore, in the above-mentioned first and second embodiments, the case where the forward / reverse switching electromagnetic directional control valve 9 is incorporated in the pump motor 10 has been described, but the present invention is not limited to this. It may be separately provided outside the motor 10. Further, in the above-mentioned first and second embodiments, the embodiment based on the front-wheel drive vehicle has been described, but the present invention is not limited to this, and when the rear-wheel drive vehicle is also the base, the pump 6 is arranged on the rear wheel side. By arranging the pump motor 10 on the front wheel side, it is possible to obtain the same effects as those of the above embodiment.

【0043】[0043]

【発明の効果】以上説明したように、請求項1に係る四
輪駆動車によれば、主原動機により駆動される駆動車軸
と、該駆動車軸に連動して駆動される駆動側流体圧駆動
手段と、従動車軸に連動して駆動される従動側流体圧駆
動手段とを有し、前記駆動側流体圧駆動手段及び従動側
流体圧駆動手段とを高圧流路及び低圧流路で連通させて
流体圧伝動機構を構成した四輪駆動車において、前記低
圧流路に差圧検出手段を配設すると共に、前記従動側流
体圧駆動手段にその容量を前記差圧検出手段の差圧検出
値に基づいて可変制御する可変制御機構を設けた構成と
したので、高車速走行時に従動側流体圧駆動手段で過大
な吐出流量となることを抑制することができ、キャビテ
ーションの発生を抑制できると共に、高圧流路とは切り
分けられた差圧検出手段が低圧流路に介挿されているた
め、駆動側流体圧駆動手段と従動側流体圧駆動手段との
間で駆動力の伝達をしていない無負荷作動状態であって
もキャビテーションの発生を抑制することができるとい
う効果が得られる。
As described above, according to the four-wheel drive vehicle of the first aspect, the drive axle driven by the main motor and the drive side fluid pressure drive means driven in conjunction with the drive axle. And a driven-side fluid pressure driving means that is driven in conjunction with the driven axle, and connects the driving-side fluid pressure driving means and the driven-side fluid pressure driving means with a high-pressure passage and a low-pressure passage. In a four-wheel drive vehicle having a pressure transmission mechanism, a differential pressure detecting means is provided in the low-pressure passage, and the driven-side fluid pressure driving means has a capacity based on a differential pressure detection value of the differential pressure detecting means. Since a variable control mechanism for variable control is provided, it is possible to suppress an excessive discharge flow rate by the driven-side fluid pressure drive means when traveling at high vehicle speed, suppress cavitation, and suppress high-pressure flow. Differential pressure test separated from the road Since the means is inserted in the low-pressure flow path, cavitation does not occur even in the no-load operation state in which the driving force is not transmitted between the driving-side fluid pressure driving means and the driven-side fluid pressure driving means. The effect that it can be suppressed is obtained.

【0044】また、請求項2に係る四輪駆動車によれ
ば、主原動機により駆動される駆動車軸と、該駆動車軸
に連動して回転する流体圧ポンプを有する駆動側流体圧
駆動手段と、従動車軸に連動して回転する流体圧ポンプ
モータを有する従動側流体圧駆動手段とを有し、前記駆
動側流体圧駆動手段及び従動側流体圧駆動手段とを高圧
流路及び低圧流路で連通させて流体圧伝動機構を構成し
た四輪駆動車において、前記従動側流体圧駆動手段側に
おける高圧流路及び低圧流路に前後進切換用切換弁を介
挿し、該前後進切換用切換弁の駆動側流体圧駆動手段側
における前記低圧流路に差圧検出手段を配設すると共
に、前記従動側流体圧駆動手段にその容量を前記差圧検
出手段の差圧検出値に基づいて可変制御する可変制御機
構を設けた構成としたので、前後進切換用切換弁で従動
側流体圧駆動手段の回転方向により吐出側の変更がある
場合には、その変更に応じて高圧流路及び低圧流路を選
択することにより、吐出側の如何にかかわらず高圧流路
と低圧流路とを確実に切り分けることができ、差圧検出
手段が従動側流体圧駆動手段の吸込側となることを確実
に阻止してキャビテーションの発生を確実に阻止するこ
とができるという効果が得られる。
According to another aspect of the four-wheel drive vehicle of the present invention, the drive axle driven by the main prime mover, and the drive side fluid pressure drive means having the fluid pressure pump rotating in conjunction with the drive axle, Driven-side fluid pressure driving means having a fluid-pressure pump motor that rotates in conjunction with the driven axle, and the driving-side fluid pressure driving means and the driven-side fluid pressure driving means communicate with each other through a high-pressure passage and a low-pressure passage. In a four-wheel drive vehicle configured with a fluid pressure transmission mechanism, a forward / reverse switching switching valve is inserted in the high pressure passage and the low pressure passage on the driven fluid pressure driving means side, and the forward / reverse switching switching valve is A differential pressure detecting means is provided in the low pressure flow path on the drive side fluid pressure driving means side, and the capacity of the driven side fluid pressure driving means is variably controlled based on the differential pressure detection value of the differential pressure detecting means. Variable control mechanism provided When there is a change in the discharge side due to the rotation direction of the driven side fluid pressure drive means in the forward / reverse switching switching valve, the high pressure passage and the low pressure passage are selected in accordance with the change, and Regardless of the condition, the high-pressure flow path and the low-pressure flow path can be reliably separated, and the differential pressure detection means is reliably prevented from becoming the suction side of the driven fluid pressure drive means, and the occurrence of cavitation is reliably prevented. The effect of being able to do is obtained.

【0045】さらに、請求項3に係る四輪駆動車によれ
ば、可変制御機構が、差圧検出手段の差圧検出値が所定
値未満であるには従動側流体圧駆動手段の容量を車輪速
に比例させて増加させ、所定値以上となると最大容量に
維持するように構成されているので、高流量時に従動側
流体圧駆動手段の吐出流量を頭打ちとしてキャビテーシ
ョンの発生を確実に抑制することができるという効果が
得られる。
Further, in the four-wheel drive vehicle according to the third aspect, the variable control mechanism adjusts the capacity of the driven side fluid pressure drive means to the wheel to keep the differential pressure detection value of the differential pressure detection means less than the predetermined value. Since it is configured to increase in proportion to the speed and to maintain the maximum capacity when it becomes a predetermined value or more, it is possible to reliably suppress the occurrence of cavitation by making the discharge flow rate of the driven-side fluid pressure drive means reach a peak at the time of high flow rate. The effect of being able to do is obtained.

【0046】さらにまた、請求項4に係る四輪駆動車に
よれば、従動側流体圧駆動手段が斜板型可変容量ポンプ
モータで構成されているので、前後輪の回転数差が少な
いときには、流体圧ポンプとして作動して従動軸に駆動
力の伝達を行わない二輪駆動状態とし、前後輪の回転数
差が大きいときには、流体圧モータとして作動して従動
軸に駆動力の伝達を行って四輪駆動状態とすることがで
きると共に、ポンプモータ自体を小型化することができ
るという効果が得られる。
Further, according to the four-wheel drive vehicle of the fourth aspect, since the driven fluid pressure drive means is composed of the swash plate type variable displacement pump motor, when the rotational speed difference between the front and rear wheels is small, It operates as a fluid pressure pump and does not transmit driving force to the driven shaft, and when there is a large difference in rotation speed between the front and rear wheels, it operates as a fluid pressure motor to transmit driving force to the driven shaft. The wheel drive state can be achieved, and the pump motor itself can be downsized.

【0047】さらにまた、請求項3に係る四輪駆動車に
よれば、駆動車軸に連動して回転する吸入絞り型ピスト
ンポンプで構成されているので、駆動車軸の回転方向に
よって吐出口が変更されることがなく、このピストンポ
ンプと高圧流路及び低圧流路との間に前後進によって高
圧流路及び低圧流路を切換える切換弁を設ける必要がな
く、全体の構成を簡略化することができるという効果が
得られる。
Furthermore, according to the four-wheel drive vehicle of the third aspect, since the suction throttle type piston pump that rotates in conjunction with the drive axle is used, the discharge port is changed depending on the rotation direction of the drive axle. It is not necessary to provide a switching valve for switching between the high pressure passage and the low pressure passage by moving forward and backward between the piston pump and the high pressure passage and the low pressure passage, and the entire configuration can be simplified. The effect is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing a first embodiment of the present invention.

【図2】第1実施例に適用した吸入絞り型ピストンポン
プ及び斜板型可変容量ポンプモータの吐出流量特性を示
す特性線図である。
FIG. 2 is a characteristic diagram showing discharge flow rate characteristics of a suction throttle type piston pump and a swash plate type variable displacement pump motor applied to the first embodiment.

【図3】第1実施例の前後車軸回転数差と伝達トルクと
の関係を示す特性線図である。
FIG. 3 is a characteristic diagram showing a relationship between a front-rear axle rotation speed difference and a transmission torque in the first embodiment.

【図4】第1実施例に対する比較例を示す概略構成図で
ある。
FIG. 4 is a schematic configuration diagram showing a comparative example with respect to the first embodiment.

【図5】第1実施例の変形例を示す概略構成図である。FIG. 5 is a schematic configuration diagram showing a modification of the first embodiment.

【図6】本発明の第2実施例を示す概略構成図である。FIG. 6 is a schematic configuration diagram showing a second embodiment of the present invention.

【図7】トルク制限手段の他の実施例を示す概略構成図
である。
FIG. 7 is a schematic configuration diagram showing another embodiment of the torque limiting means.

【図8】差動装置を省略した場合の実施例を示す概略構
成図である。
FIG. 8 is a schematic configuration diagram showing an embodiment when a differential device is omitted.

【図9】流体圧ポンプとして回転方向によって吐出口が
変更される流体圧ポンプを適用した場合の実施例を示す
概略構成図である。
FIG. 9 is a schematic configuration diagram showing an embodiment in which a fluid pressure pump whose discharge port is changed depending on a rotation direction is applied as the fluid pressure pump.

【符号の説明】[Explanation of symbols]

1 エンジン 2 変速機 3 前輪側差動装置 4 前車軸 5 前輪 6 吸込絞り型ピストンポンプ 7 リザーバタンク 8H 高圧配管 8L 低圧配管 9 前後進切換用電磁方向切換弁 10 斜板型可変容量ポンプモータ 11 差圧発生用オリフィス 12 斜板可変機構 13 リリーフ弁 15 逆止弁 16 オリフィス 17 後輪側差動装置 18 後輪車軸 19 後輪 21 吸入絞り弁 10L,10R 斜板型可変容量ポンプモータ 31 前後進切換用電磁方向切換弁 1 Engine 2 Transmission 3 Front Wheel Differential 4 Front Wheel 5 Front Wheel 6 Suction Throttling Piston Pump 7 Reservoir Tank 8H High Pressure Piping 8L Low Pressure Piping 9 Electromagnetic Directional Change Valve 10 Swash Plate Type Variable Capacity Pump Motor 11 Difference Pressure generating orifice 12 Swash plate variable mechanism 13 Relief valve 15 Check valve 16 Orifice 17 Rear wheel side differential device 18 Rear wheel axle 19 Rear wheel 21 Intake throttle valve 10L, 10R Swash plate type variable displacement pump motor 31 Forward / reverse switching Solenoid directional valve

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 主原動機により駆動される駆動車軸と、
該駆動車軸に連動して駆動される駆動側流体圧駆動手段
と、従動車軸に連動して駆動される従動側流体圧駆動手
段とを有し、前記駆動側流体圧駆動手段及び従動側流体
圧駆動手段とを高圧流路及び低圧流路で連通させて流体
圧伝動機構を構成した四輪駆動車において、前記低圧流
路に差圧検出手段を配設すると共に、前記従動側流体圧
駆動手段にその容量を前記差圧検出手段の差圧検出値に
基づいて可変制御する可変制御機構を設けたことを特徴
とする四輪駆動車。
1. A drive axle driven by a prime mover,
A drive-side fluid pressure drive means that is driven in conjunction with the drive axle, and a driven-side fluid pressure drive means that is driven in conjunction with the driven axle; and the drive-side fluid pressure drive means and the driven-side fluid pressure. In a four-wheel drive vehicle in which a fluid pressure transmission mechanism is constituted by communicating the driving means with a high pressure passage and a low pressure passage, a differential pressure detection means is provided in the low pressure passage, and the driven fluid pressure driving means is provided. A four-wheel drive vehicle having a variable control mechanism for variably controlling the capacity thereof based on the differential pressure detection value of the differential pressure detection means.
【請求項2】 主原動機により駆動される駆動車軸と、
該駆動車軸に連動して駆動される駆動側流体圧駆動手段
と、従動車軸に連動して駆動される従動側流体圧駆動手
段とを有し、前記駆動側流体圧駆動手段及び従動側流体
圧駆動手段とを高圧流路及び低圧流路で連通させて流体
圧伝動機構を構成した四輪駆動車において、前記従動側
流体圧駆動手段側における高圧流路及び低圧流路に前後
進切換用切換弁を介挿し、該前後進切換用切換弁の駆動
側流体圧駆動手段側における前記低圧流路に差圧検出手
段を配設すると共に、前記従動側流体圧駆動手段にその
容量を前記差圧検出手段の差圧検出値に基づいて可変制
御する可変制御機構を設けたことを特徴とする四輪駆動
車。
2. A drive axle driven by a prime mover,
A drive-side fluid pressure drive means that is driven in conjunction with the drive axle, and a driven-side fluid pressure drive means that is driven in conjunction with the driven axle; and the drive-side fluid pressure drive means and the driven-side fluid pressure. In a four-wheel drive vehicle in which a fluid pressure transmission mechanism is configured by communicating the driving means with a high pressure passage and a low pressure passage, switching between forward and backward switching is performed on the high pressure passage and the low pressure passage on the driven fluid pressure driving means side. A differential pressure detecting means is disposed in the low pressure passage on the drive side fluid pressure drive means side of the forward / reverse switching valve, and the driven side fluid pressure drive means is provided with the capacity thereof. A four-wheel drive vehicle having a variable control mechanism for performing variable control based on a differential pressure detection value of a detection means.
【請求項3】 前記可変制御機構は、差圧検出手段の差
圧検出値が所定値未満であるには従動側流体圧駆動手段
の容量を車輪速に比例させて増加させ、所定値以上とな
ると最大容量に維持するように構成されている請求項1
又は2に記載の四輪駆動車。
3. The variable control mechanism increases the capacity of the driven-side fluid pressure drive means in proportion to the wheel speed so that the differential pressure detection value of the differential pressure detection means is less than a predetermined value, and increases it to a predetermined value or more. When it is, it is comprised so that it may maintain to the maximum capacity.
Alternatively, the four-wheel drive vehicle according to item 2.
【請求項4】 前記従動側流体圧駆動手段は、従動車軸
に連動して回転する斜板型可変容量ポンプモータで構成
されている請求項1乃至3の何れかに記載の四輪駆動
車。
4. The four-wheel drive vehicle according to claim 1, wherein the driven-side fluid pressure drive means is a swash plate type variable displacement pump motor that rotates in conjunction with a driven axle.
【請求項5】 前記駆動側流体圧駆動手段は、駆動車軸
に連動して回転する吸入絞り型ピストンポンプで構成さ
れている請求項1乃至4の何れかに記載の四輪駆動車。
5. The four-wheel drive vehicle according to any one of claims 1 to 4, wherein the drive-side fluid pressure drive means is composed of an intake throttle piston pump that rotates in conjunction with a drive axle.
JP04914794A 1994-03-18 1994-03-18 Four-wheel drive vehicles Expired - Fee Related JP3196485B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP04914794A JP3196485B2 (en) 1994-03-18 1994-03-18 Four-wheel drive vehicles
US08/405,673 US5687808A (en) 1994-03-18 1995-03-17 Four wheel drive mechanism
DE19510046A DE19510046C2 (en) 1994-03-18 1995-03-20 Four wheel drive mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04914794A JP3196485B2 (en) 1994-03-18 1994-03-18 Four-wheel drive vehicles

Publications (2)

Publication Number Publication Date
JPH07257211A true JPH07257211A (en) 1995-10-09
JP3196485B2 JP3196485B2 (en) 2001-08-06

Family

ID=12822986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04914794A Expired - Fee Related JP3196485B2 (en) 1994-03-18 1994-03-18 Four-wheel drive vehicles

Country Status (1)

Country Link
JP (1) JP3196485B2 (en)

Also Published As

Publication number Publication date
JP3196485B2 (en) 2001-08-06

Similar Documents

Publication Publication Date Title
JP4327284B2 (en) Four-wheel drive vehicle
JP2005155686A (en) Axle driving device and four-wheel drive vehicle equipped with it
JPH11315907A (en) Driving unit for driving system of vehicle having hydraulic clutch which depends on rotational speed difference
US5687808A (en) Four wheel drive mechanism
JP3817769B2 (en) Vehicle wheel driving force distribution control device
JP3196485B2 (en) Four-wheel drive vehicles
JP3196484B2 (en) Four-wheel drive vehicles
JP3237379B2 (en) Four-wheel drive vehicles
JPH058650A (en) Power transmission device for four-wheel drive vehicle
JP3198794B2 (en) Four-wheel drive vehicles
JPH0820253A (en) Four-wheel drive vehicle
JP3904630B2 (en) Four-wheel drive vehicle
JPH0820252A (en) Four-wheel drive vehicle
JPH07257213A (en) Four-wheel drive vehicle
JPH08118977A (en) Four-wheel drive car
JP3593785B2 (en) Four-wheel drive vehicles
JPH0899552A (en) Four wheel drive
JPH08258582A (en) Four-wheel drive vehicle
JPH1134676A (en) Apparatus for driving working vehicle
JPH09150641A (en) Four-wheel drive vehicle
JPH0899551A (en) Four wheel drive
JPH0976781A (en) Four-wheel drive vehicle
JPH03224831A (en) Power transmission device for four-wheel drive vehicle
JP3942658B2 (en) Hydraulic drive
JP3196527B2 (en) Swash plate type variable displacement motor and four-wheel drive vehicle using the motor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees