JPH066162Y2 - Mounting structure for the interior of the steam turbine - Google Patents

Mounting structure for the interior of the steam turbine

Info

Publication number
JPH066162Y2
JPH066162Y2 JP16400588U JP16400588U JPH066162Y2 JP H066162 Y2 JPH066162 Y2 JP H066162Y2 JP 16400588 U JP16400588 U JP 16400588U JP 16400588 U JP16400588 U JP 16400588U JP H066162 Y2 JPH066162 Y2 JP H066162Y2
Authority
JP
Japan
Prior art keywords
inner cylinder
cylinder
outer cylinder
thermal expansion
steam turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16400588U
Other languages
Japanese (ja)
Other versions
JPH0285802U (en
Inventor
卓爾 藤川
彰夫 肥爪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP16400588U priority Critical patent/JPH066162Y2/en
Publication of JPH0285802U publication Critical patent/JPH0285802U/ja
Application granted granted Critical
Publication of JPH066162Y2 publication Critical patent/JPH066162Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

【考案の詳細な説明】 産業上の利用分野 本考案は、蒸気タービンに適用されるその内車室の取付
構造に関する。
TECHNICAL FIELD The present invention relates to a mounting structure for an inner casing of a steam turbine applied to a steam turbine.

従来の技術 従来の蒸気タービン内車室の取付構造について第3図に
基づいて説明すると、図中には殊に蒸気タービンの高圧
タービン部分を示している。
2. Description of the Related Art A conventional mounting structure for a vehicle interior of a steam turbine will be described with reference to FIG. 3, which shows a high-pressure turbine portion of a steam turbine.

内車室1′の内側はノズル室4′、翼環5′及びダミー
環等6′を支持固定しており、これらの部材4′〜6′
の内部にロータ7′が配設されている。
A nozzle chamber 4 ', a blade ring 5', a dummy ring 6 ', and the like are supported and fixed inside the inner casing 1', and these members 4'-6 'are provided.
A rotor 7'is disposed inside the.

この場合、内車室1′は通常、例えば水平継手面(図示
せず)で上下2分割とされ、これらを組合せた後は、締
付けボルト(図示せず)により締結されている。なお、
8′は軸方向の位置決め用ラジアルピンである。
In this case, the inner casing 1'is usually divided into upper and lower parts by a horizontal joint surface (not shown), and after these are combined, they are fastened with a tightening bolt (not shown). In addition,
Reference numeral 8'denotes a radial pin for axial positioning.

他方、蒸気タービンの熱効率を高めるためにタービン入
口の蒸気条件を高めることが多く実行されている。しか
しながら、例えば蒸気温度を649℃(1200゜F)まで高める
と、内車室1′の材料として一般に使用されている12ク
ロム鋼等のフェライト系材料では高温強度が不足し、耐
熱性を有するSUSF316H等のオーステナイト鋼に切替えて
使用する必要がある。
On the other hand, it is often practiced to increase the steam condition at the turbine inlet in order to improve the thermal efficiency of the steam turbine. However, if the steam temperature is raised to 649 ° C (1200 ° F), for example, ferrite materials such as 12 chrome steel, which are generally used as the material for the inner casing 1 ', lack high temperature strength and have high heat resistance. It is necessary to switch to other austenitic steels.

なお、前者の12クロム鋼は後者のSUSF316Hに比べて、そ
の熱膨張係数αは小さいことが知られている。
It is known that the former 12-chromium steel has a smaller coefficient of thermal expansion α than the latter SUSF316H.

考案が解決しようとする課題 ところが、オーステナイト鋼はクリープ強度等の高温強
度にはすぐれているが、降伏応力が低いため、蒸気ター
ビンの内車室内外面温度差が大きくなると熱応力によっ
て降伏し塑性歪を生じる。
The problem to be solved by the invention is that austenitic steel has excellent high-temperature strength such as creep strength, but its yield stress is low. Cause

これにより解放時に水平継手面の締付ボルトを緩めると
内車室1′が変形してしまう可能性があり、再組立時の
遊隙管理に支障を来たす。また、運転前後の冷態時の水
平継手面締付けが不十分となり起動時に蒸気漏れ等を起
す恐れがある。
As a result, if the tightening bolts on the horizontal joint surface are loosened at the time of release, the inner casing 1'may be deformed, which interferes with play management during reassembly. In addition, the tightening of the horizontal joint surface in the cold state before and after the operation may be insufficient, and steam may leak when starting.

このような対策の一つとして前記の不適合を防止するた
め、内車室1′内外面温度差を低減する目的で、内車室
1′の内外面にサーマルシールド(図示せず)を別個に
取付けることが考えられているが、内面のサーマルシー
ルドは強度上、構造上実用的でなく、また外面のサーマ
ルシールドも構造上複雑となり取付け、取外しに手間を
要する不都合がある。
As one of such measures, in order to prevent the above nonconformity, a thermal shield (not shown) is separately provided on the inner and outer surfaces of the inner casing 1'to reduce the temperature difference between the inner and outer casings 1 '. Although it is considered that the thermal shield on the inner surface is not practical in terms of strength and structure, and the thermal shield on the outer surface is also structurally complicated, there is a problem in that it takes time to install and remove.

課題を解決するための手段 本考案は、このような従来の課題を解決するために、蒸
気タービン内車室の取付構造において、相対的に熱膨張
係数の大きな材料からなり、継手面等で分割される内筒
を、前記材料より熱膨張係数の小さな材料からなる外筒
内に適当な隙間をもって配置し、運転前後の温度差によ
る熱膨張量の差により外筒で内筒を締付けるようにした
ものである。
Means for Solving the Problems In order to solve such a conventional problem, the present invention is made of a material having a relatively large thermal expansion coefficient in a mounting structure of a steam turbine inner casing and is divided by a joint surface or the like. The inner cylinder is placed in an outer cylinder made of a material having a thermal expansion coefficient smaller than that of the above material with a proper gap, and the inner cylinder is fastened by the outer cylinder due to the difference in thermal expansion amount due to the temperature difference before and after the operation. It is a thing.

作用 このような手段によれば、内車室のうち内筒を熱膨張係
数の大きい材料を用いて、更に分割構造とし、及び外筒
を熱膨張係数の小さい材料を用いて一体的な構造とする
ので、運転時、熱膨張により各外筒と内筒とが絞り締め
の状態となって、締付ボルト等による外部の締付けがな
くても常時密着させることができる。
According to such means, the inner cylinder of the inner casing is made of a material having a large thermal expansion coefficient to have a further divided structure, and the outer cylinder is made to be an integral structure using a material having a small thermal expansion coefficient. Therefore, during operation, the outer cylinder and the inner cylinder are in a tightly tightened state due to thermal expansion, so that the outer cylinder and the inner cylinder can always be brought into close contact with each other without external tightening such as a tightening bolt.

実施例 以下第1及び2図を参照して、本考案の一実施例につい
て詳述する。
Embodiment Hereinafter, an embodiment of the present invention will be described in detail with reference to FIGS.

しかして、第1図に示すように、蒸気タービン内車室1
は、例えばSUSF316H鋼の如き多少とも熱膨張係数の大き
な耐熱性材料からなり、しかも例えば水平の継手面9等
で2分割又はそれ以上に分割可能で、かつ一つの形状と
して例えば略円筒状の内筒2と、前記材料より相対的に
熱膨張係数の小さな前記12クロム鋼等の如き材料からな
り、内筒2外周面に対応してやはり略円筒状に一体的に
形成されている外筒3とを組合わせた二重構造とされて
いる。
Then, as shown in FIG.
Is made of a heat-resistant material having a large coefficient of thermal expansion, such as SUSF316H steel, and can be divided into two or more parts, for example, a horizontal joint surface 9 or the like, and has one shape, for example, a substantially cylindrical inner shape. The cylinder 2 and the outer cylinder 3 which is made of a material such as the above-mentioned 12 chrome steel having a relatively smaller thermal expansion coefficient than the above-mentioned materials and which is integrally formed in a substantially cylindrical shape corresponding to the outer peripheral surface of the inner cylinder 2. It has a double structure that combines and.

そして、この内筒2を外筒3内に配置して組立てて、そ
の運転前後の温度差による各内筒2、外筒3の熱膨張
量、つまり後述する夫々の隙間δi,δoの差により外
筒3内周面で内筒2外周面を、殊に締付ボルト等の外部
の締結手段を使用することなく締付けるようにしてい
る。
Then, the inner cylinder 2 is arranged in the outer cylinder 3 and assembled, and the thermal expansion amount of each inner cylinder 2 and the outer cylinder 3 due to the temperature difference before and after the operation, that is, the difference between the gaps δi and δo described later is used. The outer peripheral surface of the inner cylinder 2 is fastened to the outer peripheral surface of the inner cylinder 2 without using external fastening means such as a fastening bolt.

この場合、第2図に示すように内筒2側の支持するノズ
ル室4、翼環5、及びダミー環6の構成は従来からの通
常のタービンと同じ組立て方式が採用されて良い。
In this case, as shown in FIG. 2, the nozzle chamber 4, the blade ring 5, and the dummy ring 6 supported on the inner cylinder 2 side may adopt the same assembly method as a conventional ordinary turbine.

即ち、その組立ては、内筒2の下半部にノズル室4、翼
環5及びダミー環6の夫々の下半部側を組立てておき、
そこにロータ7を受入れる。
That is, in the assembly, the lower half side of each of the nozzle chamber 4, the blade ring 5, and the dummy ring 6 is assembled in the lower half part of the inner cylinder 2,
The rotor 7 is received there.

これにこれらの構成部材4〜6の上半部を組立て、更に
内筒2の上半部を組立てることとなる。
The upper half parts of these constituent members 4 to 6 are assembled to this, and further the upper half part of the inner cylinder 2 is assembled.

ここまでの工程は従来とほぼ同様である。The steps up to this point are almost the same as the conventional one.

次の工程では、2分割されていた内筒2における軸方向
の位置決めが位置決め用ボルト・ナット10にてなされ
る。
In the next step, the positioning bolts and nuts 10 are used to axially position the inner cylinder 2 that has been divided into two parts.

ただし、この場合にはこのボルト・ナット10で内筒2の
上半部、下半部とを締結するということが主眼ではな
く、単に位置決めだけの手段として用いられている。
However, in this case, fastening the upper and lower halves of the inner cylinder 2 with the bolts and nuts 10 is not the main purpose, but is merely used as a positioning means.

そこで、一体化した内筒2の外周面に外筒3を軸線方向
に沿って嵌入する。
Therefore, the outer cylinder 3 is fitted in the outer peripheral surface of the integrated inner cylinder 2 along the axial direction.

そして、内筒2と外筒3は、例えばラジアルピン8にて
軸方向の位置決めがなされる。ただし、この場合にもラ
ジアルピン8にて内筒2,外筒3とを締結するのが目的
ではなく、やはり位置決めだけの手続きに供される。
The inner cylinder 2 and the outer cylinder 3 are axially positioned by, for example, a radial pin 8. However, in this case as well, the purpose of fastening the inner cylinder 2 and the outer cylinder 3 with the radial pin 8 is not the purpose, but the procedure of positioning is still provided.

その後、ロータ7と内車室2との組立てが完了したもの
を外車室(図示せず)中に組立てることとなる。
After that, the rotor 7 and the inner casing 2 that have been assembled are assembled in the outer casing (not shown).

なお、第1図中、符号11はラジアルピン8の挿入穴、12
はボルト・ナット10の通し穴、13は蒸気入口開口部を夫
々示す。
In FIG. 1, reference numeral 11 denotes an insertion hole for the radial pin 8 and 12
Indicates a through hole of the bolt / nut 10, and 13 indicates a steam inlet opening.

さて、本考案によればこのように組立てられる内筒2と
外筒3との間には、適当な間隔幅を有する隙間δが設計
上与えられている。
According to the present invention, a gap δ having an appropriate gap width is provided between the inner cylinder 2 and the outer cylinder 3 assembled in this way by design.

以下この隙間δと、これに対して熱膨張により発生する
各内筒2、外筒3の隙間δi,δoとの関係について求
めると共に、その作用についても説明すると、内筒2と
外筒3の間の隙間(直径隙間)δを運転前後の冷態時に
組立が容易に出来るような値にとる。
Hereinafter, the relationship between the clearance δ and the clearances δi and δo between the inner cylinder 2 and the outer cylinder 3, which are generated by thermal expansion, will be determined, and its operation will be described. The relationship between the inner cylinder 2 and the outer cylinder 3 will be described. The gap (diameter gap) δ between them is set to a value that allows easy assembly in the cold state before and after the operation.

今、内筒2の外径をdi、外筒3の内径をdo、運転時の温
度上昇を内筒2でΔTi、外筒3でΔTo、材料の熱膨張係
数を内筒2がαi,外筒3がαo(ただし、αi>α
o)とすると、これらの間における運転時の相対的な隙
間δ′は δ′=δ+αoΔTodo−αiΔTidi・・・(1) となる。
Now, the outer diameter of the inner cylinder 2 is di, the inner diameter of the outer cylinder 3 is do, the temperature rise during operation is ΔTi for the inner cylinder 2, ΔTo for the outer cylinder 3, and the thermal expansion coefficient of the material is αi for the inner cylinder 2 and the outer The cylinder 3 is αo (where αi> α
o), the relative gap δ ′ between them during operation is δ ′ = δ + αoΔTodo−αiΔTidi (1).

具体例として、内筒2をSUSF316H鋼、外筒3を12クロム
鋼製とする場合、αi=1.8×10-51/℃、αo=1.2×10
-51/℃であり、また、仮にΔTi=550℃、ΔTo=500℃、
及びdi=do=1,500mmとして設定した各数値を(1)式
に代入すると δ′=δ+1.2×10-5×500×1,500−1.8×10-5×550×
1,500 =δ+9.0−14.85 =δ−5.85mm 即ち、運転時の隙間δ′は冷態時の隙間δより5.85mm程
小さくなる。
As a specific example, when the inner cylinder 2 is made of SUSF316H steel and the outer cylinder 3 is made of 12 chrome steel, αi = 1.8 × 10 −5 1 / ° C., αo = 1.2 × 10
-5 1 / ° C. Further, if ΔTi = 550 ° C, ΔTo = 500 ° C,
And substituting each value set as di = do = 1,500 mm into the equation (1), δ ′ = δ + 1.2 × 10 -5 × 500 × 1,500−1.8 × 10 -5 × 550 ×
1,500 = δ + 9.0-14.85 = δ-5.85 mm That is, the operating clearance δ'is smaller by 5.85 mm than the cold clearance δ.

このとき、原理的には冷態時の隙間δを5.85mmより小さ
くとれば運転時の隙間δ′は負の値、すなわち運転時に
は内筒2と外筒3は絞りばめになる。
At this time, in principle, if the gap δ in the cold state is smaller than 5.85 mm, the gap δ'in operation will be a negative value, that is, the inner cylinder 2 and the outer cylinder 3 will be an interference fit during operation.

この点に着目して運転前の冷態時の隙間δを5.85mmより
小さい適当な値にとれば、運転時に内筒2と外筒3との
絞りばめの圧力psが内筒2の内圧piに打勝つことができ
る。
Focusing on this point, if the clearance δ in the cold state before operation is set to an appropriate value smaller than 5.85 mm, the pressure p s of the interference fit between the inner cylinder 2 and the outer cylinder 3 during operation becomes Can overcome internal pressure p i .

簡単のため内筒2、外筒3とも薄肉円筒として試算す
る。内筒2の肉厚をti、材料の弾性係数をEi、外筒3の
肉厚をto、材料の弾性係数をEo、外筒3の外圧をpoとす
ると、各内筒2、外筒3のひずみが で示され 内筒2の(軸線方向の単位長さ当りの)つりあいより 外筒3の(軸線方向の単位長さ当りの)つりあいより ここで、δiとδoは絞りばめによる内筒2の直径の縮
み量と外筒3直径の伸び量で、その総和から運転時の隙
間δ′が求められる。
For simplicity, both the inner cylinder 2 and the outer cylinder 3 are calculated as thin cylinders. If the thickness of the inner cylinder 2 is t i , the elastic coefficient of the material is E i , the thickness of the outer cylinder 3 is t o , the elastic coefficient of the material is E o , and the external pressure of the outer cylinder 3 is p o , then each inner cylinder 2, the strain of the outer cylinder 3 From the balance of the inner cylinder 2 (per unit length in the axial direction) From the balance of the outer cylinder 3 (per unit length in the axial direction) Here, δi and δo are the amount of contraction of the diameter of the inner cylinder 2 and the amount of expansion of the outer cylinder 3 due to the interference fit, and the clearance δ ′ during operation can be obtained from the sum thereof.

δi+δo=−δ′・・・・・・(4) となる。δi + δo = −δ ′ (4)

これら(2)〜(4)式より、内筒2の直径の縮み量δ
iは、 そして、内筒2の水平継手面が気密を保つには、内筒2
の縮み量δiが、限界縮み量δimin以上となる必要
がある。即ち、 (6)式を変形して ここで、例えばEi=Eo=1.8×104kg/mm2、ti=to=50m
m、di=do=1,500mm、pi=70kg/cm2=0.7kg/mm2、po=3
0kg/cm2=0.3kg/mm2、δimin=0.2mmと仮定した各
数値を(7)式に代入すると、 となり、設計段階で冷態時の隙間δを5.85−0.9=4.95m
m以下にとれば良いことがわかる。
From these equations (2) to (4), the shrinkage amount δ of the diameter of the inner cylinder 2
i is In order to keep the horizontal joint surface of the inner cylinder 2 airtight, the inner cylinder 2
It is necessary that the shrinkage amount δi of is equal to or more than the limit shrinkage amount δi min . That is, Transforming equation (6) Here, for example, E i = E o = 1.8 × 10 4 kg / mm 2 , t i = t o = 50 m
m, di = do = 1,500 mm, p i = 70 kg / cm 2 = 0.7 kg / mm 2 , p o = 3
Substituting the respective values assuming 0 kg / cm 2 = 0.3 kg / mm 2 and δi min = 0.2 mm into the equation (7), Therefore, the gap δ in the cold state at the design stage is 5.85−0.9 = 4.95m
It turns out that it is better to take m or less.

以上のことより、タービンの起動時には、まず内筒2の
温度が上昇し、膨張した内筒2が外筒2に密接した状態
となりその後外筒3の温度上昇する一方、内圧、外圧の
印加が生じる。
From the above, at the time of starting the turbine, the temperature of the inner cylinder 2 first rises, the expanded inner cylinder 2 comes into close contact with the outer cylinder 2 and then the temperature of the outer cylinder 3 rises, while the internal pressure and the external pressure are not applied. Occurs.

またタービンの停止時にはまず、内圧、外圧がなくなっ
てから内筒2の温度低下が生じる。
Further, when the turbine is stopped, the temperature of the inner cylinder 2 is reduced after the internal pressure and the external pressure are eliminated.

従って内筒2に内圧が加わる場合は常に外筒3との熱伸
差による絞りばめ圧力が生じるので内筒2の継手面8が
開くことはない。
Therefore, when the inner pressure is applied to the inner cylinder 2, a shrink fitting pressure is always generated due to the thermal expansion difference with the outer cylinder 3, so that the joint surface 8 of the inner cylinder 2 does not open.

このことは、内筒2自体、又は内筒2及び外筒3の間の
組付けにおいては、その密閉状態を絞りばめによって行
えるため従来の如き締付けボルト等による外部からの、
しかも局部的な締付け力を受けずに済むことを意味す
る。
This is because when the inner cylinder 2 itself or between the inner cylinder 2 and the outer cylinder 3 is assembled, the hermetically sealed state can be achieved by a diametric fit, so that the tightening bolt or the like from the outside can be used.
Moreover, it means that it is not necessary to receive a local tightening force.

更に、内車室1が以上の如き内筒2と外筒3の二重構造
になっていることにより、内外筒の境界部の熱抵抗を大
きくできる。また外筒3は内筒2の外面に対してサーマ
ルシールドとしての役目を果たす一方、内圧に対する圧
力容器としての強度は、その密接する外筒3が受持つこ
とが可能であり、内筒2の肉厚は工作上小さくて良いこ
ととなる。
Further, since the inner casing 1 has the double structure of the inner cylinder 2 and the outer cylinder 3 as described above, the thermal resistance at the boundary portion between the inner and outer cylinders can be increased. The outer cylinder 3 functions as a thermal shield against the outer surface of the inner cylinder 2, while the strength of the pressure container against the internal pressure can be taken up by the outer cylinder 3 in close contact with the outer cylinder 3. The thickness will be small in terms of work.

これらの作用を併わせて、内筒2の内外面温度差を低減
させることができ、しかも内筒2も外筒3の内面に対し
てサーマルシールドの役目を果たすので外筒3の温度を
低い状態に維持することが可能である。
By combining these actions, the temperature difference between the inner and outer surfaces of the inner cylinder 2 can be reduced, and since the inner cylinder 2 also serves as a thermal shield against the inner surface of the outer cylinder 3, the temperature of the outer cylinder 3 is low. It is possible to maintain the state.

考案の効果 以上詳述したように、本考案によれば、内車室を分割し
た内筒と、一体化した外筒との二重構造にして、これら
の間の隙間を適当に保持することにより絞りばめの作用
を得ることができるため、次のような効果が奏される。
Effect of the Invention As described in detail above, according to the present invention, a double structure of an inner cylinder into which the inner casing is divided and an integrated outer cylinder is provided, and a gap between them is appropriately maintained. As a result, the effect of an interference fit can be obtained, so that the following effects are achieved.

(1)外筒が例えば円筒状等に一体的に形成しているので
その構造上変形が起こり辛く、締付ボルトが不要とな
り、従って運転前後の冷態時には内車室に局部的な締付
荷重が加わることがなく、つまり強度的に負荷を軽くで
きることにより、各所の変形を阻止することができる。
(1) Since the outer cylinder is integrally formed, for example, in a cylindrical shape, it is difficult to deform due to its structure, and tightening bolts are not required.Therefore, local tightening is required in the inner compartment when the vehicle is cold before and after operation. Since no load is applied, that is, the load can be lightened in terms of strength, it is possible to prevent deformation at various places.

(2)例えば内筒を薄肉に加工しても、その内筒の内外温
度差がサーマルシールドの効果により低減されるため、
変形が生じない。
(2) For example, even if the inner cylinder is made thin, the temperature difference between the inner and outer temperatures of the inner cylinder is reduced by the effect of the thermal shield.
No deformation occurs.

(3)また、外筒の温度も低減されるため、その素材に高
温強度の不足するフェライト系の材料を用いても、強度
余裕は大きくなる。
(3) Since the temperature of the outer cylinder is also reduced, the strength margin is increased even if a ferrite-based material that lacks high-temperature strength is used as the material.

更に、内筒に相対的に熱膨張係数の大きな材料、外筒に
相対的に熱膨張係数の小さな材料を用いて、運転前後
(組立時)と運転時の温度差に伴う熱伸び差により、前
述の如く自動的に締付けること(絞りばめ)が可能とな
るため、締結のための部品点数を減少でき、よって組立
・解放作業が容易かつ確実に実施することができると共
に、製作工程、及び製作費、メンテナンス費用をも低減
することができる。
Furthermore, by using a material with a relatively large coefficient of thermal expansion for the inner cylinder and a material with a relatively small coefficient of thermal expansion for the outer cylinder, due to the difference in thermal expansion due to the temperature difference between before and after operation (at assembly) and during operation, As described above, automatic tightening (drawing fit) is possible, so the number of parts for tightening can be reduced, and therefore, the assembly / release work can be performed easily and reliably, and the manufacturing process and Manufacturing costs and maintenance costs can also be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案による蒸気タービン内車室の取付構造の
一例を示す概略構造組成斜視図、第2図はその内車室の
組立状態を示す概略断面図、第3図は従来の蒸気タービ
ン内車室の組立状態を示す概略断面図である。 1……内車室、2……内筒、3……外筒、9……継手
面、δ……隙間。
FIG. 1 is a schematic structural composition perspective view showing an example of a mounting structure of a steam turbine inner casing according to the present invention, FIG. 2 is a schematic sectional view showing an assembled state of the inner casing, and FIG. 3 is a conventional steam turbine. It is a schematic sectional drawing which shows the assembled state of an inner vehicle compartment. 1 ... inner compartment, 2 ... inner cylinder, 3 ... outer cylinder, 9 ... joint surface, δ ... gap.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】相対的に熱膨張係数の大きな材料からな
り、継手面等で分割される内筒を、前記材料より熱膨張
係数の小さな材料からなる外筒内に適当な隙間をもって
配置し、運転前後の温度差による熱膨張量の差により外
筒で内筒を締付けるようにしたことを特徴とする蒸気タ
ービン内車室の取付構造。
1. An inner cylinder made of a material having a relatively large thermal expansion coefficient and divided by a joint surface or the like is arranged with an appropriate gap in an outer cylinder made of a material having a smaller thermal expansion coefficient than the material, A structure for mounting an inner casing of a steam turbine, wherein an inner cylinder is fastened by an outer cylinder due to a difference in thermal expansion amount due to a temperature difference before and after operation.
JP16400588U 1988-12-20 1988-12-20 Mounting structure for the interior of the steam turbine Expired - Lifetime JPH066162Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16400588U JPH066162Y2 (en) 1988-12-20 1988-12-20 Mounting structure for the interior of the steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16400588U JPH066162Y2 (en) 1988-12-20 1988-12-20 Mounting structure for the interior of the steam turbine

Publications (2)

Publication Number Publication Date
JPH0285802U JPH0285802U (en) 1990-07-06
JPH066162Y2 true JPH066162Y2 (en) 1994-02-16

Family

ID=31449234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16400588U Expired - Lifetime JPH066162Y2 (en) 1988-12-20 1988-12-20 Mounting structure for the interior of the steam turbine

Country Status (1)

Country Link
JP (1) JPH066162Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4636965B2 (en) * 2005-08-04 2011-02-23 株式会社日立製作所 Turbine exhaust system
FR2964145B1 (en) * 2010-08-26 2018-06-15 Safran Helicopter Engines TURBINE HOOD SHIELDING METHOD AND HITCH ASSEMBLY FOR ITS IMPLEMENTATION
CN110026404A (en) * 2019-05-21 2019-07-19 上海制驰智能科技有限公司 A kind of high-temperature gas discharger

Also Published As

Publication number Publication date
JPH0285802U (en) 1990-07-06

Similar Documents

Publication Publication Date Title
JP4153501B2 (en) Turbine casing having heat-resistant hooks and obtained by powder metallurgy
US4495684A (en) Process of joining a ceramic insert which is adapted to be embedded in a light metal casting for use in internal combustion engines
JPS5825859B2 (en) Cylinder liner system
JPS5831036Y2 (en) Internally insulated bellows structure
JP2741177B2 (en) Dry liner for internal combustion engines
EP0472171B1 (en) Ceramic rotor and metal shaft assembly
JPH066162Y2 (en) Mounting structure for the interior of the steam turbine
US6213710B1 (en) Method and apparatus for thrust compensation on a turbomachine
JP2001221126A (en) Common rail and method for manufacturing it
JPH07247836A (en) Exhaust manifold
JPH053724Y2 (en)
JPH0248642Y2 (en)
JP2511334Y2 (en) Cylinder liner
JPH02502470A (en) High-temperature gas guide pipe for internal combustion engines
JPH0777004A (en) Assembled rotor for steam turbine
JPS62605A (en) Static vane of gas turbine
JPH03141847A (en) Cylinder block for internal combustion engine
JPH08144712A (en) Connecting method for divided pressure vessel
JPH06108917A (en) Light alloy made cylinder block of multiple cylinder engine and manufacture thereof
JPS585513A (en) Thrust collar of rotor made of chrome steel
JPS6050217A (en) Exhaust manifold for engine
JPS5930180Y2 (en) Turbine casing for turbocharger
JPH051603Y2 (en)
JP2560955Y2 (en) Exhaust manifold mounting structure for internal combustion engine
JPH05149106A (en) Steam turbine chamber