JP2016111214A - Wavelength variable light source, control method for wavelength variable light source, and manufacturing method of wavelength variable light source - Google Patents

Wavelength variable light source, control method for wavelength variable light source, and manufacturing method of wavelength variable light source Download PDF

Info

Publication number
JP2016111214A
JP2016111214A JP2014247771A JP2014247771A JP2016111214A JP 2016111214 A JP2016111214 A JP 2016111214A JP 2014247771 A JP2014247771 A JP 2014247771A JP 2014247771 A JP2014247771 A JP 2014247771A JP 2016111214 A JP2016111214 A JP 2016111214A
Authority
JP
Japan
Prior art keywords
wavelength
semiconductor laser
light source
laser
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014247771A
Other languages
Japanese (ja)
Other versions
JP6328040B2 (en
Inventor
雄鋭 上野
Yuto Ueno
雄鋭 上野
敬太 望月
Keita Mochizuki
敬太 望月
清智 長谷川
Kiyotomo Hasegawa
清智 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014247771A priority Critical patent/JP6328040B2/en
Publication of JP2016111214A publication Critical patent/JP2016111214A/en
Application granted granted Critical
Publication of JP6328040B2 publication Critical patent/JP6328040B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a wavelength variable light source which suppresses wavelength drift by keeping a temperature at a temperature observation point constant before and after wavelength switching by an injection current amount operation onto a semiconductor laser and suppressing slow thermal fluctuation caused by a slow response of a temperature control element (Peltier element).SOLUTION: In the wavelength variable light source, on a laser sub-mount that is disposed on the temperature control element, a semiconductor laser, a temperature observation element, and a thermal compensation region are disposed in this order via a semiconductor substrate and a temperature observed by the temperature observation element is controlled to be constant by the temperature control element. A control part previously calculates and stores power to be inputted to the semiconductor laser before and after the wavelength switching and power to be inputted to the thermal compensation region before and after the wavelength switching for cancelling a heat generation amount change caused by the power inputted to the semiconductor laser. During the operation, the power that is stored before and after the wavelength switching is inputted to the semiconductor laser and the thermal compensation region.SELECTED DRAWING: Figure 1

Description

本発明は、半導体レーザを用いた波長可変光源とその制御方法、並びにその製造方法に関するものである。   The present invention relates to a wavelength tunable light source using a semiconductor laser, a control method thereof, and a manufacturing method thereof.

近年、動画配信等の大容量コンテンツの増加、スマートフォンやタブレット等のモバイル端末の普及によりインターネットトラヒックは爆発的な増加を続けており、光通信システムの伝送容量増大が強く求められている。   In recent years, Internet traffic continues to explode due to the increase in large-capacity content such as video distribution and the spread of mobile terminals such as smartphones and tablets, and there is a strong demand for an increase in transmission capacity of optical communication systems.

その中核技術の一つに波長分割多重(Wavelength Division Multiplexing:WDM)があり、光源としては、対応した周波数のみを出力する光源を複数用意するのではなく、保守・運用上の観点から、任意の周波数を出力できる波長可変光源が望まれている。   One of the core technologies is Wavelength Division Multiplexing (WDM). As a light source, instead of preparing a plurality of light sources that output only the corresponding frequency, from the viewpoint of maintenance and operation, it is optional. A variable wavelength light source capable of outputting a frequency is desired.

ネットワークシステムにおいて、障害復旧時に新たなパスに切替える波長リストレーションの高速化や、電気の帯域や遅延に影響されない光スイッチの要求等により、波長可変光源には高速な波長切替動作が求められている。これを実現するための有力な手法は、半導体レーザの注入電流操作であるが、電流量の変化により副次的に生じる熱ドリフトによって波長が変動(波長ドリフト)してしまう。   In a network system, high-speed wavelength switching operation is required for a wavelength-tunable light source due to the speed of wavelength restoration for switching to a new path at the time of failure recovery and the requirement of an optical switch that is not affected by the electrical bandwidth or delay. . A promising method for realizing this is the operation of injection current of the semiconductor laser. However, the wavelength fluctuates (wavelength drift) due to a secondary thermal drift caused by a change in the amount of current.

これを防ぐために、半導体レーザチップ上に熱補償領域を付加し、波長切替前後で半導体レーザに投入する総電力を変化させないという制御手法によって、波長ドリフトの抑制を行っていた(例えば、特許文献1参照)。   In order to prevent this, wavelength drift is suppressed by a control method in which a thermal compensation region is added on the semiconductor laser chip and the total power input to the semiconductor laser is not changed before and after wavelength switching (for example, Patent Document 1). reference).

特開2008−218947号JP 2008-218947 A

波長可変光源では、半導体レーザの温度を制御するために、温度制御素子(通常はペルチェ素子)が用いられており、温度観測点の温度情報を基に半導体レーザの温度が一定に保たれるように制御している。
上記の特許文献1による制御手法では、波長切替前後で半導体レーザチップによる総発熱量は一定に保たれるが、半導体レーザチップ内の半導体レーザ部と熱補償領域の発熱量がそれぞれ変化するので、半導体レーザチップ内及び半導体レーザチップ周辺の熱分布が変化する。これにより温度観測素子(サーミスタ)における温度が変化し、時定数が大きく立ち上がりが遅いペルチェ素子の動作特性により緩やかな温度変動が生じ、波長がドリフトしてしまうという課題があった。
In the wavelength tunable light source, a temperature control element (usually a Peltier element) is used to control the temperature of the semiconductor laser, so that the temperature of the semiconductor laser is kept constant based on the temperature information at the temperature observation point. Is controlling.
In the control method according to Patent Document 1 described above, the total heat generation amount by the semiconductor laser chip is kept constant before and after the wavelength switching, but the heat generation amounts of the semiconductor laser part and the heat compensation region in the semiconductor laser chip change, respectively. The heat distribution in the semiconductor laser chip and around the semiconductor laser chip changes. As a result, the temperature in the temperature observation element (thermistor) changes, and there is a problem that the wavelength drifts due to a gradual temperature fluctuation due to the operating characteristics of the Peltier element having a large time constant and a slow rise.

本発明は上記のような課題を解決するためになされたもので、半導体レーザへの注入(印加)電流量操作による波長の切替前後で温度観測点の温度を一定に保ち、ペルチェ素子の遅い応答による緩やかな熱変動を抑えることで、波長ドリフトを抑制可能にする波長可変光源とその制御方法並びにその製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems. The temperature at the temperature observation point is kept constant before and after the wavelength switching by operating the amount of injection (application) current to the semiconductor laser, and the slow response of the Peltier device. An object of the present invention is to provide a wavelength tunable light source, a control method thereof, and a manufacturing method thereof that can suppress the wavelength drift by suppressing the gradual thermal fluctuation caused by the above.

上記の目的を達成するため、本発明に係る波長可変光源は、温度制御素子と、前記温度制御素子上に配置されたレーザサブマウントと、前記レーザサブマウント上に半導体基板を介して配置され出射光の波長を任意に変化させることができる半導体レーザと、前記レーザサブマウント上に配置された熱補償領域と、前記レーザサブマウント上において前記半導体基板と前記熱補償領域との間に配置された温度観測素子であって、観測した温度が前記温度制御素子によって一定に制御される温度観測素子と、波長切替の前後にそれぞれ前記半導体レーザへ投入される第1及び第2の電力と、前記第1及び第2の電力による発熱量の変化を打ち消すものとして前記波長切替の前後にそれぞれ前記熱補償領域へ投入される第3及び第4の電力とを予め求めて記憶しておき、動作時において、前記半導体レーザと前記熱補償領域に対し、前記波長切替前にはそれぞれ前記第1及び第3の電力を投入し、前記波長切替後にはそれぞれ前記第2及び第4の電力を投入する制御部とを備える。   In order to achieve the above object, a wavelength tunable light source according to the present invention includes a temperature control element, a laser submount disposed on the temperature control element, and a semiconductor substrate disposed on the laser submount. A semiconductor laser capable of arbitrarily changing the wavelength of the incident light; a thermal compensation region disposed on the laser submount; and disposed between the semiconductor substrate and the thermal compensation region on the laser submount. A temperature observation element, wherein the observed temperature is controlled to be constant by the temperature control element; first and second electric powers input to the semiconductor laser before and after wavelength switching; and In order to cancel the change in the amount of heat generated by the first and second electric powers, the third and fourth electric powers input to the thermal compensation region before and after the wavelength switching are predicted. In operation, the first and third powers are applied to the semiconductor laser and the thermal compensation region before the wavelength switching, respectively, and after the wavelength switching, the second power is supplied to the semiconductor laser and the thermal compensation region, respectively. And a control unit for supplying the fourth power.

また本発明では、温度制御素子と、前記温度制御素子上に配置されたレーザサブマウントと、前記レーザサブマウント上に半導体基板を介して配置され出射光の波長を任意に変化させることができる半導体レーザと、前記レーザサブマウント上に配置された熱補償領域と、前記レーザサブマウント上において前記半導体基板と前記熱補償領域との間に配置された温度観測素子であって、観測した温度が前記温度制御素子によって一定に制御される温度観測素子と、制御部とを備えた波長可変光源の制御方法であって、前記制御部が、予め記憶された、波長切替の前後にそれぞれ前記半導体レーザへ投入される第1及び第2の電力と、前記第1及び第2の電力による発熱量の変化を打ち消すものとして前記波長切替の前後にそれぞれ前記熱補償領域へ投入される第3及び第4の電力を、動作時において、前記半導体レーザと前記熱補償領域に対し、前記波長切替前にはそれぞれ前記第1及び第3の電力を投入し、前記波長切替後にはそれぞれ前記第2及び第4の電力を投入する波長可変光源の制御方法が提供される。   In the present invention, a temperature control element, a laser submount disposed on the temperature control element, and a semiconductor disposed on the laser submount via a semiconductor substrate and capable of arbitrarily changing the wavelength of emitted light. A laser, a thermal compensation region disposed on the laser submount, and a temperature observation element disposed between the semiconductor substrate and the thermal compensation region on the laser submount, wherein the observed temperature is the temperature A wavelength tunable light source control method comprising a temperature observation element controlled to be constant by a temperature control element and a control unit, wherein the control unit stores each of the semiconductor lasers before and after wavelength switching stored in advance. The thermal compensation before and after the wavelength switching to cancel the change in the amount of heat generated by the first and second powers to be input and the first and second powers. In operation, the first and third powers are applied to the semiconductor laser and the heat compensation region before the wavelength switching, respectively. After the switching, a method for controlling the wavelength tunable light source for supplying the second and fourth powers is provided.

さらに本発明では、温度制御素子と、前記温度制御素子上に配置されたレーザサブマウントと、前記レーザサブマウント上に半導体基板を介して配置され出射光の波長を任意に変化させることができる半導体レーザと、前記レーザサブマウント上に配置された熱補償領域と、前記レーザサブマウント上において前記半導体基板と前記熱補償領域との間に配置された温度観測素子であって、観測した温度が前記温度制御素子によって一定に制御される温度観測素子と、制御部とを備えた波長可変光源の製造方法であって、波長切替前後にそれぞれ前記半導体レーザへ投入される第1及び第2の電力を測定し、前記第1及び第2の電力による発熱量の変化を打ち消すものとして前記波長切替の前後にそれぞれ前記熱補償領域へ投入される第3及び第4の電力を取得し、前記第1から第4の電力を、前記波長切替を行うときに前記半導体レーザと前記熱補償領域にそれぞれ与える電力として予め前記制御部に記憶しておく波長可変光源の製造方法が提供される。   Furthermore, in the present invention, a temperature control element, a laser submount disposed on the temperature control element, and a semiconductor that is disposed on the laser submount via a semiconductor substrate and can arbitrarily change the wavelength of emitted light. A laser, a thermal compensation region disposed on the laser submount, and a temperature observation element disposed between the semiconductor substrate and the thermal compensation region on the laser submount, wherein the observed temperature is the temperature A wavelength tunable light source manufacturing method including a temperature observation element controlled by a temperature control element and a control unit, wherein the first and second electric power supplied to the semiconductor laser before and after wavelength switching are respectively Measuring and canceling the change in the amount of heat generated by the first and second electric powers, and the third and Of the wavelength tunable light source that stores the first to fourth powers in the control unit in advance as powers to be given to the semiconductor laser and the thermal compensation region when the wavelength is switched. A manufacturing method is provided.

本発明に係る波長可変光源によれば、波長切替の前後で、半導体レーザへの投入電力の増加分だけ熱補償領域への投入電力が減少しているか、若しくは、半導体レーザへの投入電力の減少分だけ熱補償領域への投入電力が増加しており、温度観測素子における温度は一定に保たれる。   According to the wavelength tunable light source of the present invention, before and after the wavelength switching, the power input to the thermal compensation region is decreased by the increase in power input to the semiconductor laser, or the power input to the semiconductor laser is decreased. The input power to the heat compensation region increases by the amount, and the temperature in the temperature observation element is kept constant.

また、温度制御素子(ペルチェ素子)は温度観測素子から得られる温度情報を元に温度一定制御を行っているので、波長切替前後でペルチェ素子の駆動状態は変化せず、時定数の大きいペルチェ素子の応答によって生じる緩やかな波長ドリフトを抑制できる。   Further, since the temperature control element (Peltier element) performs constant temperature control based on temperature information obtained from the temperature observation element, the driving state of the Peltier element does not change before and after wavelength switching, and the Peltier element has a large time constant. Slow wavelength drift caused by the response can be suppressed.

本発明に係る波長可変光源の実施の形態1を示す平面概略図である。1 is a schematic plan view showing Embodiment 1 of a variable wavelength light source according to the present invention. 図1において線A−Aで切断したときの断面図である。It is sectional drawing when cut | disconnecting by line AA in FIG. 本発明に係る波長可変光源の実施の形態2を示す平面概略図である。It is a plane schematic diagram showing Embodiment 2 of the wavelength variable light source according to the present invention. 本発明に係る波長可変光源の実施の形態3を示す平面概略図である。It is a plane schematic diagram showing Embodiment 3 of the wavelength tunable light source according to the present invention. 本発明に係る波長可変光源の実施の形態4を示す平面概略図である。FIG. 9 is a schematic plan view showing Embodiment 4 of a wavelength tunable light source according to the present invention. 本発明に係る波長可変光源の実施の形態5を示す平面概略図である。FIG. 9 is a schematic plan view showing Embodiment 5 of a wavelength tunable light source according to the present invention.

以下、本発明を実施するための形態について、図面を参照して説明する。
実施の形態1.
図1に、本発明の実施の形態1における構成図を示す。この制御装置は、温度制御素子としての例えばペルチェ素子1と、このペルチェ素子1上に配置されたレーザサブマウント2とを備え、このレーザサブマウント2上にはさらに、半導体基板3、抵抗4、及び温度観測素子としての例えばサーミスタ5と、半導体基板3上に形成された半導体レーザ6と、抵抗4の両端において抵抗4と電気的に接続されるように形成された電極対7とが配置されている。また、電極対7には制御部8が接続されている。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 shows a configuration diagram according to Embodiment 1 of the present invention. The control device includes, for example, a Peltier element 1 as a temperature control element, and a laser submount 2 disposed on the Peltier element 1, and further includes a semiconductor substrate 3, a resistor 4, Further, for example, a thermistor 5 as a temperature observation element, a semiconductor laser 6 formed on the semiconductor substrate 3, and an electrode pair 7 formed so as to be electrically connected to the resistor 4 at both ends of the resistor 4 are disposed. ing. A control unit 8 is connected to the electrode pair 7.

図2に示す断面図において、サーミスタ5は、抵抗4と半導体レーザ6の間に、半導体レーザ6とサーミスタ5との間の熱抵抗θ1と、抵抗4とサーミスタ5との間の熱抵抗θ2が等しくなるように(θ1=θ2)配置されている。
二点間の熱抵抗θは次式で表される。
θ=L/(λ×A) 式(1)
但し、Lは熱が伝達する経路に沿った二点間の距離、λは熱が伝達する物質の熱伝導率、Aは熱が伝達する経路の断面積である。
In the cross-sectional view shown in FIG. 2, the thermistor 5 has a thermal resistance θ1 between the semiconductor laser 6 and the thermistor 5 and a thermal resistance θ2 between the resistor 4 and the thermistor 5 between the resistor 4 and the semiconductor laser 6. They are arranged to be equal (θ1 = θ2).
The thermal resistance θ between the two points is expressed by the following equation.
θ = L / (λ × A) Equation (1)
Where L is the distance between two points along the path through which heat is transferred, λ is the thermal conductivity of the substance through which heat is transferred, and A is the cross-sectional area of the path through which heat is transferred.

本実施の形態1では、抵抗4は、レーザサブマウント2を介してサーミスタ5と熱的に接続されているのに対し、半導体レーザ6は、半導体基板3とレーザサブマウント2を介してサーミスタ5と熱的に接続されている。従って、抵抗4と、サーミスタ5と、半導体レーザ6の位置関係は、半導体基板3のサイズ及び熱伝導率を考慮して決定する必要がある。   In the first embodiment, the resistor 4 is thermally connected to the thermistor 5 via the laser submount 2, whereas the semiconductor laser 6 is connected to the thermistor 5 via the semiconductor substrate 3 and the laser submount 2. And thermally connected. Therefore, the positional relationship between the resistor 4, the thermistor 5, and the semiconductor laser 6 needs to be determined in consideration of the size and thermal conductivity of the semiconductor substrate 3.

例えば、半導体基板3が或る基準値の熱伝導率及びサイズ(断面積)のときにθ1=θ2となる抵抗4、サーミスタ5及び半導体レーザ6の基準配置があるとして、半導体基板3の熱伝導率が基準値より小さい場合は、基準配置と比較して抵抗4をサーミスタ5から遠ざけるか、若しくは、半導体レーザ6をサーミスタ5に近づければよい。逆に、半導体基板3の熱伝導率が基準値より大きい場合は、基準配置と比較して抵抗4をサーミスタ5に近づけるか、若しくは、半導体レーザ6をサーミスタ5から遠ざければよい。   For example, assuming that there is a reference arrangement of the resistor 4, the thermistor 5, and the semiconductor laser 6 in which θ 1 = θ 2 when the semiconductor substrate 3 has a certain thermal conductivity and size (cross-sectional area), the thermal conduction of the semiconductor substrate 3 is assumed. When the rate is smaller than the reference value, the resistor 4 may be moved away from the thermistor 5 or the semiconductor laser 6 may be moved closer to the thermistor 5 as compared with the reference arrangement. On the contrary, when the thermal conductivity of the semiconductor substrate 3 is larger than the reference value, the resistor 4 may be brought closer to the thermistor 5 or the semiconductor laser 6 may be moved away from the thermistor 5 as compared with the reference arrangement.

サイズについては、半導体基板3の熱伝達方向の断面積が基準値より小さい場合は、基準配置と比較して抵抗4をサーミスタ5から遠ざけるか、若しくは、半導体レーザ6をサーミスタ5に近づければよい。逆に、半導体基板3の熱伝達方向の断面積が基準値より大きい場合は、基準配置と比較して抵抗4をサーミスタ5に近づけるか、若しくは、半導体レーザ6をサーミスタ5から遠ざければよい。   Regarding the size, when the cross-sectional area of the heat transfer direction of the semiconductor substrate 3 is smaller than the reference value, the resistor 4 may be moved away from the thermistor 5 or the semiconductor laser 6 may be moved closer to the thermistor 5 as compared with the reference arrangement. . On the contrary, when the cross-sectional area of the semiconductor substrate 3 in the heat transfer direction is larger than the reference value, the resistor 4 may be brought closer to the thermistor 5 or the semiconductor laser 6 may be moved away from the thermistor 5 as compared with the reference arrangement.

このようにして、熱抵抗θ1とθ2とが等しくなるように調整することができるが、θ1=θ2であることが本発明に不可欠な条件ではなく、後述するように、半導体レーザ6の発熱量の変化を、熱補償領域である抵抗4の発熱量の変化で打ち消し、サーミスタ5の温度を、波長切替があっても一定に保つための、より好ましい条件である。
なお、ペルチェ素子1は、サーミスタ5から得られる温度情報を基に、レーザサブマウント2上のサーミスタ5の温度が一定になるように制御を行っている。なお、この制御回路は周知であるので、特に説明は割愛するとともに図示も省略している。
In this way, the thermal resistances θ1 and θ2 can be adjusted to be equal. However, it is not an essential condition for the present invention that θ1 = θ2, and as will be described later, the amount of heat generated by the semiconductor laser 6 This is a more preferable condition for canceling this change by changing the amount of heat generated by the resistor 4 that is the heat compensation region, and keeping the temperature of the thermistor 5 constant even when the wavelength is switched.
The Peltier element 1 controls the temperature of the thermistor 5 on the laser submount 2 to be constant based on temperature information obtained from the thermistor 5. Since this control circuit is well known, a description thereof is omitted and illustration is omitted.

次に、波長切替動作時の制御手法について説明する。本制御手法においては、“予め実験等により”波長切替前後における半導体レーザ6の駆動条件(注入電流と電圧の値)と抵抗4への印加電圧及び電流の値(下記の表1参照)を取得する。   Next, a control method at the time of wavelength switching operation will be described. In this control method, the driving conditions (injection current and voltage values) of the semiconductor laser 6 before and after wavelength switching and the values of the applied voltage and current to the resistor 4 (see Table 1 below) are obtained “by experiments beforehand”. To do.

Figure 2016111214
Figure 2016111214

まず、抵抗4に対しては何ら電圧・電流を印加しない状態で、切替前の波長λを発生する半導体レーザ6へ注入される注入電流IL1=0.15Aと、これに伴う半導体レーザ6への印加電圧VL1=1Vとによる投入電力(第1の電力)WL1=0.15W、及び、切替後の波長λ(λ<λ)を発生する半導体レーザ6への注入電流IL2=0.25Aと、これに伴う印加電圧VL2=1.2Vとによる投入電力(第2の電力)WL2=0.3W、を、それぞれ波長計と電圧計と電流計とを用いて計測するとともに制御部8に切替データとして記憶しておく。これにより、波長切替λ→λの前後における半導体レーザ6への投入電力(すなわち発熱量)の差分WR1−WR2(0.3−0.15=0.15W)が分かる。 First, in the state where no voltage / current is applied to the resistor 4, the injection current I L1 = 0.15 A injected into the semiconductor laser 6 that generates the wavelength λ 1 before switching, and the accompanying semiconductor laser 6. Injected current I to semiconductor laser 6 that generates input power (first power) WL1 = 0.15 W and applied wavelength λ 212 ) with applied voltage V L1 = 1V Measure the applied power (second power) WL2 = 0.3W with L2 = 0.25A and the applied voltage V L2 = 1.2V accompanying this using a wavelength meter, voltmeter and ammeter, respectively. At the same time, it is stored in the control unit 8 as switching data. As a result, the difference WR1-WR2 (0.3-0.15 = 0.15W) of the input power to the semiconductor laser 6 (that is, the amount of generated heat) before and after the wavelength switching λ 1 → λ 2 is known.

次に、抵抗4への印加電圧Vと流れる電流Iとの関係を取得し、半導体レーザ6への投入電力との差分を補償するのに必要な条件(切替データ)を求める。
これは、抵抗4の抵抗値が分かっているので計算で求めることができる。すなわち、切替前の投入電力の総和W1と、切替後の投入電力の総和W2とが等しく且つ抵抗4への波長切替前後の投入電力の差分(WR1−WR2)が、上記の半導体レーザ6への投入電力の差分(WL1−WL2)(0.3−0.15=0.15W)と同一値で逆極性となるように、波長切替前後の電圧及び電流を求める。
Next, the relationship between the current I R flowing through the applied voltage V R to the resistance 4 acquires, obtains the condition (switch data) necessary to compensate for the difference between the power supplied to the semiconductor laser 6.
This can be obtained by calculation since the resistance value of the resistor 4 is known. That is, the total sum W1 of input power before switching is equal to the total sum W2 of input power after switching, and the difference (WR1-WR2) of input power before and after wavelength switching to the resistor 4 is the difference to the semiconductor laser 6 described above. The voltage and current before and after the wavelength switching are obtained so as to have the same value as the input power difference (WL1−WL2) (0.3−0.15 = 0.15 W) and opposite polarity.

このため、切替前の抵抗4への印加電圧VR1=1V及びこれに伴う電流IR1=0.2Aによる投入電力WR1=0.2Wと、切替後の抵抗4への印加電圧VR2=0.5V及び電流IR2=0.1Aによる投入電力WR2=0.05Wが求められ、これも切替データとして、制御部8に記憶される。なお、このデータは一義的ではなく、種々決めることができる。 For this reason, the applied voltage V R1 = 1V applied to the resistor 4 before switching, and the input power WR1 = 0.2 W due to the current I R1 = 0.2 A, and the applied voltage V R2 = 0 applied to the resistor 4 after switching. The input power WR2 = 0.05W with .5V and current I R2 = 0.1A is obtained, and this is also stored in the control unit 8 as switching data. This data is not unambiguous and can be determined in various ways.

この結果、波長切替前の投入電力の総和W1=0.35Wと、波長切替後の投入電力の総和W2=0.35Wは、互いに等しくなる。
これは、表1の例では、波長切替前後で、半導体レーザ6への投入電力が0.15Wから0.3Wへ増加しており、抵抗4への投入電力は0.2Wから0.05Wへ減少しているが、半導体レーザ6への投入電力が減少する場合(λ>λ)は、減少量を補償する分だけ抵抗4への投入電力を増加させればよいことを示している。
As a result, the sum W1 = 0.35W of input power before wavelength switching and the sum W2 = 0.35W of input power after wavelength switching are equal to each other.
In the example of Table 1, the input power to the semiconductor laser 6 increases from 0.15 W to 0.3 W before and after the wavelength switching, and the input power to the resistor 4 increases from 0.2 W to 0.05 W. Although it decreases, when the input power to the semiconductor laser 6 decreases (λ 1 > λ 2 ), it indicates that the input power to the resistor 4 only needs to be increased to compensate for the decrease amount. .

なお、抵抗4の抵抗値は、電圧/電流=5Ωとなっているが、この抵抗値に限る必要はなく、5Ω未満でも、5Ωより大きくても良い。また、VR1、IR1、VR2、IR2の組み合わせについては、波長切替前後における半導体レーザ6への投入電力の差を補償できれば良いので、表1の組み合わせに限られるものではない。 The resistance value of the resistor 4 is voltage / current = 5Ω. However, the resistance value is not limited to this value, and may be less than 5Ω or greater than 5Ω. Further, the combinations of V R1 , I R1 , V R2 , and I R2 are not limited to the combinations shown in Table 1 as long as the difference in input power to the semiconductor laser 6 before and after wavelength switching can be compensated.

表1における投入電力は発熱量を示すものであり、この電力は、波長切替前後の電力を与える、半導体レーザ6及び熱補償領域4それぞれの印加電流値とこれに伴う電圧値か、又は印加電圧値とこれに伴う電流値の組み合わせ(4つのパターン)で構成され、波長切替前後の半導体レーザ6の投入電力差が、熱補償領域4の逆極性の投入電力差であればよい。言い換えると、半導体レーザ6への印加と抵抗4への印加の波長切替前後の組み合わせは、電圧印加−電圧印加、電圧印加−電流印加、電流印加−電圧印加、及び電流印加−電流印加の4つのパターンがあり、これらのいずれでもよい。   The input power in Table 1 indicates the amount of heat generation, and this power is the applied current value of each of the semiconductor laser 6 and the thermal compensation region 4 that gives the power before and after the wavelength switching and the voltage value associated therewith or the applied voltage. It is only necessary that the input power difference of the semiconductor laser 6 before and after wavelength switching be a reverse input power difference of the thermal compensation region 4. In other words, there are four combinations of application to the semiconductor laser 6 and application to the resistor 4 before and after wavelength switching: voltage application-voltage application, voltage application-current application, current application-voltage application, and current application-current application. There are patterns, and any of these may be used.

波長切替時においては、半導体レーザ6へIL1、抵抗4へVR1を印加している切替前状態から、半導体レーザ6への印加電圧をVL2に切替えるタイミングで抵抗4への印加電圧をVR2に切替える。これは「フィードフォワード制御」によって行われる。
なお、この例では、定電圧源を想定して印加電圧の切替えによる波長切替を行ったが、定電流源を使用して、注入電流の切替えによる波長切替を行っても良い。すなわち、半導体レーザ6へIL1、抵抗4へIR1を注入している状態から、半導体レーザ6への注入電流をIL2に切替えるタイミングで抵抗4に流れる電流をIR2に切替えても良い。
At the time of wavelength switching, the voltage applied to the resistor 4 is changed to V L2 at the timing when the voltage applied to the semiconductor laser 6 is switched to V L2 from the pre-switching state where I L1 is applied to the semiconductor laser 6 and V R1 is applied to the resistor 4. Switch to R2 . This is performed by “feed forward control”.
In this example, the wavelength switching is performed by switching the applied voltage assuming a constant voltage source. However, the wavelength switching may be performed by switching the injection current using a constant current source. That is, from a state where the semiconductor laser 6 I L1, the resistor 4 are injected I R1, the current flowing through the current injected into the semiconductor laser 6 to the resistor 4 at the timing of switching the I L2 may be switched to I R2.

最後に、本実施の形態における作用効果について説明する。
本実施の形態においては、波長切替の前後で、半導体レーザ6への投入電力の増加分だけ抵抗4への投入電力が減少しているか、若しくは、半導体レーザ6への投入電力の減少分だけ抵抗4への投入電力が増加しており、かつ、半導体レーザ6−サーミスタ5間の熱抵抗θ1と、抵抗4−サーミスタ5間の熱抵抗θ2が等しいので、サーミスタ5における温度は一定に保たれる。
Finally, the operational effects of the present embodiment will be described.
In the present embodiment, before and after the wavelength switching, the input power to the resistor 4 is decreased by the increase of the input power to the semiconductor laser 6 or the resistance is decreased by the decrease of the input power to the semiconductor laser 6. 4 and the thermal resistance θ1 between the semiconductor laser 6 and the thermistor 5 and the thermal resistance θ2 between the resistor 4 and the thermistor 5 are equal, the temperature in the thermistor 5 is kept constant. .

ペルチェ素子1はサーミスタ5から得られる温度情報を元に温度一定制御を行っているので、波長切替前後でペルチェ素子1の駆動状態は変化しない。本実施の形態では、熱補償領域である抵抗4は、半導体レーザ6の外部に形成されているので、レーザ注入電流の変化に伴って生じる半導体レーザ6の温度変化は補償されず、熱光学効果によって出射波長はドリフトする。しかし、熱光学効果によるドリフトは高々数msec程度で収束する。本実施の形態では、その後に生じる時定数の大きいペルチェ素子1の応答によって生じる緩やかな波長ドリフトを抑制できる。   Since the Peltier element 1 performs constant temperature control based on the temperature information obtained from the thermistor 5, the driving state of the Peltier element 1 does not change before and after wavelength switching. In the present embodiment, since the resistor 4 which is a heat compensation region is formed outside the semiconductor laser 6, the temperature change of the semiconductor laser 6 caused by the change of the laser injection current is not compensated for, and the thermo-optic effect. As a result, the emission wavelength drifts. However, the drift due to the thermo-optic effect converges in about several milliseconds at most. In the present embodiment, it is possible to suppress a gradual wavelength drift caused by the response of the Peltier element 1 having a large time constant that occurs thereafter.

なお、本実施の形態では、熱抵抗θ1=θ2で、かつ、波長切替前後における半導体レーザ6と抵抗4への投入電力の和が等しくなっているが、上述のように、波長切替前後においてサーミスタ5の温度が変化しなければ、上記の等号関係θ1=θ2は厳密に保たれなくても良い。   In the present embodiment, the thermal resistance θ1 = θ2 and the sum of the input power to the semiconductor laser 6 and the resistor 4 before and after wavelength switching is equal, but as described above, the thermistor before and after wavelength switching. If the temperature of 5 does not change, the above equality relation θ1 = θ2 may not be strictly maintained.

また、波長切替前後におけるサーミスタ5の温度も、厳密に一定でなくても、ペルチェ素子1の駆動状態が変わることによる波長ドリフトが十分小さい範囲であれば変化しても良い。
切替動作については、半導体レーザ6と抵抗4の駆動条件(電圧・電流)の切替が厳密に同時ではなくても、切替のタイミング差が、サーミスタ5の温度を検知してペルチェ素子1の駆動条件にフィードバックする回路の応答速度より短ければよい。
Further, the temperature of the thermistor 5 before and after the wavelength switching is not strictly constant, but may be changed as long as the wavelength drift due to the change of the driving state of the Peltier element 1 is sufficiently small.
Regarding the switching operation, even if the switching of the driving conditions (voltage / current) of the semiconductor laser 6 and the resistor 4 is not strictly the same, the switching timing difference detects the temperature of the thermistor 5 and the driving conditions of the Peltier element 1 It is sufficient that the response speed of the circuit that feeds back is shorter.

さらに、サーミスタ5は、温度観測素子であれば他の部品でも代用可能であり、例えば、熱ダイオード等でもよい。レーザサブマウント2は、熱伝導度に優れた材質であり得る。例えば、窒化アルミ、アルミナ等のセラミックが利用できるが、セラミックに限定されるものでなく、シリコン材質、合成樹脂材質、金属材質などが利用できる。また、温度を制御する素子はペルチェ素子だけに限られるものではなく、例えばヒータなどであっても良い。   Further, the thermistor 5 may be replaced with other components as long as it is a temperature observation element, and may be a thermal diode, for example. The laser submount 2 can be made of a material having excellent thermal conductivity. For example, ceramics such as aluminum nitride and alumina can be used, but are not limited to ceramics, and silicon materials, synthetic resin materials, metal materials, and the like can be used. The element for controlling the temperature is not limited to the Peltier element, and may be a heater, for example.

実施の形態2.
図3に本発明の実施の形態2における構成図を示す。本実施の形態2は、実施の形態1の変形例であり、半導体基板3上に半導体レーザ6から出射される光をガイドする光導波路10、及びこの光導波路10を進行する光が入力する光増幅部11が配置されている。サーミスタ5の配置は、半導体レーザ6への注入電流量変化に伴う光増幅部11の電流量の変化も考慮して決める。
すなわち、光増幅部11は一般に定電圧動作するので、上記の表1からこの光増幅部11の電流値・電圧値を引いた値で半導体レーザ6を制御すればよいことになる。
Embodiment 2. FIG.
FIG. 3 shows a configuration diagram according to the second embodiment of the present invention. The second embodiment is a modification of the first embodiment. The optical waveguide 10 guides the light emitted from the semiconductor laser 6 onto the semiconductor substrate 3, and the light input by the light traveling through the optical waveguide 10. An amplifying unit 11 is arranged. The arrangement of the thermistor 5 is determined in consideration of the change in the current amount of the optical amplifying unit 11 accompanying the change in the amount of current injected into the semiconductor laser 6.
That is, since the optical amplifying unit 11 generally operates at a constant voltage, the semiconductor laser 6 may be controlled by a value obtained by subtracting the current value / voltage value of the optical amplifying unit 11 from Table 1 above.

半導体レーザ6への注入電流量が変化すると、光増幅部11へ入力する光の周波数及びパワーが変化する。これによって、光増幅部11の電流量及び発熱量も変化する。この影響も加味し、半導体レーザ6の電流量切替、抵抗4の電流量切替、光増幅部11の発熱量変化が同時に起きたときに、レーザサブマウント2上で温度変化が生じない位置にサーミスタ5を配置する。   When the amount of current injected into the semiconductor laser 6 changes, the frequency and power of light input to the optical amplifying unit 11 change. As a result, the current amount and the heat generation amount of the optical amplifying unit 11 also change. In consideration of this influence, when the current amount switching of the semiconductor laser 6, the current amount switching of the resistor 4, and the heat generation amount change of the optical amplifying unit 11 occur simultaneously, the thermistor is located on the laser submount 2 at a position where no temperature change occurs. 5 is arranged.

この結果、より高出力の光を得る構成においても、波長切替前後でサーミスタ温度が変化しないので、波長ドリフトが抑制できる。なお、切替前後におけるサーミスタ温度も、厳密に一定でなくとも、ペルチェ素子1の駆動状態が変わることによる波長ドリフトが十分小さい範囲であれば、変化しても良い。   As a result, even in a configuration that obtains higher output light, the thermistor temperature does not change before and after wavelength switching, so that wavelength drift can be suppressed. Note that the thermistor temperature before and after switching may not be strictly constant as long as the wavelength drift due to the change of the driving state of the Peltier element 1 is sufficiently small.

実施の形態3.
図4に本発明の実施の形態3における構成図を示す。本実施の形態は、実施の形態1の変形例であり、レーザサブマウント2上に抵抗サブマウント9が配置され、抵抗サブマウント9上に抵抗4及び電極対7が配置されている。二点間の熱抵抗は上記の式(1)で表わされるため、半導体基板3のサイズ及び熱伝導率と抵抗サブマウント9のサイズ及び熱伝導率が等しければ、半導体レーザ6からサーミスタ5までの距離と、抵抗4からサーミスタ5までの距離が等しいときに、半導体レーザ6とサーミスタ5の間の熱抵抗θ1と、抵抗4とサーミスタの間の熱抵抗θ2が等しくなる。
Embodiment 3 FIG.
FIG. 4 shows a configuration diagram according to the third embodiment of the present invention. The present embodiment is a modification of the first embodiment, in which a resistance submount 9 is disposed on the laser submount 2, and a resistor 4 and an electrode pair 7 are disposed on the resistance submount 9. Since the thermal resistance between the two points is expressed by the above equation (1), if the size and thermal conductivity of the semiconductor substrate 3 and the size and thermal conductivity of the resistance submount 9 are equal, the semiconductor laser 6 to the thermistor 5 When the distance and the distance from the resistor 4 to the thermistor 5 are equal, the thermal resistance θ1 between the semiconductor laser 6 and the thermistor 5 and the thermal resistance θ2 between the resistor 4 and the thermistor are equal.

本実施の形態では、抵抗サブマウント9の材質やサイズにより、抵抗4−サーミスタ5間の熱抵抗が変わるため、部品配置の自由度が上がる。例えば、ある基準の抵抗サブマウント熱伝導率とそのときの抵抗位置を考え、熱伝導率が基準値より大きい物質を抵抗サブマウント9に選ぶと基準位置より抵抗4をサーミスタ5から遠ざけることができ、熱伝導率が基準値よりも小さい物質を抵抗サブマウント9に選ぶと、基準位置より抵抗4をサーミスタ5に近付けることができる。   In the present embodiment, the thermal resistance between the resistor 4 and the thermistor 5 varies depending on the material and size of the resistor submount 9, so that the degree of freedom of component placement increases. For example, given the resistance conductivity of a certain resistance submount and the resistance position at that time, if a material having a thermal conductivity larger than the reference value is selected for the resistance submount 9, the resistance 4 can be moved away from the thermistor 5 from the reference position. When a substance having a thermal conductivity smaller than the reference value is selected for the resistance submount 9, the resistor 4 can be brought closer to the thermistor 5 than the reference position.

また、熱伝達方向の抵抗サブマウント断面積のある基準値を考え、基準よりも抵抗サブマウント断面積を大きくすると基準位置より抵抗4をサーミスタ5から遠ざけることができ、基準よりも抵抗サブマウント断面積を小さくすると基準位置より抵抗4をサーミスタ5に近づけることができる。   Considering a certain reference value of the resistance submount cross-sectional area in the heat transfer direction, if the resistance submount cross-sectional area is made larger than the reference, the resistor 4 can be moved away from the thermistor 5 from the reference position, and the resistance submount cross-section is cut off from the reference. If the area is reduced, the resistor 4 can be brought closer to the thermistor 5 than the reference position.

なお、抵抗サブマウント9は、熱伝導度に優れる材質であり得る。例えば、窒化アルミ、アルミナ等のセラミックが利用できるが、セラミックに限定されるものでなく、シリコン材質、合成樹脂材質、金属材質などが利用できる。   The resistance submount 9 can be made of a material having excellent thermal conductivity. For example, ceramics such as aluminum nitride and alumina can be used, but are not limited to ceramics, and silicon materials, synthetic resin materials, metal materials, and the like can be used.

実施の形態4.
図5に、実施の形態4の構成図を示す。本実施の形態は、実施の形態1の変形例であり、半導体基板3上に半導体レーザ101〜103が形成されている。半導体レーザ6はそれぞれ出射波長が異なっており、これらを使い分けることで出射可能な波長範囲を拡大できる。なお、半導体レーザ6の個数は2個でもよく、3個以上でも良い。
Embodiment 4 FIG.
FIG. 5 shows a configuration diagram of the fourth embodiment. The present embodiment is a modification of the first embodiment, and semiconductor lasers 101 to 103 are formed on a semiconductor substrate 3. The semiconductor lasers 6 have different emission wavelengths, and the wavelength range that can be emitted can be expanded by properly using them. The number of semiconductor lasers 6 may be two, or three or more.

実施の形態5.
図6に、実施の形態5の構成図を示す。本実施の形態は実施の形態4の変形例であり、レーザサブマウント2上に抵抗201〜203が配置され、抵抗201〜203の両端には電極対301〜303がそれぞれ設けられ、電極対301〜303と制御部8とが接続されている。また、電極対301〜303の一方の電極はスイッチ12に接続されている。
Embodiment 5 FIG.
FIG. 6 shows a configuration diagram of the fifth embodiment. The present embodiment is a modification of the fourth embodiment. Resistors 201 to 203 are arranged on the laser submount 2, and electrode pairs 301 to 303 are provided at both ends of the resistors 201 to 203, respectively. To 303 and the control unit 8 are connected. One electrode of the electrode pairs 301 to 303 is connected to the switch 12.

動作時は、使用する半導体レーザ6に応じて、半導体レーザ6−サーミスタ5間の熱抵抗θ1と、抵抗4−サーミスタ5間の熱抵抗θ2との差の絶対値|θ1−θ2|が最も小さくなる抵抗4を予め計測しておき、これを制御部8に記憶しておき、波長切替時に制御部8がスイッチ12を切り替える。
これにより、波長切替前後におけるサーミスタ5の温度変化を抑制できるので、波長ドリフトを抑制できる。なお、抵抗4の個数は2個でもよく、3個以上でも良い。また、抵抗4の個数は半導体レーザ6の個数と異なっていても良い。
During operation, the absolute value | θ1-θ2 | of the difference between the thermal resistance θ1 between the semiconductor laser 6 and the thermistor 5 and the thermal resistance θ2 between the resistor 4 and the thermistor 5 is the smallest depending on the semiconductor laser 6 to be used. The resistance 4 is measured in advance and stored in the control unit 8, and the control unit 8 switches the switch 12 during wavelength switching.
Thereby, since the temperature change of the thermistor 5 before and behind wavelength switching can be suppressed, wavelength drift can be suppressed. The number of resistors 4 may be two, or three or more. Further, the number of resistors 4 may be different from the number of semiconductor lasers 6.

1 ペルチェ素子;2 レーザサブマウント;3 半導体基板;4,201〜203 抵抗(熱補償領域);5 サーミスタ;6,101〜103 半導体レーザ;7,301〜303 電極対;8 制御部;9 抵抗サブマウント;10 光導波路;11 光増幅部;12 スイッチ;θ1,θ2 熱抵抗。   DESCRIPTION OF SYMBOLS 1 Peltier device; 2 Laser submount; 3 Semiconductor substrate; 4,201-203 Resistance (thermal compensation area); 5 Thermistor; 6,101-103 Semiconductor laser; 7,301-303 Electrode pair; 8 Control part; 9 Resistance Submount; 10 Optical waveguide; 11 Optical amplifier; 12 Switch; θ1, θ2 Thermal resistance.

Claims (11)

温度制御素子と、
前記温度制御素子上に配置されたレーザサブマウントと、
前記レーザサブマウント上に半導体基板を介して配置され出射光の波長を任意に変化させることができる半導体レーザと、
前記レーザサブマウント上に配置された熱補償領域と、
前記レーザサブマウント上において前記半導体基板と前記熱補償領域との間に配置された温度観測素子であって、観測した温度が前記温度制御素子によって一定に制御される温度観測素子と、
波長切替の前後にそれぞれ前記半導体レーザへ投入される第1及び第2の電力と、前記第1及び第2の電力による発熱量の変化を打ち消すものとして前記波長切替の前後にそれぞれ前記熱補償領域へ投入される第3及び第4の電力とを予め求めて記憶しておき、動作時において、前記半導体レーザと前記熱補償領域に対し、前記波長切替前にはそれぞれ前記第1及び第3の電力を投入し、前記波長切替後にはそれぞれ前記第2及び第4の電力を投入する制御部とを備えた
波長可変光源。
A temperature control element;
A laser submount disposed on the temperature control element;
A semiconductor laser disposed on the laser submount via a semiconductor substrate and capable of arbitrarily changing the wavelength of the emitted light;
A thermal compensation region disposed on the laser submount;
A temperature observation element disposed between the semiconductor substrate and the thermal compensation region on the laser submount, wherein the observed temperature is controlled to be constant by the temperature control element;
The first and second powers input to the semiconductor laser before and after the wavelength switching, and the heat compensation regions before and after the wavelength switching as canceling the change in the amount of heat generated by the first and second powers. The third power and the fourth power to be input to are previously obtained and stored, and during operation, the first and third powers are switched between the semiconductor laser and the heat compensation region before the wavelength switching, respectively. A wavelength tunable light source comprising: a control unit that turns on power and turns on the second and fourth powers after the wavelength switching.
前記電力が、前記波長切替前後の前記電力を与える、前記半導体レーザ及び前記熱補償領域それぞれの印加電流値とこれに伴う電圧値か、又は印加電圧値とこれに伴う電流値の組み合わせで構成され、前記第1及び第2の電力の差が、前記第3及び第4の電力差に逆極性で等しく、前記制御部は、前記第1及び第2の電力として前記半導体レーザの印加電流又は印加電圧を変化させるタイミングで、前記第3及び第4の電力として前記熱補償領域への印加電圧又は電流を変化させる
請求項1の波長可変光源。
The power is configured by an applied current value of each of the semiconductor laser and the thermal compensation region and a voltage value associated therewith, or a combination of an applied voltage value and a current value associated therewith, which gives the power before and after the wavelength switching. The difference between the first power and the second power is equal to the third power difference and the fourth power difference in opposite polarity, and the control unit applies the current applied or applied to the semiconductor laser as the first power and the second power. The wavelength tunable light source according to claim 1, wherein an applied voltage or current to the thermal compensation region is changed as the third and fourth electric powers at a timing of changing the voltage.
前記半導体レーザと前記温度観測素子との間の第1の熱抵抗と、前記温度観測素子と前記熱補償領域との間の第2の熱抵抗とが等しい
請求項1に記載の波長可変光源。
The wavelength tunable light source according to claim 1, wherein a first thermal resistance between the semiconductor laser and the temperature observation element is equal to a second thermal resistance between the temperature observation element and the thermal compensation region.
前記半導体基板上において、前記半導体レーザには、前記半導体レーザから出射される光をガイドする光導波路と、前記光導波路を進行する光を増幅する光増幅部とが形成されており、前記第1及び第2の電力が、それぞれ前記光増幅部の一定電力を引いた値である
請求項1又は2の波長可変光源。
On the semiconductor substrate, the semiconductor laser is formed with an optical waveguide for guiding light emitted from the semiconductor laser, and an optical amplifying unit for amplifying the light traveling in the optical waveguide, The tunable light source according to claim 1, wherein the second power is a value obtained by subtracting a constant power of the optical amplification unit.
前記レーザサブマウントと前記熱補償領域との間に抵抗サブマウントが配置されており、前記第1及び第2の熱抵抗が等しくなるように前記抵抗サブマウントの材質及びサイズ又はこれらの一方が選択されている
請求項3に記載の波長可変光源。
A resistive submount is disposed between the laser submount and the thermal compensation region, and the material and / or size of the resistive submount is selected so that the first and second thermal resistances are equal. The wavelength tunable light source according to claim 3.
前記半導体基板上に、前記半導体レーザが並列に2つ以上形成されている
請求項1の波長可変光源。
The wavelength tunable light source according to claim 1, wherein two or more semiconductor lasers are formed in parallel on the semiconductor substrate.
前記レーザサブマウント上に、前記熱補償領域が複数個配置され、前記熱補償領域の各々の両端には電極対が設けられ、前記複数の電極対の各々の一方は電気スイッチに接続され、前記電極対の各々の他方は電源と接続されており、
前記制御部は、前記半導体レーザの内の使用する半導体レーザに応じて、予め取得した前記波長切替前後における前記温度観測素子の温度変化が最も小さくなる熱補償領域を選択するように前記電気スイッチを切替える
請求項6の波長可変光源。
A plurality of the thermal compensation regions are disposed on the laser submount, electrode pairs are provided at both ends of each of the thermal compensation regions, and one of each of the plurality of electrode pairs is connected to an electrical switch, The other of each of the electrode pairs is connected to a power source;
The control unit controls the electrical switch so as to select a thermal compensation region in which the temperature change of the temperature observation element before and after the wavelength switching acquired in advance is minimized according to a semiconductor laser to be used among the semiconductor lasers. The wavelength tunable light source according to claim 6 to be switched.
前記熱補償領域が抵抗であり、前記温度制御素子がペルチェ素子又はヒータであり、前記温度観測素子がサーミスタ又は熱ダイオードである
請求項1から7のいずれか一つに記載の波長可変光源。
The wavelength tunable light source according to any one of claims 1 to 7, wherein the thermal compensation region is a resistor, the temperature control element is a Peltier element or a heater, and the temperature observation element is a thermistor or a thermal diode.
前記レーザサブマウントがセラミック、シリコン材質、合成樹脂材質、金属材質である
請求項1から7のいずれか一つに記載の波長可変光源。
The wavelength tunable light source according to claim 1, wherein the laser submount is made of ceramic, silicon, synthetic resin, or metal.
温度制御素子と、
前記温度制御素子上に配置されたレーザサブマウントと、
前記レーザサブマウント上に半導体基板を介して配置され出射光の波長を任意に変化させることができる半導体レーザと、
前記レーザサブマウント上に配置された熱補償領域と、
前記レーザサブマウント上において前記半導体基板と前記熱補償領域との間に配置された温度観測素子であって、観測した温度が前記温度制御素子によって一定に制御される温度観測素子と、
制御部とを備えた波長可変光源の制御方法であって、
前記制御部が、予め記憶された、波長切替の前後にそれぞれ前記半導体レーザへ投入される第1及び第2の電力と、前記第1及び第2の電力による発熱量の変化を打ち消すものとして前記波長切替の前後にそれぞれ前記熱補償領域へ投入される第3及び第4の電力を、動作時において、前記半導体レーザと前記熱補償領域に対し、前記波長切替前にはそれぞれ前記第1及び第3の電力を投入し、前記波長切替後にはそれぞれ前記第2及び第4の電力を投入する
波長可変光源の制御方法。
A temperature control element;
A laser submount disposed on the temperature control element;
A semiconductor laser disposed on the laser submount via a semiconductor substrate and capable of arbitrarily changing the wavelength of the emitted light;
A thermal compensation region disposed on the laser submount;
A temperature observation element disposed between the semiconductor substrate and the thermal compensation region on the laser submount, wherein the observed temperature is controlled to be constant by the temperature control element;
A control method of a wavelength tunable light source comprising a control unit,
The control unit presupposes that the first and second powers input to the semiconductor laser before and after wavelength switching and cancels changes in the amount of heat generated by the first and second powers. The third and fourth electric powers input to the thermal compensation region before and after wavelength switching, respectively, during operation, to the semiconductor laser and the thermal compensation region before the wavelength switching, respectively. A method for controlling a wavelength tunable light source, wherein the second power and the fourth power are respectively applied after the wavelength switching.
温度制御素子と、
前記温度制御素子上に配置されたレーザサブマウントと、
前記レーザサブマウント上に半導体基板を介して配置され出射光の波長を任意に変化させることができる半導体レーザと、
前記レーザサブマウント上に配置された熱補償領域と、
前記レーザサブマウント上において前記半導体基板と前記熱補償領域との間に配置された温度観測素子であって、観測した温度が前記温度制御素子によって一定に制御される温度観測素子と、
制御部とを備えた波長可変光源の製造方法であって、
波長切替前後にそれぞれ前記半導体レーザへ投入される第1及び第2の電力を測定し、
前記第1及び第2の電力による発熱量の変化を打ち消すものとして前記波長切替の前後にそれぞれ前記熱補償領域へ投入される第3及び第4の電力を取得し、
前記第1から第4の電力を、前記波長切替を行うときに前記半導体レーザと前記熱補償領域にそれぞれ与える電力として予め前記制御部に記憶しておく
波長可変光源の製造方法。
A temperature control element;
A laser submount disposed on the temperature control element;
A semiconductor laser disposed on the laser submount via a semiconductor substrate and capable of arbitrarily changing the wavelength of the emitted light;
A thermal compensation region disposed on the laser submount;
A temperature observation element disposed between the semiconductor substrate and the thermal compensation region on the laser submount, wherein the observed temperature is controlled to be constant by the temperature control element;
A method of manufacturing a wavelength tunable light source including a control unit,
Measure first and second powers input to the semiconductor laser before and after wavelength switching,
Obtaining the third and fourth powers to be input to the thermal compensation region before and after the wavelength switching as canceling the change in the amount of heat generated by the first and second powers,
The method for manufacturing a wavelength tunable light source, wherein the first to fourth powers are stored in the control unit in advance as powers to be supplied to the semiconductor laser and the thermal compensation region when the wavelength is switched.
JP2014247771A 2014-12-08 2014-12-08 Wavelength variable light source, method for controlling wavelength variable light source, and method for manufacturing wavelength variable light source Active JP6328040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014247771A JP6328040B2 (en) 2014-12-08 2014-12-08 Wavelength variable light source, method for controlling wavelength variable light source, and method for manufacturing wavelength variable light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014247771A JP6328040B2 (en) 2014-12-08 2014-12-08 Wavelength variable light source, method for controlling wavelength variable light source, and method for manufacturing wavelength variable light source

Publications (2)

Publication Number Publication Date
JP2016111214A true JP2016111214A (en) 2016-06-20
JP6328040B2 JP6328040B2 (en) 2018-05-23

Family

ID=56122312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014247771A Active JP6328040B2 (en) 2014-12-08 2014-12-08 Wavelength variable light source, method for controlling wavelength variable light source, and method for manufacturing wavelength variable light source

Country Status (1)

Country Link
JP (1) JP6328040B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016533026A (en) * 2013-10-10 2016-10-20 オートモーティブ コアリション フォー トラフィック セーフティ, インコーポレイテッド System and method for controlling a plurality of wavelength tuning lasers arranged
CN110888245A (en) * 2018-09-10 2020-03-17 苏州旭创科技有限公司 Wavelength selection method and wavelength selection device of tunable laser
US10826270B2 (en) 2016-01-04 2020-11-03 Automotive Coalition For Traffic Safety, Inc. Heater-on-heatspreader

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348477A (en) * 1989-07-17 1991-03-01 Hitachi Ltd Semiconductor laser device
JPH0590698A (en) * 1991-09-27 1993-04-09 Mitsubishi Electric Corp Laser diode module
JPH06177488A (en) * 1992-12-01 1994-06-24 Nippon Telegr & Teleph Corp <Ntt> Semiconductor optical-element array cooling device
JPH07249818A (en) * 1994-03-08 1995-09-26 Nippon Telegr & Teleph Corp <Ntt> Frequency stabilization method of frequency-variable semiconductor laser
JPH0992934A (en) * 1995-09-23 1997-04-04 Nec Corp Wavelength changeable semiconductor laser element
US6219362B1 (en) * 1997-12-01 2001-04-17 Deutsche Telekom Ag Method for syntonizing the wave lengths of an arrangement of optoelectronic components
JP2001127377A (en) * 1999-10-28 2001-05-11 Hitachi Ltd Optical transmitter and apparatus therefor
JP2001244545A (en) * 2000-02-28 2001-09-07 Nec Corp Semiconductor laser module
JP2005101039A (en) * 2003-09-22 2005-04-14 Furukawa Electric Co Ltd:The Variable wavelength laser, variable wavelength laser array element, and control method thereof
JP2008205259A (en) * 2007-02-21 2008-09-04 Mitsubishi Electric Corp Optical module
JP2008218947A (en) * 2007-03-08 2008-09-18 Nippon Telegr & Teleph Corp <Ntt> Wavelength tunable semiconductor laser element and control device, and control method
WO2009116134A1 (en) * 2008-03-18 2009-09-24 三菱電機株式会社 Laser light source module
JP2011023383A (en) * 2009-07-13 2011-02-03 Anritsu Corp Semiconductor laser module and raman amplifier equipped with the same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348477A (en) * 1989-07-17 1991-03-01 Hitachi Ltd Semiconductor laser device
JPH0590698A (en) * 1991-09-27 1993-04-09 Mitsubishi Electric Corp Laser diode module
JPH06177488A (en) * 1992-12-01 1994-06-24 Nippon Telegr & Teleph Corp <Ntt> Semiconductor optical-element array cooling device
JPH07249818A (en) * 1994-03-08 1995-09-26 Nippon Telegr & Teleph Corp <Ntt> Frequency stabilization method of frequency-variable semiconductor laser
JPH0992934A (en) * 1995-09-23 1997-04-04 Nec Corp Wavelength changeable semiconductor laser element
US6219362B1 (en) * 1997-12-01 2001-04-17 Deutsche Telekom Ag Method for syntonizing the wave lengths of an arrangement of optoelectronic components
JP2001127377A (en) * 1999-10-28 2001-05-11 Hitachi Ltd Optical transmitter and apparatus therefor
JP2001244545A (en) * 2000-02-28 2001-09-07 Nec Corp Semiconductor laser module
JP2005101039A (en) * 2003-09-22 2005-04-14 Furukawa Electric Co Ltd:The Variable wavelength laser, variable wavelength laser array element, and control method thereof
JP2008205259A (en) * 2007-02-21 2008-09-04 Mitsubishi Electric Corp Optical module
JP2008218947A (en) * 2007-03-08 2008-09-18 Nippon Telegr & Teleph Corp <Ntt> Wavelength tunable semiconductor laser element and control device, and control method
WO2009116134A1 (en) * 2008-03-18 2009-09-24 三菱電機株式会社 Laser light source module
JP2011023383A (en) * 2009-07-13 2011-02-03 Anritsu Corp Semiconductor laser module and raman amplifier equipped with the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016533026A (en) * 2013-10-10 2016-10-20 オートモーティブ コアリション フォー トラフィック セーフティ, インコーポレイテッド System and method for controlling a plurality of wavelength tuning lasers arranged
US10826270B2 (en) 2016-01-04 2020-11-03 Automotive Coalition For Traffic Safety, Inc. Heater-on-heatspreader
CN110888245A (en) * 2018-09-10 2020-03-17 苏州旭创科技有限公司 Wavelength selection method and wavelength selection device of tunable laser
CN110888245B (en) * 2018-09-10 2023-09-22 苏州旭创科技有限公司 Wavelength selection method and wavelength selection device for tunable laser

Also Published As

Publication number Publication date
JP6328040B2 (en) 2018-05-23

Similar Documents

Publication Publication Date Title
KR101963988B1 (en) Thermal compensation for burst-mode laser wavelength drift
KR20090036138A (en) Semiconductor laser micro-heating element structure
JP6328040B2 (en) Wavelength variable light source, method for controlling wavelength variable light source, and method for manufacturing wavelength variable light source
US10353267B2 (en) Carrier-effect based optical switch
JP2009231526A (en) Semiconductor laser control method and semiconductor laser control apparatus
JP2013115257A (en) Optical module
US10236660B2 (en) Submount, optical transmitter module, optical module, optical transmission equipment, and control method therefor
JP5424136B2 (en) Wavelength tunable laser device, optical module, and wavelength tunable laser control method
SE537250C2 (en) Optical semiconductor amplifier
US7056035B2 (en) Optical module, optical apparatus including optical module, and method for using optical module
US20070228552A1 (en) Optical semiconductor device provided with phase control function
US6829263B1 (en) Semiconductor laser
JP3540237B2 (en) Semiconductor laser module
US11070027B2 (en) Variable wavelength light source and method for controlling wavelength switching of variable wavelength light source
JP2012033895A (en) Semiconductor laser module and control method thereof
Ueno et al. Fast wavelength switching with DFB lasers utilizing thermal compensation
JPH0348477A (en) Semiconductor laser device
US11552454B1 (en) Integrated laser source
KR101928387B1 (en) Optical transmitter with heater and control method of
JP2011060851A (en) Semiconductor optical amplifier module and control method of the same
EP3675295A1 (en) Laser assemblies
JP2013191902A (en) Semiconductor optical amplifier module and control method of the same
JP2015207738A (en) Wavelength-variable laser array and wavelength control method for wavelength-variable laser array
Fukuda et al. Fast wavelength stabilization of tunable laser after starting laser oscillation
JP2009296020A (en) Optical module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180319

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180417

R150 Certificate of patent or registration of utility model

Ref document number: 6328040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250