JPH07247836A - Exhaust manifold - Google Patents

Exhaust manifold

Info

Publication number
JPH07247836A
JPH07247836A JP4082294A JP4082294A JPH07247836A JP H07247836 A JPH07247836 A JP H07247836A JP 4082294 A JP4082294 A JP 4082294A JP 4082294 A JP4082294 A JP 4082294A JP H07247836 A JPH07247836 A JP H07247836A
Authority
JP
Japan
Prior art keywords
slit
exhaust manifold
mounting flange
bolt
bolt hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4082294A
Other languages
Japanese (ja)
Inventor
Kenji Ito
賢児 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP4082294A priority Critical patent/JPH07247836A/en
Publication of JPH07247836A publication Critical patent/JPH07247836A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve reliability by forming a slit on a part connecting installation flanges to each other, specifying difference between a bolt hole across the slit and an outer diameter of a bolt, and thereby preventing occurrence of deformation and cracks of parts of a manifold. CONSTITUTION:A slit 4 formed between a first installation flange 2a and a second installation flange 2b of an exhaust manifold has width b1. Sum of a gap a1 or a3 and a gap a6 or a8, for instance a+1+a8, is greater than b1; where a1 or a8 is the gap between an inner diameter of a bolt hole 9 of the flange 2a and an outer diameter of a bolt 10, a6 or a8 is the gap between the inner diameter of the bolt hole 9 of the flange 2 and the outer diameter of the bolt 10. In such a manner, the mainfold having the slit 4 is mounted on a cylinder head and an engine is started. Collected pipes of the manifold are thus expanded, while the installation flanges 2a to 2d are independently and freely moved in a follow-up manner since the slit 4 is formed. During a cooling process, the collected pipes are contracted and the slit is closed. The installation flanges 2a to 2d are integrally moved and thermal contraction is stopped.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関に用いられる
排気系部品としての、耐久性と信頼性を向上する排気マ
ニホルドに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust manifold as an exhaust system component used in an internal combustion engine, which has improved durability and reliability.

【0002】[0002]

【従来の技術】従来、エンジンの排気ガスを捕集し、消
音管(マフラー)へ送る管状耐熱部材として、排気マニ
ホルドがある。この排気マニホルドは、図3に示すよう
にシリンダヘッド(開示せず)に取り付ける取付フラン
ジ2と、シリンダヘッドの各排気ポートに接続する枝管
5と、この枝管5を集合する集合管6からなる。一般
に、排気マニホルドは、エンジンによる加熱・冷却過程
で生じる圧縮の塑性変形による熱収縮を抑える目的で、
図3に示すように取付フランジ2の間を連結部3によっ
て連結する形状にすることがある。また、エンジンの加
熱過程で生じる圧縮の塑性変形による収縮変形を抑える
目的で、図4に示すように取付フランジ2間を連結せず
に独立にした形状にすることがある。
2. Description of the Related Art Conventionally, an exhaust manifold has been used as a tubular heat-resistant member for collecting exhaust gas from an engine and sending it to a muffler. As shown in FIG. 3, the exhaust manifold includes a mounting flange 2 attached to a cylinder head (not shown), a branch pipe 5 connected to each exhaust port of the cylinder head, and a collecting pipe 6 for collecting the branch pipes 5. Become. Generally, the exhaust manifold has the purpose of suppressing thermal contraction due to plastic deformation of compression that occurs during heating and cooling processes by the engine.
As shown in FIG. 3, the mounting flanges 2 may be connected by the connecting portion 3 in some cases. Further, in order to suppress shrinkage deformation due to plastic deformation of compression that occurs in the heating process of the engine, the mounting flanges 2 may be formed as independent shapes without being connected as shown in FIG.

【0003】[0003]

【発明が解決しようとする課題】図3に示す取付フラン
ジ部に連結部3を有する排気マニホルドは、連結部3に
よって収縮は防止されるものの、連結部3による拘束の
ために、集合管6部の塑性変形量が大きくなり、反りや
亀裂が生じやすくなる。また、図4に示す排気マニホル
ドのようにフランジ部2が独立するとフランジ部2の拘
束は小さくなり加熱時に生じる圧縮の塑性変形量は少な
くなるが、排気マニホルドの収縮を止めることができな
いために、ボルト孔7の内径とこのボルト孔7に挿入す
るボルトの外径との差だけ収縮した後、ボルトによって
拘束されて反りや亀裂が生じやすくなり、また排気マニ
ホルドの取り外しが困難になるといった問題が起こるこ
とになる。
In the exhaust manifold having the connecting portion 3 on the mounting flange portion shown in FIG. 3, although the contraction is prevented by the connecting portion 3, since the connecting portion 3 restrains, the collecting pipe 6 part is provided. The amount of plastic deformation of is large, and warpage and cracks are likely to occur. Further, when the flange portion 2 is independent like the exhaust manifold shown in FIG. 4, the restraint of the flange portion 2 becomes small and the plastic deformation amount of compression generated at the time of heating becomes small, but since the contraction of the exhaust manifold cannot be stopped, After contracting by the difference between the inner diameter of the bolt hole 7 and the outer diameter of the bolt to be inserted into the bolt hole 7, there is a problem that the bolt is restrained and warps or cracks easily occur, and it becomes difficult to remove the exhaust manifold. Will happen.

【0004】図3に示す取付フランジ2の間が連結した
形状の排気マニホルドにつき、熱による影響を図8に基
づき説明する。図8で、(1)は取付フランジ2がつな
がった排気マニホルド1をシリンダヘッドにボルト孔を
介してボルトで取り付けている基本形状である。エンジ
ンが運転を始めると、シリンダヘッドからの排気ガスに
より排気マニホルド1の集合管6部が加熱されて(2)
のように熱膨張する。しかし、取付フランジ2が連結し
ているため、取付フランジ2部の変形は抑制され、取付
フランジ2部と集合管6部の間には大きな寸法差が生じ
ることになる。やがて、集合管6部には(3)のように
圧縮応力が作用して、材料の耐力を超えると塑性変形が
生じる。この塑性変形量は、前記寸法差にほぼ一致す
る。エンジンが停止して冷却過程に入ると、新たに集合
管6部の熱収縮が始まる。しかし、取付フランジ2の間
がつながっているため、集合管6部の収縮に追随して動
くことができず、(4)のように取付フランジ2部の両
端が反り上がるように変形し、また排気マニホルドに亀
裂が入り、排気ガスが洩れるといった問題を生じる。
With respect to the exhaust manifold having a shape in which the mounting flanges 2 shown in FIG. 3 are connected, the influence of heat will be described with reference to FIG. In FIG. 8, (1) shows a basic shape in which the exhaust manifold 1 to which the mounting flange 2 is connected is attached to the cylinder head with bolts through bolt holes. When the engine starts to operate, the exhaust gas from the cylinder head heats the collecting pipe 6 of the exhaust manifold 1 (2).
Thermally expands like. However, since the mounting flange 2 is connected, the deformation of the mounting flange 2 part is suppressed, and a large dimensional difference occurs between the mounting flange 2 part and the collecting pipe 6 part. Eventually, a compressive stress acts on the collecting pipe 6 as in (3), and plastic deformation occurs when the yield strength of the material is exceeded. This amount of plastic deformation substantially matches the dimensional difference. When the engine is stopped and the cooling process is started, heat contraction of the collecting pipe 6 portion is newly started. However, since the mounting flanges 2 are connected to each other, they cannot move following the contraction of the collecting pipe 6, and both ends of the mounting flange 2 are deformed so as to warp as shown in (4). This causes problems such as cracks in the exhaust manifold and leakage of exhaust gas.

【0005】次に、取付フランジ2が独立した排気マニ
ホルドの熱による影響を、図9に基づき説明する。図9
で、(1)は取付フランジ2が独立した排気マニホルド
1をシリンダヘッドにボルト孔を介してボルトで取り付
けている基本形状である。エンジンが運転を始めると、
シリンダヘッドからの排気ガスにより排気マニホルド1
の集合管6部が加熱されて(2)のように熱膨張する。
そして、取付フランジ2が独立しているために、取付フ
ランジ2部は集合管6部の変形に追随して動くことがで
きる。このため、取付フランジ2部と集合管6部の間の
寸法差は小さくなる。その結果、集合管6部に(3)の
ように圧縮応力が作用して、材料の耐力を超えた時に生
じる塑性変形量も小さなものになる。エンジンが停止し
て冷却過程に入ると、新たに集合管6部の熱収縮が始ま
るが、取付フランジ2が独立しているために、集合管6
部の収縮に追随して自由に動き、(4)のように取付フ
ランジ2部はボルトに拘束されるまで大きく収縮し続け
てしまう。
Next, the influence of heat of the exhaust manifold having the independent mounting flange 2 will be described with reference to FIG. Figure 9
Here, (1) is a basic shape in which the exhaust manifold 1 having an independent mounting flange 2 is attached to the cylinder head with bolts through bolt holes. When the engine starts running,
Exhaust manifold 1 by exhaust gas from the cylinder head
The collecting pipe 6 is heated and thermally expanded as shown in (2).
Further, since the mounting flange 2 is independent, the mounting flange 2 part can move following the deformation of the collecting pipe 6 part. Therefore, the dimensional difference between the mounting flange 2 part and the collecting pipe 6 part becomes small. As a result, compressive stress acts on the collecting pipe 6 as in (3), and the amount of plastic deformation that occurs when the yield strength of the material is exceeded is also small. When the engine is stopped and the cooling process is started, the heat contraction of the collecting pipe 6 starts anew, but since the mounting flange 2 is independent, the collecting pipe 6
The part moves freely following the contraction of the part, and the mounting flange 2 part continues to largely contract until it is restrained by the bolt as shown in (4).

【0006】排気マニホルドの変形や亀裂を防止改善す
るものとして、実開昭60−66822号公報には、排
気マニホルドの集合管をつなぐ補強リブにスリットを設
け、このスリットの内端部を補強リブに設けた円形孔に
接続し、熱変形による補強リブの亀裂を防止する開示が
ある。
In order to prevent deformation and cracks in the exhaust manifold, in Japanese Utility Model Laid-Open No. Sho 60-66822, a slit is provided in a reinforcing rib for connecting a collecting pipe of the exhaust manifold, and an inner end portion of the slit is provided with a reinforcing rib. There is a disclosure to prevent cracks in the reinforcing ribs due to thermal deformation by connecting to the circular holes provided in.

【0007】しかし、実開昭60−66822号公報に
開示された技術では、補強リブにスリットは入っている
が貫通していなために、排気マニホルドの塑性変形に伴
う熱収縮を完全に防止することはできない。
However, according to the technique disclosed in Japanese Utility Model Laid-Open No. 60-66822, since the reinforcing rib has slits but does not penetrate therethrough, thermal contraction due to plastic deformation of the exhaust manifold is completely prevented. It is not possible.

【0008】本発明は、上記課題を解決し、取付フラン
ジの間が連結した排気マニホルドと取付フランジが独立
している排気マニホルドの両者の利点を持たせ、加熱時
には取付フランジが独立した排気マニホルドのように集
合管部の熱膨張に追随させて取付フランジを動かして圧
縮応力に伴う集合管部の塑性変形を抑制し、冷却時には
取付フランジの間がつながった排気マニホルドのように
連結部でもって集合管部の熱収縮に抗することで収縮量
を抑え、取付フランジ部の変形や排気マニホルド各部へ
の亀裂がなく信頼性に優れた排気マニホルドを提供する
ことを目的にする。
The present invention solves the above problems and provides the advantages of both the exhaust manifold in which the mounting flanges are connected to each other and the exhaust manifold in which the mounting flanges are independent, and the exhaust manifolds in which the mounting flanges are independent during heating are provided. As described above, the mounting flange is moved in accordance with the thermal expansion of the collecting pipe to suppress the plastic deformation of the collecting pipe due to the compressive stress, and at the time of cooling, it is assembled by the connecting part like the exhaust manifold connecting the mounting flanges. An object of the present invention is to provide a highly reliable exhaust manifold that resists thermal contraction of the pipe portion to suppress the amount of shrinkage, has no deformation of the mounting flange portion, and has no cracks in each portion of the exhaust manifold.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、本発明の排気マニホルド(1)は、シリンダヘッド
に取り付ける取付フランジ(2)と該取付フランジ
(2)の間をつなぐ連結部(3)および取付用のボルト
孔(7)を有する排気マニホルド(1)において、少な
くとも1箇所以上の連結部(3)にスリット(4)を設
け、該スリット(4)を挟む前記ボルト孔(7)の内径
とボルト孔(7)に挿入するボルトの外径との差を、前
記スリット(4)の空隙の合計寸法より大きくすること
を特徴とする。
In order to solve the above-mentioned problems, an exhaust manifold (1) of the present invention has a mounting flange (2) mounted on a cylinder head and a connecting portion () connecting the mounting flange (2). 3) and an exhaust manifold (1) having a bolt hole (7) for attachment, at least one connecting portion (3) is provided with a slit (4), and the bolt hole (7) sandwiching the slit (4) is provided. ) And the outer diameter of the bolt inserted into the bolt hole (7) are larger than the total size of the voids of the slit (4).

【0010】[0010]

【作用】図7に基づき作用を説明する。図7は、連結部
を貫通するスリットを有する排気マニホルド1につい
て、熱影響の概念図を2気筒モデルで示すものである。
(1)は取付フランジ2の連結部3を貫通するスリット
4を持つ排気マニホルド1をシリンダヘッドに取り付け
ている基本形状である。エンジンが運転を始めるとシリ
ンダヘッドからの排気ガスにより排気マニホルド1の集
合管6が(2)のように熱膨張するが、スリット4があ
るために取付フランジ2は独立したものとして、自由に
追随して動くことができる。また、冷却過程で集合管6
が(3)のように収縮するときには、スリット4の幅分
は取付フランジ2が追随して収縮するものの、その後
は、スリット4が閉じられてしまうために取付フランジ
2部の連結部3は一体になったものとして働き、熱収縮
量はほぼスリット4のスリット4の幅だけ生じて停止す
る。
The operation will be described with reference to FIG. FIG. 7 is a two-cylinder model showing a conceptual diagram of the heat effect of the exhaust manifold 1 having a slit penetrating the connecting portion.
(1) is a basic shape in which an exhaust manifold 1 having a slit 4 penetrating a connecting portion 3 of a mounting flange 2 is attached to a cylinder head. When the engine starts to operate, the exhaust gas from the cylinder head causes the collecting pipe 6 of the exhaust manifold 1 to thermally expand as shown in (2), but the mounting flange 2 is independent because of the slit 4 and can be freely followed. And can move. In the cooling process, the collecting pipe 6
When the contraction occurs as in (3), the mounting flange 2 follows the width of the slit 4 and contracts, but after that, the slit 4 is closed and the connecting portion 3 of the mounting flange 2 is integrated. The amount of heat shrinkage is almost the same as the width of the slit 4 and stops.

【0011】[0011]

【実施例】以下本発明を実施例により詳細に説明する。 (実施例1)図1は本発明の一実施例を示す。排気マニ
ホルド1は4気筒エンジン用であり、シリンダヘッドに
取り付ける取付フランジ2と、この取付フランジ2間を
つなぐに連結部3を設けている。そして、連結部3に
は、幅1.5mmの貫通スリット4を設けている。スリ
ット4は取付フランジ2と集合管6の間の高温の排気ガ
スによる熱膨張時の寸法差を少なくし、かつ熱収縮時に
は上記連結部3が取付フランジ2部の収縮を抑制する働
きをする。
EXAMPLES The present invention will be described in detail below with reference to examples. (Embodiment 1) FIG. 1 shows an embodiment of the present invention. The exhaust manifold 1 is for a 4-cylinder engine, and is provided with a mounting flange 2 that is mounted on the cylinder head and a connecting portion 3 that connects the mounting flanges 2 to each other. Then, the connecting portion 3 is provided with a through slit 4 having a width of 1.5 mm. The slit 4 serves to reduce the dimensional difference between the mounting flange 2 and the collecting pipe 6 during thermal expansion due to high-temperature exhaust gas, and at the time of thermal contraction, the connecting portion 3 functions to suppress contraction of the mounting flange 2 portion.

【0012】図2は4気筒エンジン用排気マニホルドで
の、取付フランジ2間をつなぐ連結部3のスリット4の
幅(b1、b2、b3)と、ボルト孔7の内径とボルト
10外径との空隙(a1、a2、・・・a16)の取り
方を示す。排気マニホルドは左側から右側に向かって1
番、2番、3番、4番取付フランジ2と数えるものとす
る。1番取付フランジ2aと2番取付フランジ2bの間
に設けられたスリット4の幅はb1とする。このとき、
1番取付フランジ2aのボルト孔7の内径とボルト10
の外径との空隙a1またはa3と、2番取付フランジ2
bのボルト孔7内径とボルト10外径との空隙a6また
はa8の合計(a1+a8)は、b1より大きく設定し
ている。同様に、1番取付フランジ2aと4番取付フラ
ンジ2dの間に設けた3個のスリット4の幅を、それぞ
れb1、b2およびb3と、1番取付フランジ2aのボ
ルト孔9の内径とボルト10の外径との空隙a1または
a3と、3番取付フランジ2bのボルト孔9の内径とボ
ルト10の外径との空隙a14またはa16の合計寸法
(a1+a16)は、(b1+b2+b3)より大きく
設定する。このようにして、取付フランジ2間に設けた
スリット4の幅に応じて、全ての取付フランジ2間のボ
ルト孔7の内径とボルト10の外径との空隙寸法を決定
する。
FIG. 2 shows the width (b1, b2, b3) of the slit 4 of the connecting portion 3 connecting between the mounting flanges 2 and the inner diameter of the bolt hole 7 and the outer diameter of the bolt 10 in the exhaust manifold for a four-cylinder engine. The method of forming the voids (a1, a2, ... A16) is shown. Exhaust manifold 1 from left to right
No. 2, No. 3, No. 4, and No. 4 mounting flange 2. The width of the slit 4 provided between the first mounting flange 2a and the second mounting flange 2b is b1. At this time,
Inner diameter of the bolt hole 7 of the No. 1 mounting flange 2a and the bolt 10
A1 or a3 with the outer diameter of the 2nd mounting flange 2
The total (a1 + a8) of the gaps a6 or a8 between the inner diameter of the bolt hole 7 of b and the outer diameter of the bolt 10 is set to be larger than b1. Similarly, the widths of the three slits 4 provided between the No. 1 mounting flange 2a and the No. 4 mounting flange 2d are respectively b1, b2 and b3, the inner diameter of the bolt hole 9 of the No. 1 mounting flange 2a and the bolt 10 respectively. The total size (a1 + a16) of the space a1 or a3 with the outer diameter of the space and the space a14 or a16 with the inner diameter of the bolt hole 9 of the third mounting flange 2b and the outer diameter of the bolt 10 is set to be larger than (b1 + b2 + b3). In this way, the gap size between the inner diameter of the bolt hole 7 and the outer diameter of the bolt 10 between all the mounting flanges 2 is determined according to the width of the slit 4 provided between the mounting flanges 2.

【0013】図5は、4気筒排気マニホルドについて、
連結部を貫通するスリットの有無による排気マニホルド
耐久評価試験後の取付フランジの反り変形量を比較した
ものである。横軸の#1から#4は4つの気筒、縦軸は
取付フランジの反り変形量を示す。スリットの有る取付
フランジの反り変形量は、スリットの無いものに比較し
て、#2、#3で約1/8に低減している。図6は、4
気筒排気マニホルドについて、連結部を貫通するスリッ
トのスリット幅の大きさによる排気マニホルド耐久評価
試験後の取付フランジの収縮変形量を比較したものであ
る。横軸はスリット幅の大きさ、縦軸は取付フランジの
収縮変形量を示す。取付フランジ部の収縮量は、スリッ
ト幅にほぼ比例することがわかる。従って、スリット幅
を制御することで排気マニホルドに生じる収縮量を制御
することができる。
FIG. 5 shows a four-cylinder exhaust manifold,
It is a comparison of the warp deformation amount of the mounting flange after the exhaust manifold durability evaluation test depending on the presence or absence of a slit penetrating the connecting portion. The horizontal axes # 1 to # 4 represent four cylinders, and the vertical axis represents the warp deformation amount of the mounting flange. The warp deformation amount of the mounting flange with the slit is reduced to about 1/8 in # 2 and # 3 as compared with the one without the slit. 6 is 4
FIG. 6 is a comparison of shrinkage deformation amounts of the mounting flanges of the cylinder exhaust manifold after the exhaust manifold durability evaluation test depending on the size of the slit width of the slit penetrating the connecting portion. The horizontal axis represents the size of the slit width, and the vertical axis represents the shrinkage deformation amount of the mounting flange. It can be seen that the amount of shrinkage of the mounting flange portion is almost proportional to the slit width. Therefore, by controlling the slit width, it is possible to control the amount of contraction that occurs in the exhaust manifold.

【0014】(実施例2)高Si鋳鉄製で排気量200
0ccの高性能ガソリンエンジン相当の排気マニホルド
を鋳造し、取付フランジの間をつなぐ連結部に、幅1.
5mmの貫通スリットを加工した設けて本発明の排気マ
ニホルドを製作した。この本発明の排気マニホルドを排
気シミュレータを用いて耐久試験を実施した。試験条件
として、機関回転数6000rpmでの全負荷運転相当
の加熱(10分)−冷却(10分)を1サイクルとする
冷熱(GO−STOP)サイクルを500サイクルまで
実施した。全負荷時の排気ガス温度は、約900℃であ
った。この条件下での排気マニホルドの集合管部の温度
は約800℃であった。評価試験の結果、本発明の排気
マニホルドは、取付フランジの反り変形量は少なく、収
縮変形量は、スリット幅を少し超える程度に納まり、熱
変形によるガスの漏洩や熱亀裂は生ぜず、優れた耐久性
および信頼性を有することが確認された。
(Example 2) Made of high Si cast iron and having a displacement of 200
An exhaust manifold equivalent to a 0 cc high performance gasoline engine was cast, and the width of the connecting portion that connects the mounting flanges was 1.
An exhaust manifold of the present invention was manufactured by providing a 5 mm through slit. The exhaust manifold of the present invention was subjected to a durability test using an exhaust simulator. As a test condition, a cooling / heating (GO-STOP) cycle having one cycle of heating (10 minutes) -cooling (10 minutes) corresponding to full load operation at an engine speed of 6000 rpm was performed up to 500 cycles. The exhaust gas temperature at full load was about 900 ° C. The temperature of the collecting manifold section of the exhaust manifold under these conditions was about 800 ° C. As a result of the evaluation test, the exhaust manifold of the present invention has a small amount of warpage deformation of the mounting flange, the amount of contraction deformation is slightly larger than the slit width, does not cause gas leakage or thermal cracking due to thermal deformation, and is excellent. It was confirmed to have durability and reliability.

【0015】一方、同じく高Si鋳鉄製で、連結部に貫
通スリットを形成しない従来の排気マニホルドを組み付
けて同様に試験を実施した。その結果、従来の排気マニ
ホルドは、268サイクルで取付フランジの反り変形に
より排気ガスが漏洩し、使用不能となり、本発明の排気
マニホルドの優れた耐久性が確認された。
On the other hand, the same test was carried out by assembling a conventional exhaust manifold which is also made of high Si cast iron and has no through slit in the connecting portion. As a result, the conventional exhaust manifold was unusable because the exhaust gas leaked due to the warp deformation of the mounting flange in 268 cycles, and the excellent durability of the exhaust manifold of the present invention was confirmed.

【0016】[0016]

【発明の効果】上述の通り、本発明の排気マニホルド
は、連結部にスリットを設け、このスリットを挟むボル
ト孔の内径とボルト孔に挿入するボルトの外径との差
を、スリットの空隙の合計寸法より大きくしたので、運
転時は取付フランジは独立して熱膨張に追随して移動す
るので、取付フランジと集合管部の熱膨張差による寸法
差が少なくなり塑性変形の発生が抑制される。また、停
止時の冷却過程での集合管が収縮するときには、スリッ
トの幅分は取付フランジが追随して収縮するものの、そ
の後は、スリットを閉じるので取付フランジの連結部は
一体になったものとして働き、熱収縮量はほぼスリット
の幅だけ生じて停止する。従って、本発明の排気マニホ
ルドは取付フランジ部の変形が少なく、熱応力が少ない
ので、耐久性が大幅に向上する。
As described above, in the exhaust manifold of the present invention, the connecting portion is provided with the slit, and the difference between the inner diameter of the bolt hole sandwiching the slit and the outer diameter of the bolt inserted into the bolt hole is determined by the gap of the slit. Since it is larger than the total size, the mounting flange moves independently following thermal expansion during operation, so the dimensional difference due to the thermal expansion difference between the mounting flange and the collecting pipe part is reduced, and the occurrence of plastic deformation is suppressed. . Also, when the collecting pipe shrinks during the cooling process when stopped, the mounting flange follows the width of the slit and shrinks, but after that, since the slit is closed, the connecting part of the mounting flange is assumed to be integrated. It works, and the amount of heat shrinkage is generated almost by the width of the slit and stops. Therefore, in the exhaust manifold of the present invention, the mounting flange portion is less deformed and the thermal stress is less, so the durability is greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の取付フランジ間の連結部に
スリットを設けた排気マニホルドを示す平面図である。
FIG. 1 is a plan view showing an exhaust manifold in which a slit is provided in a connecting portion between mounting flanges according to an embodiment of the present invention.

【図2】本発明の取付フランジ間の連結部の設けたスリ
ット幅とこのスリットを挟むボルト孔の内径とボルトの
外径との空隙の関係を示す図である。
FIG. 2 is a diagram showing a relationship between a slit width provided in a connecting portion between mounting flanges of the present invention and a gap between an inner diameter of a bolt hole sandwiching the slit and an outer diameter of the bolt.

【図3】従来の取付フランジ間の連結部を有する排気マ
ニホルドを示す平面図である。
FIG. 3 is a plan view showing an exhaust manifold having a connecting portion between conventional mounting flanges.

【図4】従来の集合管ごとに独立した取付フランジを有
する排気マニホルドを示す平面図である。
FIG. 4 is a plan view showing a conventional exhaust manifold having an independent mounting flange for each collecting pipe.

【図5】4気筒排気マニホルドについて、連結部を貫通
するスリットの有無による耐久評価試験後の取付フラン
ジの反り変形量を比較した図である。
FIG. 5 is a diagram comparing the amount of warp deformation of a mounting flange after a durability evaluation test with and without a slit penetrating a connecting portion in a 4-cylinder exhaust manifold.

【図6】4気筒排気マニホルドについて、連結部を貫通
するスリット幅の大きさと排気マニホルド耐久評価試験
後の取付フランジの収縮変形量を示す図である。
FIG. 6 is a diagram showing a size of a slit width penetrating a connecting portion and a shrinkage deformation amount of a mounting flange after an exhaust manifold durability evaluation test in a four-cylinder exhaust manifold.

【図7】連結部に貫通スリットを設けた排気マニホルド
について、熱影響の概念図を2気筒モデルで示す図であ
る。
FIG. 7 is a diagram showing a two-cylinder model as a conceptual diagram of a heat effect in an exhaust manifold having a through slit in a connecting portion.

【図8】取付フランジがつながった排気マニホルドの熱
による影響を示す概念図である。
FIG. 8 is a conceptual diagram showing an influence of heat of an exhaust manifold connected to a mounting flange.

【図9】集合管ごとに独立した取付フランジを有する排
気マニホルドの熱による影響を示す概念図である。
FIG. 9 is a conceptual diagram showing an influence of heat of an exhaust manifold having an independent mounting flange for each collecting pipe.

【符号の説明】[Explanation of symbols]

1:排気マニホルド、 2:取付フランジ、
3:連結部、4:スリット、 5:枝
管、 6:集合管、7:ボルト孔、
8:スリット幅、 9:ボルト孔 10:ボルト
1: Exhaust manifold, 2: Mounting flange,
3: connection part, 4: slit, 5: branch pipe, 6: collecting pipe, 7: bolt hole,
8: Slit width, 9: Bolt hole 10: Bolt

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 シリンダヘッドに取り付ける取付フラン
ジ(2)と該取付フランジ(2)の間をつなぐ連結部
(3)および取付用のボルト孔(7)を有する排気マニ
ホルド(1)において、少なくとも1箇所以上の連結部
(3)にスリット(4)を設け、該スリット(4)を挟
む前記ボルト孔(7)の内径とボルト孔(7)に挿入す
るボルトの外径との差を、前記スリット(4)の空隙の
合計寸法より大きくすることを特徴とする排気マニホル
ド。
1. An exhaust manifold (1) having a mounting flange (2) mounted on a cylinder head, a connecting portion (3) connecting the mounting flange (2) and a bolt hole (7) for mounting, at least 1. A slit (4) is provided in the connecting portion (3) at more than one place, and the difference between the inner diameter of the bolt hole (7) sandwiching the slit (4) and the outer diameter of the bolt inserted into the bolt hole (7) is defined as above. An exhaust manifold characterized in that it is larger than the total size of the air gaps of the slits (4).
JP4082294A 1994-03-11 1994-03-11 Exhaust manifold Pending JPH07247836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4082294A JPH07247836A (en) 1994-03-11 1994-03-11 Exhaust manifold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4082294A JPH07247836A (en) 1994-03-11 1994-03-11 Exhaust manifold

Publications (1)

Publication Number Publication Date
JPH07247836A true JPH07247836A (en) 1995-09-26

Family

ID=12591361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4082294A Pending JPH07247836A (en) 1994-03-11 1994-03-11 Exhaust manifold

Country Status (1)

Country Link
JP (1) JPH07247836A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2454927A (en) * 2007-11-26 2009-05-27 Ford Global Tech Llc Engine and exhaust manifold assembly
WO2010103052A1 (en) * 2009-03-09 2010-09-16 Heinrich Gillet Gmbh Exhaust gas system
DE102011012170A1 (en) 2010-09-09 2012-03-15 Tenneco Gmbh Collective flange for exhaust system of internal combustion engine, has flange plates connected to each other by elastic element, where distance between plates is adjustable in specified range
US20130061586A1 (en) * 2011-09-13 2013-03-14 Ford Global Technologies, Llc. Exhaust manifold for an engine and method for manufacture
CN104329153A (en) * 2014-11-19 2015-02-04 柳州市莫尔斯汽配制造有限公司 Automobile exhaust pipe
CN107795365A (en) * 2017-10-30 2018-03-13 力帆实业(集团)股份有限公司 Enmgine exhaust

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2454927A (en) * 2007-11-26 2009-05-27 Ford Global Tech Llc Engine and exhaust manifold assembly
WO2010103052A1 (en) * 2009-03-09 2010-09-16 Heinrich Gillet Gmbh Exhaust gas system
DE102009011748B4 (en) * 2009-03-09 2013-05-23 Tenneco Gmbh Exhaust system for an internal combustion engine with juxtaposed flange plates
DE102011012170A1 (en) 2010-09-09 2012-03-15 Tenneco Gmbh Collective flange for exhaust system of internal combustion engine, has flange plates connected to each other by elastic element, where distance between plates is adjustable in specified range
DE102011012170B4 (en) * 2010-09-09 2014-04-17 Tenneco Gmbh collective flange
US20130061586A1 (en) * 2011-09-13 2013-03-14 Ford Global Technologies, Llc. Exhaust manifold for an engine and method for manufacture
GB2494647A (en) * 2011-09-13 2013-03-20 Ford Global Tech Llc An Engine Exhaust Manifold with Independent Flanges and Flange Spacers
CN102996214A (en) * 2011-09-13 2013-03-27 福特全球技术公司 Exhaust manifold for an engine
US9080496B2 (en) 2011-09-13 2015-07-14 Ford Global Technologies, Llc Exhaust manifold for an engine and method for manufacture
CN102996214B (en) * 2011-09-13 2017-03-01 福特全球技术公司 Exhaust manifold for electromotor
CN104329153A (en) * 2014-11-19 2015-02-04 柳州市莫尔斯汽配制造有限公司 Automobile exhaust pipe
CN107795365A (en) * 2017-10-30 2018-03-13 力帆实业(集团)股份有限公司 Enmgine exhaust

Similar Documents

Publication Publication Date Title
JPH07247836A (en) Exhaust manifold
CN112696258B (en) Control method for thermal deformation design of exhaust manifold
US9719402B2 (en) Exhaust runner collar
US4165612A (en) Structure for mounting an exhaust manifold to the body of an internal combustion engine
JPH0630424U (en) Exhaust manifold
JPH0614434U (en) Exhaust manifold
JPH02502470A (en) High-temperature gas guide pipe for internal combustion engines
JPH066162Y2 (en) Mounting structure for the interior of the steam turbine
JPS6327062Y2 (en)
JP2560955Y2 (en) Exhaust manifold mounting structure for internal combustion engine
JPH0515533Y2 (en)
JP2004301012A (en) Exhaust system component with supercharger
JPH08128321A (en) Exhaust manifold
JPH0220807B2 (en)
JPH0821236A (en) Exhaust manifold
JP2573431Y2 (en) Intake manifold
JPH09125949A (en) Exhaust manifold for multiple cylinder engine
JPS5827164Y2 (en) Grommet processing gasket
JPH08319827A (en) Exhaust manifold
JP2001207841A (en) Exhaust manifold for multicylinder engine
JPS6318124A (en) Exhaust pipe structure
JPH0622112Y2 (en) Exhaust manifold
JPH0622524U (en) Engine exhaust manifold
JP2524063Y2 (en) Exhaust manifold mounting structure for internal combustion engine
JPH0578917U (en) Heat resistant material