JPH07249818A - Frequency stabilization method of frequency-variable semiconductor laser - Google Patents

Frequency stabilization method of frequency-variable semiconductor laser

Info

Publication number
JPH07249818A
JPH07249818A JP3723694A JP3723694A JPH07249818A JP H07249818 A JPH07249818 A JP H07249818A JP 3723694 A JP3723694 A JP 3723694A JP 3723694 A JP3723694 A JP 3723694A JP H07249818 A JPH07249818 A JP H07249818A
Authority
JP
Japan
Prior art keywords
frequency
frequency control
oscillation
semiconductor laser
control voltages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3723694A
Other languages
Japanese (ja)
Inventor
Yoshiro Yamada
義朗 山田
Koji Sasayama
浩二 笹山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3723694A priority Critical patent/JPH07249818A/en
Publication of JPH07249818A publication Critical patent/JPH07249818A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To solve a problem of a thermal drift without using a frequency stabilization circuit and to stabilize an oscillation frequency in a high-speed changeover by a method wherein the combination of frequency control voltages at which the sum of heat capacities generated by the individual frequency control voltages becomes definite is selected and set. CONSTITUTION:The frequency-stabilizaiton method is provided with high-speed memories 111 to 11n in which pieces of information on (n) pieces of frequency-control electrodes for a frequency-variable laser 10 are stored and with D/A convertes 12 to 12 in which pieces of information read out from the individual high-speed memories are converted into frequency control voltages so as to be applied to the individual frequency control electrodes. Then, the combination of the frequency control voltages at which the sum of heat capacities becomes definite with reference to individual oscillation frequencies is decided by a procedure before an operation, and it is stored in the high-speed memories corresponding to the individual control electrodes. In the operation the oscillation frequencies are designated to the individual high-speed memories, and the combination of the frequency control voltages at which the sum of the heat capacities with reference to the oscillation frequencies becomes definite is given to the individual control voltages for the frequency-variable semiconductor laser 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複数の周波数制御電極
に印加する周波数制御電圧に応じて発振周波数を変化さ
せる周波数可変半導体レーザの周波数安定化方法に関す
る。周波数可変半導体レーザは、光通信,光情報処理,
光計測その他のシステムの光源として利用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a frequency stabilizing method for a frequency tunable semiconductor laser in which an oscillation frequency is changed according to a frequency control voltage applied to a plurality of frequency control electrodes. Frequency tunable semiconductor laser is used for optical communication, optical information processing,
Used as a light source for optical measurement and other systems.

【0002】[0002]

【従来の技術】複数の周波数制御電極に印加する周波数
制御電圧の組み合わせに応じて発振周波数を変化させる
周波数可変半導体レーザとして、例えば3電極DBRレ
ーザがある。3電極DBRレーザは、図7に示すよう
に、光を発生させる活性層71を有する発光領域、回折
格子72を有する分布ブラッグ反射(DBR)領域、光
の位相を調整する位相調整領域に分けられ、それぞれ発
振電極73、DBR電極74およびPC電極75が設け
られる。発振周波数を変えるには、周波数制御電極(D
BR電極74,PC電極75)に周波数制御電圧(電
流)を印加して光導波路のキャリア密度を変化させ、そ
の屈折率を変化させることにより行う。この周波数制御
電圧に応じた屈折率変化は応答が速いので、3電極DB
Rレーザは広帯域で高速に発振周波数を変えることが可
能になっている。
2. Description of the Related Art For example, a three-electrode DBR laser is a frequency variable semiconductor laser whose oscillation frequency is changed according to a combination of frequency control voltages applied to a plurality of frequency control electrodes. As shown in FIG. 7, the three-electrode DBR laser is divided into a light emitting region having an active layer 71 for generating light, a distributed Bragg reflection (DBR) region having a diffraction grating 72, and a phase adjusting region for adjusting the phase of light. An oscillating electrode 73, a DBR electrode 74 and a PC electrode 75 are provided respectively. To change the oscillation frequency, use the frequency control electrode (D
The frequency control voltage (current) is applied to the BR electrode 74 and the PC electrode 75 to change the carrier density of the optical waveguide and change the refractive index thereof. Since the response of the refractive index change according to the frequency control voltage is fast, the 3-electrode DB
The R laser can change the oscillation frequency at high speed in a wide band.

【0003】一方、半導体レーザは、温度によっても光
導波路の屈折率が応答の遅い変動をするので、熱による
発振周波数の変動(熱ドリフト)が起こる。周波数可変
半導体レーザにおいて、周波数制御電極へ印加する周波
数制御電圧は、キャリア密度の変化を引き起こすと同時
に発熱の原因にもなる。したがって、高速にかつ正確に
発振周波数を切り替えなければならない用途では、熱ド
リフトを補償するために高速な周波数安定化回路が用い
られる。その周波数安定化方式にはフィードバック制御
とフィードフォワード制御がある。
On the other hand, in the semiconductor laser, since the refractive index of the optical waveguide changes slowly in response to temperature, fluctuation of the oscillation frequency (heat drift) occurs due to heat. In the frequency variable semiconductor laser, the frequency control voltage applied to the frequency control electrode causes a change in carrier density and also causes heat generation. Therefore, in an application where the oscillation frequency needs to be switched accurately at high speed, a high-speed frequency stabilizing circuit is used to compensate for thermal drift. The frequency stabilization method includes feedback control and feedforward control.

【0004】図8は、フィードバック制御による周波数
安定化回路の構成を示す。図において、周波数可変半導
体レーザ81で発生したレーザ光は出力端子82に出力
光として取り出されるとともに、その一部が光電気変換
器83に受光されて周波数−電圧変換される。この電気
信号は、現在の発振周波数と設定周波数との差を検出す
る誤差検出器84に入力され、その誤差に応じた補正電
圧を生成して周波数可変半導体レーザ81の周波数制御
電極にフィードバックする。
FIG. 8 shows the configuration of a frequency stabilizing circuit by feedback control. In the figure, the laser light generated by the frequency variable semiconductor laser 81 is extracted as output light at the output terminal 82, and a part of the laser light is received by the photoelectric converter 83 and frequency-voltage converted. This electric signal is input to the error detector 84 that detects the difference between the current oscillation frequency and the set frequency, and a correction voltage corresponding to the error is generated and fed back to the frequency control electrode of the frequency variable semiconductor laser 81.

【0005】図9は、フィードフォワード制御時の駆動
電流波形と発振周波数波形を示す。(1) に示すように、
矩形波の駆動電流では熱ドリフトにより発振周波数が矩
形波応答しない。そこで、(2) に示すように、発振周波
数が矩形波応答するように駆動電流波形を補正する。
FIG. 9 shows a drive current waveform and an oscillation frequency waveform during feedforward control. As shown in (1),
With a rectangular wave drive current, the oscillation frequency does not respond to a rectangular wave due to thermal drift. Therefore, as shown in (2), the drive current waveform is corrected so that the oscillation frequency has a rectangular wave response.

【0006】[0006]

【発明が解決しようとする課題】従来の周波数安定化方
式において、フィードバック制御法では周波数安定化に
要する時間がレーザ素子の応答時間に加えて、線路長や
周波数安定化回路の時定数などで制限を受ける。また、
フィードフォワード制御法では、周波数切り替えパター
ンがランダムな場合には、即時に計算で駆動電流波形を
制御しなければならず、高速の演算装置が必要であっ
た。このようにいずれの周波数安定化方式においても、
ハードウェア量の増加や周波数切り替え時間の増大が避
けられなかった。
In the conventional frequency stabilization method, in the feedback control method, the time required for frequency stabilization is limited by the line length and the time constant of the frequency stabilization circuit in addition to the response time of the laser element. Receive. Also,
In the feedforward control method, when the frequency switching pattern is random, the drive current waveform must be controlled immediately by calculation, and a high-speed arithmetic device is required. Thus, in any frequency stabilization method,
An increase in the amount of hardware and an increase in frequency switching time cannot be avoided.

【0007】本発明は、周波数安定化回路を用いずに熱
ドリフト問題を解決し、高速切り替え時における発振周
波数の安定化を図ることができる周波数可変半導体レー
ザの周波数安定化方法を提供することを目的とする。
The present invention provides a frequency stabilizing method for a frequency tunable semiconductor laser which solves the thermal drift problem without using a frequency stabilizing circuit and can stabilize the oscillation frequency during high speed switching. To aim.

【0008】[0008]

【課題を解決するための手段】本発明は、複数の周波数
制御電極に印加する周波数制御電圧の組み合わせに対す
る発振周波数および発熱量を測定して記憶しておき、所
定の発振周波数に対応する周波数制御電圧の組み合わせ
の中から、各周波数制御電圧の印加によって発生する熱
量の和が一定となる組み合わせを選択して設定する。
According to the present invention, an oscillation frequency and a heat generation amount for a combination of frequency control voltages applied to a plurality of frequency control electrodes are measured and stored, and a frequency control corresponding to a predetermined oscillation frequency is performed. From the combinations of voltages, a combination in which the sum of the amount of heat generated by the application of each frequency control voltage is constant is selected and set.

【0009】また、各発振周波数ごとに、周波数制御電
圧の印加によって発生する熱量の和が一定となる周波数
制御電圧の組み合わせを記憶し、発振周波数を切り替え
るごとに対応する周波数制御電圧の組み合わせを読み出
して設定する。
Further, for each oscillation frequency, a combination of frequency control voltages in which the sum of heat quantities generated by the application of the frequency control voltage is constant is stored, and a corresponding combination of frequency control voltages is read every time the oscillation frequency is switched. To set.

【0010】周波数制御電圧に対する発熱量は、所定の
周波数制御電圧V0 に対する発振周波数F0 を測定し、
周波数可変半導体レーザの熱時定数よりも十分に長い時
間だけ周波数制御電圧Vに保ち、続いてその熱時定数よ
りも十分に短い時間だけ周波数制御電圧V0 に設定した
ときの発振周波数Fを測定し、周波数制御電圧VからV
0 への変化に伴う発熱量を発振周波数FとF0 の差から
測定する。
The heat generation amount with respect to the frequency control voltage is obtained by measuring the oscillation frequency F 0 with respect to a predetermined frequency control voltage V 0 ,
The oscillation frequency F is measured when the frequency control voltage V is maintained for a time sufficiently longer than the thermal time constant of the frequency tunable semiconductor laser and then set to the frequency control voltage V 0 for a time sufficiently shorter than the thermal time constant. Frequency control voltage V to V
The amount of heat generated by the change to 0 is measured from the difference between the oscillation frequencies F and F 0 .

【0011】[0011]

【作用】周波数制御電圧の組み合わせに対する発振周波
数および発熱量を測定し、各発振周波数ごとに、周波数
制御電圧の印加によって発生する熱量の和が一定となる
周波数制御電圧の組み合わせを決定する。そして、発振
周波数に応じた周波数制御電圧をこの組み合わせに基づ
いて設定する。これにより、発振周波数を切り替えても
発熱量の変化を少なくすることができ、発振周波数の切
り替えに伴う熱的な変動を低減することができる。レー
ザ温度の変化量と発振周波数の変化量はほぼ比例関係に
あるので、熱的な変動を低減することにより熱による発
振周波数の変動(熱ドリフト)も低減できる。
The oscillating frequency and the heat generation amount for the combination of the frequency control voltages are measured, and the combination of the frequency control voltages for which the sum of the amount of heat generated by the application of the frequency control voltage is constant is determined for each oscillation frequency. Then, the frequency control voltage corresponding to the oscillation frequency is set based on this combination. As a result, even if the oscillation frequency is switched, it is possible to reduce the change in the amount of heat generation, and it is possible to reduce the thermal fluctuation that accompanies the switching of the oscillation frequency. Since the amount of change in the laser temperature and the amount of change in the oscillation frequency are in a substantially proportional relationship, variation in the oscillation frequency due to heat (thermal drift) can also be reduced by reducing thermal variation.

【0012】[0012]

【実施例】図1は、本発明の周波数可変半導体レーザの
周波数安定化方法の実施例を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of a frequency stabilizing method for a frequency tunable semiconductor laser according to the present invention.

【0013】(1) は、運用前に行われる処理手順を示
す。複数の周波数制御電極に印加する周波数制御電圧
の組み合わせに対する発振周波数を測定する。各周波
数制御電圧の組み合わせに対する発熱量を測定する。
所定の発振周波数に対応する周波数制御電圧の組み合わ
せの中から、各周波数制御電圧の印加によって発生する
熱量の和が一定となる組み合わせを決定する。
(1) shows a processing procedure performed before operation. The oscillation frequency is measured for a combination of frequency control voltages applied to the plurality of frequency control electrodes. The calorific value for each frequency control voltage combination is measured.
From combinations of frequency control voltages corresponding to a predetermined oscillation frequency, a combination in which the sum of heat amounts generated by application of each frequency control voltage is constant is determined.

【0014】(2) は、本発明方法に基づいて駆動される
周波数可変半導体レーザの基本構成を示す。周波数可変
半導体レーザ10のn個の周波数制御電極に対する周波
数制御電圧情報をそれぞれ格納した高速メモリ111
11n と、各高速メモリから読み出された周波数制御電
圧情報を周波数制御電圧(電流)に変換して各周波数制
御電極に印加するD/A変換器121 〜12n が備えら
れる。運用前に上述の手順により各発振周波数に対して
発熱量の和が一定となる周波数制御電圧の組み合わせを
決定し、各周波数制御電極に対応したそれぞれの高速メ
モリに格納する。運用時には、各高速メモリに発振周波
数(チャネル)を指定すると、その発振周波数に対して
発熱量の和が一定となる周波数制御電圧の組み合わせが
周波数可変半導体レーザ10の各周波数制御電極に与え
られる。
(2) shows the basic structure of a frequency variable semiconductor laser driven based on the method of the present invention. High-speed memories 11 1 to 11 that store frequency control voltage information for n frequency control electrodes of the frequency tunable semiconductor laser 10, respectively.
11n and D / A converters 12 1 to 12n for converting the frequency control voltage information read from each high-speed memory into a frequency control voltage (current) and applying it to each frequency control electrode. Before operation, a combination of frequency control voltages with which the sum of heat generation amounts is constant for each oscillation frequency is determined by the procedure described above, and stored in each high-speed memory corresponding to each frequency control electrode. In operation, when an oscillation frequency (channel) is designated for each high-speed memory, a combination of frequency control voltages that gives a constant sum of heat generation amounts to the oscillation frequency is given to each frequency control electrode of the frequency variable semiconductor laser 10.

【0015】以下、周波数可変半導体レーザとして3電
極DBRレーザを用いた場合について、運用前に行われ
る〜の処理を具体的に説明する。 3電極DBRレーザの2つの周波数制御電極(DB
R電極,PC電極)に印加する周波数制御電圧VDBR
PCに対する発振周波数を光波長計等を用いて測定す
る。
In the following, when the 3-electrode DBR laser is used as the variable frequency semiconductor laser, the processes (1) to (3) performed before the operation will be specifically described. Two frequency control electrodes (DB
Frequency control voltage V DBR applied to the R electrode and PC electrode,
The oscillation frequency with respect to V PC is measured using an optical wavelength meter or the like.

【0016】図2は、周波数制御電圧VDBR ,VPCと発
振周波数の関係を示す。各発振周波数f0 〜f4 に対し
て、複数のVPCを取りうることがわかる。すなわち、周
波数制御電圧VPCは周期性を有し、所定の発振周波数に
対してVDBR とVPCは複数の組み合わせをとることがで
きる。なお、従来の周波数可変半導体レーザの周波数制
御は、線Aで結ばれるような周波数制御電圧VDBR ,V
PCが同時に増加する関係のもとで行われていた。
FIG. 2 shows the relationship between the frequency control voltages V DBR and V PC and the oscillation frequency. It can be seen that a plurality of V PC can be taken for each oscillation frequency f 0 to f 4 . That is, the frequency control voltage V PC has periodicity, and V DBR and V PC can take a plurality of combinations for a predetermined oscillation frequency. Incidentally, the frequency control of the conventional frequency tunable semiconductor laser is performed by the frequency control voltages V DBR and V DBR connected by the line A.
It was done in the context of increasing PCs at the same time.

【0017】 周波数制御電圧VDBR ,VPCに対する
発熱量を測定する。ただし、半導体レーザ内部の温度を
直接測定することはできないので、測定した発振周波数
の温度依存性を利用して間接的に求める。すなわち、1
MHz以下の変調周波数では、半導体レーザはほぼκ=−
10GHz/℃の割合で温度により発振周波数が変調を受け
る。この性質を利用すると、周波数変移を測定すること
により半導体レーザの温度変化を知ることができ、熱ド
リフトに対応する発熱量を測定することができる。
The amount of heat generated with respect to the frequency control voltages V DBR and V PC is measured. However, since the temperature inside the semiconductor laser cannot be directly measured, it is indirectly obtained by utilizing the temperature dependence of the measured oscillation frequency. Ie 1
At a modulation frequency below MHZ, a semiconductor laser has approximately κ =-
The oscillation frequency is modulated by the temperature at a rate of 10 GHz / ° C. By utilizing this property, it is possible to know the temperature change of the semiconductor laser by measuring the frequency shift, and it is possible to measure the heat generation amount corresponding to the thermal drift.

【0018】図3は、周波数制御電圧VDBR ,VPCに対
する発熱量を測定するためのシステム構成を示す。図に
おいて、3電極DBRレーザ31のDBR電極およびP
C電極には、高速可変電圧源32から周波数制御電圧V
DBR ,VPCが印加される。3電極DBRレーザ31の出
力光は、時間および周波数に対して高分解能を有する周
波数弁別器33に入力され、周波数制御電圧VDBR ,V
PCに対する発振周波数が測定される。周波数弁別器33
は、3電極DBRレーザ31の出力光を等しい強度に2
分岐する光カプラ34と、わずかに透過帯域をずらした
2枚の等周期(例えば 100GHz)のファブリペローフィ
ルタ35a,35bと、周波数誤差検出器36により構
成される。周波数誤差検出器36は、2枚のファブリペ
ローフィルタ(FP)35a,35bの透過光の強度差
から、所定の周波数に対する周波数誤差を検出する構成
であり、オシロスコープ37によって観測される。
FIG. 3 shows a system configuration for measuring the amount of heat generated with respect to the frequency control voltages V DBR and V PC . In the figure, the DBR electrode and P of the 3-electrode DBR laser 31 are shown.
The frequency control voltage V from the high speed variable voltage source 32 is applied to the C electrode.
DBR, V PC is applied. The output light of the three-electrode DBR laser 31 is input to the frequency discriminator 33 having high resolution with respect to time and frequency, and the frequency control voltages V DBR , V DBR , V
Oscillation frequency for PC is measured. Frequency discriminator 33
The output light of the 3-electrode DBR laser 31 to an equal intensity of 2
The optical coupler 34 is branched, two Fabry-Perot filters 35a and 35b having an equal cycle (for example, 100 GHz) whose transmission band is slightly shifted, and a frequency error detector 36. The frequency error detector 36 is configured to detect a frequency error with respect to a predetermined frequency from the intensity difference between the transmitted lights of the two Fabry-Perot filters (FP) 35a and 35b, and is observed by the oscilloscope 37.

【0019】このシステムを用いた周波数制御電圧V
DBR ,VPCに対する発熱量の測定法について、図4を参
照して説明する。まず、所定の周波数制御電圧VDBR0
PC0に対する発振周波数F0 を測定する。次に、高速
可変電圧源32の出力電圧を3電極DBRレーザ31の
熱時定数よりも十分に長い時間T1 (1ms以上)だけ
DBR ,VPCに保ち、続いてその熱時定数よりも十分に
短い時間T2 (10ns〜1μs)だけVDBR0,VPC0
設定し、そのときの発振周波数Fを測定する。このよう
にして測定された発振周波数FとF0 の差(F−F0
は発熱に伴う周波数変移であり、(F−F0)/κは、周
波数制御電圧VDBR ,VPCから周波数制御電圧VDBR0
PC0 への変化に伴う発熱量となる。このような測定を
周波数制御電圧VDBR ,VPCの組み合わせを変えて行
う。
Frequency control voltage V using this system
DBR, the calorific value of the measurement for V PC, is described with reference to FIG. First, the predetermined frequency control voltage V DBR0 ,
The oscillation frequency F 0 with respect to V PC0 is measured. Next, the output voltage of the high-speed variable voltage source 32 is kept at V DBR and V PC for a time T 1 (1 ms or more) that is sufficiently longer than the thermal time constant of the three-electrode DBR laser 31, and subsequently, it is kept above the thermal time constant. V DBR0 and V PC0 are set for a sufficiently short time T 2 (10 ns to 1 μs), and the oscillation frequency F at that time is measured. The difference between the oscillation frequencies F and F 0 measured in this way (F−F 0 )
A frequency shift due to heat generation, (F-F 0) / κ , the frequency control voltage V DBR, frequency from V PC control voltage V DBR0,
It becomes the amount of heat generation due to the change to V PC0 . Such measurement is performed by changing the combination of the frequency control voltages V DBR and V PC .

【0020】図5は、周波数制御電圧VDBR ,VPCと発
熱量の関係を示す。発熱量h0〜h6に応じて周波数制御
電圧VDBR ,VPCを分布させると、図に示すような等温
度線を形成することができる。
FIG. 5 shows the relationship between the frequency control voltages V DBR and V PC and the amount of heat generation. By distributing the frequency control voltages V DBR and V PC according to the heat generation amounts h 0 to h 6 , it is possible to form isothermal lines as shown in the figure.

【0021】 所定の発振周波数に対応する周波数制
御電圧VDBR ,VPCの組み合わせの中から、各周波数制
御電圧の印加によって発生する熱量の和が一定となる組
み合わせは、次のようにして決定する。図2に示す周波
数制御電圧VDBR ,VPCと発振周波数f0 〜f4 の関係
と、図5に示す周波数制御電圧VDBR ,VPCと発熱量h
0 〜h6 の関係を重ねて表示すると、図6に示すように
なる。ここで、各発振周波数に対する周波数制御電圧V
DBR ,VPCについて、できるだけ等温度線に沿った組み
合わせを選択する。たとえば、線Bで結ばれる周波数制
御電圧VDBR ,VPCの組み合わせを選択する。
Among the combinations of the frequency control voltages V DBR and V PC corresponding to a predetermined oscillation frequency, the combination in which the sum of the heat generated by the application of each frequency control voltage is constant is determined as follows. . The relationship between the frequency control voltages V DBR and V PC and the oscillation frequencies f 0 to f 4 shown in FIG. 2 and the frequency control voltages V DBR and V PC and the heat generation amount h shown in FIG.
When the relationship of 0 to h 6 is displayed in an overlapping manner, it becomes as shown in FIG. Here, the frequency control voltage V for each oscillation frequency
DBR, the V PC, selects a combination in line as possible to isothermal line. For example, a combination of frequency control voltages V DBR and V PC connected by line B is selected.

【0022】従来は、等温度線をまったく考慮しない線
Aに沿った周波数制御電圧VDBR ,VPCを選択していた
ために熱ドリフトの影響を受けていた。本発明では、所
定の発振周波数に対する周波数制御電圧VPCが複数取り
得ることを利用し、周波数制御電極VDBR との組み合わ
せの中で各発振周波数ごとに発熱量がほぼ一定となるV
PCとの組み合わせを決定する。これを発振周波数に対応
付け、DBR電極およびPC電極に対応する高速メモリ
に保持し、発振周波数を切り替えるごとに対応する周波
数制御電圧VDBR ,VPCを読み出して設定する。これに
より、発振周波数の切り替えに伴う熱的な変動を低減す
ることができる。
Conventionally, the frequency control voltages V DBR and V PC along the line A, which does not consider the isothermal lines at all, were selected, so that they were affected by thermal drift. In the present invention, the fact that a plurality of frequency control voltages V PC for a predetermined oscillation frequency can be used is utilized, and in the combination with the frequency control electrode V DBR , the heat generation amount V becomes substantially constant for each oscillation frequency.
Determine the combination with the PC . This is associated with the oscillation frequency, held in the high-speed memory corresponding to the DBR electrode and the PC electrode, and the corresponding frequency control voltages V DBR and V PC are read and set every time the oscillation frequency is switched. As a result, it is possible to reduce thermal fluctuations caused by switching the oscillation frequency.

【0023】なお、以上説明した実施例は、3電極DB
Rレーザに適用したものであるが、4電極以上のDBR
レーザに対しても、あらかじめ各周波数制御電圧に対す
る発熱量および発振周波数を求めておけば、同様の手法
により周波数安定化を図ることができる。
The embodiment described above is a 3-electrode DB.
It is applied to R laser, but DBR with 4 or more electrodes
For the laser, if the amount of heat generation and the oscillation frequency for each frequency control voltage are obtained in advance, frequency stabilization can be achieved by the same method.

【0024】[0024]

【発明の効果】以上説明したように、本発明の周波数安
定化方法では、周波数可変半導体レーザの発振周波数を
切り替える際に、発熱量の変化が少ない周波数制御電圧
の組み合わせを選択する。これにより、周波数切り替え
時に熱による周波数変動(熱ドリフト)を抑制すること
ができ、高速切り替え時の発振周波数の安定化を図るこ
とができる。また、外部制御による周波数安定化回路が
不要となり、高速切り替えにも容易に対応することがで
きる。
As described above, in the frequency stabilizing method of the present invention, when the oscillation frequency of the frequency variable semiconductor laser is switched, a combination of frequency control voltages with a small change in the heat generation amount is selected. As a result, it is possible to suppress frequency fluctuation (thermal drift) due to heat during frequency switching, and to stabilize the oscillation frequency during high speed switching. Further, the frequency stabilizing circuit by external control is not required, and high-speed switching can be easily supported.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の周波数可変半導体レーザの周波数安定
化方法の実施例を示す図。
FIG. 1 is a diagram showing an embodiment of a frequency stabilizing method for a frequency tunable semiconductor laser according to the present invention.

【図2】周波数制御電圧VDBR ,VPCと発振周波数の関
係を示す図。
FIG. 2 is a diagram showing a relationship between frequency control voltages V DBR and V PC and an oscillation frequency.

【図3】周波数制御電圧VDBR ,VPCに対する発熱量を
測定するためのシステム構成を示すブロック図。
FIG. 3 is a block diagram showing a system configuration for measuring heat generation amounts with respect to frequency control voltages V DBR and V PC .

【図4】周波数制御電圧VDBR ,VPCに対する発熱量の
測定法を説明する図。
FIG. 4 is a diagram illustrating a method of measuring the amount of heat generated with respect to frequency control voltages V DBR and V PC .

【図5】周波数制御電圧VDBR ,VPCと発熱量の関係を
示す図。
FIG. 5 is a diagram showing a relationship between frequency control voltages V DBR and V PC and heat generation amount.

【図6】周波数制御電圧VDBR ,VPCの決定過程を説明
する図。
FIG. 6 is a diagram illustrating a process of determining frequency control voltages V DBR and V PC .

【図7】3電極DBRレーザの構成を示す図。FIG. 7 is a diagram showing a configuration of a three-electrode DBR laser.

【図8】フィードバック制御による周波数安定化回路の
構成を示す図。
FIG. 8 is a diagram showing a configuration of a frequency stabilizing circuit by feedback control.

【図9】フィードフォワード制御時の駆動電流波形と発
振周波数波形を示す図。
FIG. 9 is a diagram showing a drive current waveform and an oscillation frequency waveform during feedforward control.

【符号の説明】[Explanation of symbols]

10 周波数可変半導体レーザ 11 高速メモリ 12 D/A変換器 31 3電極DBRレーザ 32 高速可変電圧源 33 周波数弁別器 34 光カプラ 35 ファブリペローフィルタ 36 周波数誤差検出器 37 オシロスコープ 71 活性層 72 回折格子 73 発振電極 74 DBR電極 75 PC電極 81 周波数可変半導体レーザ 82 出力端子 83 光電気変換器 84 誤差検出器 10 frequency variable semiconductor laser 11 high speed memory 12 D / A converter 31 3-electrode DBR laser 32 high speed variable voltage source 33 frequency discriminator 34 optical coupler 35 Fabry-Perot filter 36 frequency error detector 37 oscilloscope 71 active layer 72 diffraction grating 73 oscillation Electrode 74 DBR electrode 75 PC electrode 81 Frequency variable semiconductor laser 82 Output terminal 83 Photoelectric converter 84 Error detector

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数の周波数制御電極を有し、各周波数
制御電極に印加する周波数制御電圧の組み合わせに応じ
て発振周波数を変化させる周波数可変半導体レーザの周
波数安定化方法において、 前記複数の周波数制御電極に印加する周波数制御電圧の
組み合わせに対する発振周波数および発熱量を測定して
記憶しておき、 所定の発振周波数に対応する周波数制御電圧の組み合わ
せの中から、各周波数制御電圧の印加によって発生する
熱量の和が一定となる組み合わせを選択して設定するこ
とを特徴とする周波数可変半導体レーザの周波数安定化
方法。
1. A frequency stabilizing method for a frequency tunable semiconductor laser, comprising a plurality of frequency control electrodes, wherein an oscillation frequency is changed in accordance with a combination of frequency control voltages applied to the respective frequency control electrodes. The oscillation frequency and the amount of heat generated for each combination of frequency control voltages applied to the electrodes are measured and stored, and the amount of heat generated by the application of each frequency control voltage is selected from the combinations of frequency control voltages corresponding to the specified oscillation frequency. A frequency stabilizing method for a frequency tunable semiconductor laser, comprising selecting and setting a combination in which the sum of the above is constant.
【請求項2】 請求項1に記載の周波数可変半導体レー
ザの周波数安定化方法において、 各発振周波数ごとに、周波数制御電圧の印加によって発
生する熱量の和が一定となる周波数制御電圧の組み合わ
せを記憶し、発振周波数を切り替えるごとに対応する周
波数制御電圧の組み合わせを読み出して設定することを
特徴とする周波数可変半導体レーザの周波数安定化方
法。
2. The frequency stabilization method for a frequency tunable semiconductor laser according to claim 1, wherein a combination of frequency control voltages is stored for each oscillation frequency so that a sum of heat amounts generated by application of the frequency control voltage becomes constant. Then, each time the oscillation frequency is switched, a combination of corresponding frequency control voltages is read out and set, and the frequency stabilization method of the frequency tunable semiconductor laser is characterized.
【請求項3】 請求項1に記載の周波数可変半導体レー
ザの周波数安定化方法において、 所定の周波数制御電圧V0 に対する発振周波数F0 を測
定し、周波数可変半導体レーザの熱時定数よりも十分に
長い時間だけ周波数制御電圧Vに保ち、続いてその熱時
定数よりも十分に短い時間だけ周波数制御電圧V0 に設
定したときの発振周波数Fを測定し、周波数制御電圧V
からV0 への変化に伴う発熱量を発振周波数FとF0
差から測定することを特徴とする周波数可変半導体レー
ザの周波数安定化方法。
3. A frequency stabilization method of a frequency tunable semiconductor laser according to claim 1, to measure the oscillation frequency F 0 for a given frequency control voltage V 0, sufficiently than the thermal time constant of the frequency-variable semiconductor laser The oscillation frequency F is measured when the frequency control voltage V is maintained for a long time, and then the frequency control voltage V 0 is set for a time sufficiently shorter than the thermal time constant.
A method for stabilizing the frequency of a frequency tunable semiconductor laser, characterized in that the amount of heat generated by the change from V 0 to V 0 is measured from the difference between the oscillation frequencies F and F 0 .
JP3723694A 1994-03-08 1994-03-08 Frequency stabilization method of frequency-variable semiconductor laser Pending JPH07249818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3723694A JPH07249818A (en) 1994-03-08 1994-03-08 Frequency stabilization method of frequency-variable semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3723694A JPH07249818A (en) 1994-03-08 1994-03-08 Frequency stabilization method of frequency-variable semiconductor laser

Publications (1)

Publication Number Publication Date
JPH07249818A true JPH07249818A (en) 1995-09-26

Family

ID=12491978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3723694A Pending JPH07249818A (en) 1994-03-08 1994-03-08 Frequency stabilization method of frequency-variable semiconductor laser

Country Status (1)

Country Link
JP (1) JPH07249818A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014203853A (en) * 2013-04-01 2014-10-27 日本電信電話株式会社 Control method of high-speed wavelength variable laser, and wavelength control device
JP2015201549A (en) * 2014-04-08 2015-11-12 日本電信電話株式会社 Wavelength control method and device for wavelength-variable laser
JP2015207738A (en) * 2014-04-23 2015-11-19 日本電信電話株式会社 Wavelength-variable laser array and wavelength control method for wavelength-variable laser array
JP2016111214A (en) * 2014-12-08 2016-06-20 三菱電機株式会社 Wavelength variable light source, control method for wavelength variable light source, and manufacturing method of wavelength variable light source
JP2016533026A (en) * 2013-10-10 2016-10-20 オートモーティブ コアリション フォー トラフィック セーフティ, インコーポレイテッド System and method for controlling a plurality of wavelength tuning lasers arranged
WO2018229823A1 (en) * 2017-06-12 2018-12-20 ギガフォトン株式会社 Laser device, laser device managing system, and laser device management method
US10826270B2 (en) 2016-01-04 2020-11-03 Automotive Coalition For Traffic Safety, Inc. Heater-on-heatspreader

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014203853A (en) * 2013-04-01 2014-10-27 日本電信電話株式会社 Control method of high-speed wavelength variable laser, and wavelength control device
JP2016533026A (en) * 2013-10-10 2016-10-20 オートモーティブ コアリション フォー トラフィック セーフティ, インコーポレイテッド System and method for controlling a plurality of wavelength tuning lasers arranged
JP2015201549A (en) * 2014-04-08 2015-11-12 日本電信電話株式会社 Wavelength control method and device for wavelength-variable laser
JP2015207738A (en) * 2014-04-23 2015-11-19 日本電信電話株式会社 Wavelength-variable laser array and wavelength control method for wavelength-variable laser array
JP2016111214A (en) * 2014-12-08 2016-06-20 三菱電機株式会社 Wavelength variable light source, control method for wavelength variable light source, and manufacturing method of wavelength variable light source
US10826270B2 (en) 2016-01-04 2020-11-03 Automotive Coalition For Traffic Safety, Inc. Heater-on-heatspreader
WO2018229823A1 (en) * 2017-06-12 2018-12-20 ギガフォトン株式会社 Laser device, laser device managing system, and laser device management method
JPWO2018229823A1 (en) * 2017-06-12 2020-04-16 ギガフォトン株式会社 LASER DEVICE, LASER DEVICE MANAGEMENT SYSTEM, AND LASER DEVICE MANAGEMENT METHOD
US11502478B2 (en) 2017-06-12 2022-11-15 Gigaphoton Inc. Laser apparatus, laser apparatus management system, and laser apparatus management method

Similar Documents

Publication Publication Date Title
US6782017B1 (en) Wavelength locker and wavelength discriminating apparatus
JP2005124192A (en) Method and system for synchronizing operation characteristic of variable wavelength device to wavelength of local oscillator signal
JP2002162659A (en) Single side band optical frequency comb generation method and apparatus
US20110242644A1 (en) High-Speed Multiplied Signal Generating Method And Device
JPH0460464A (en) Narrow spectrum short pulse light source apparatus and voltage detector
JPH07249818A (en) Frequency stabilization method of frequency-variable semiconductor laser
JPH09298511A (en) Frequency stabilized light source
EP0351816B1 (en) Method and apparatus for stabilizing oscillation frequency separation among plural laser devices
JP3079736B2 (en) Wavelength switching method
Zhang et al. Fast wavelength switching of three-section DBR lasers
JPH05118954A (en) Device for measuring reflection in optical frequency area
JP3651764B2 (en) Semiconductor laser wavelength control method and optical device
JP4612938B2 (en) Frequency variable light source
JPH0783154B2 (en) Wavelength switching light source
KR20200032634A (en) Optical frequency stabilizer using optical fiber delay line, and method for generating stable optical frequency signal
JPH10229239A (en) Method for driving variable wavelength semiconductor laser and variable wavelength light source device
JP2520740B2 (en) Variable wavelength stabilized light source
JPH0321916A (en) Optical modulator
JP2701718B2 (en) Laser oscillation wavelength stabilization method
JPH01102978A (en) Variable wavelength light source
JP2751521B2 (en) Laser device frequency interval stabilization method
JPH05323247A (en) Optical resonator array
JP2977919B2 (en) Measuring and controlling device for optical frequency shift of semiconductor laser
JP2952964B2 (en) Laser oscillation frequency stabilization method
JP3351253B2 (en) Optical frequency comb generator