JP2004301012A - Exhaust system component with supercharger - Google Patents

Exhaust system component with supercharger Download PDF

Info

Publication number
JP2004301012A
JP2004301012A JP2003094837A JP2003094837A JP2004301012A JP 2004301012 A JP2004301012 A JP 2004301012A JP 2003094837 A JP2003094837 A JP 2003094837A JP 2003094837 A JP2003094837 A JP 2003094837A JP 2004301012 A JP2004301012 A JP 2004301012A
Authority
JP
Japan
Prior art keywords
supercharger
exhaust
exhaust manifold
partition wall
exhaust system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003094837A
Other languages
Japanese (ja)
Inventor
Kenji Ito
賢児 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2003094837A priority Critical patent/JP2004301012A/en
Publication of JP2004301012A publication Critical patent/JP2004301012A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • F02B37/025Multiple scrolls or multiple gas passages guiding the gas to the pump drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Silencers (AREA)
  • Supercharger (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust system component with a supercharger which has little exhaust resistance and exhaust interference generated at both end faces of an internal surface partition wall, in an exhaust system component where an exhaust manifold has the partition wall on its internal surface manufactured in a separated body is jointed to the supercharger having the partition wall. <P>SOLUTION: The exhaust manifold and the supercharger are jointed with a crossing angle of the internal surface partition wall at a connected portion between the exhaust manifold and the supercharger set at 1° or less using a frictional pressure welding having phase control. With a clearance between both the internal surface partition walls set at 0.5 mm or less, the exhaust manifold and the supercharger are jointed to each other. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関に用いられる排気マニホルドと排気ガスタービン過給機のハウジングとを接合した排気系部品に関するものである。
【0002】
【従来の技術】
従来、エンジンの排気ガスを捕集し、消音管(マフラー)へ送る管状耐熱部材として、例えば図2に示す排気マニホルドがある。この排気マニホルド1aは、シリンダヘッド2に取り付ける取付フランジ3と、シリンダヘッド2の各排気口に取付フランジ3を介して接続する枝管4と、この枝管4を集合する集合管5と、出口フランジ6とからなる。さらに、各排気口のそれぞれの排気ガス同士による排気干渉を避けるために、排気ガスの流れ、圧力を制御するようにエンジン各気筒の爆発順序を考慮した内面仕切り壁11が設けられ、その端面12は排気マニホルド出口側にある。前記シリンダヘッド2の各排気口へ排気ガスを排気する気筒は、例えば4気筒縦置きエンジンの場合には、日本国内においては通例として車両正面から1番気筒、2番気筒、3番気筒、4番気筒と呼ばれており、一般的にはエンジン各気筒の爆発順序は1−3−4−2である。前記仕切り壁11は、1番気筒と4番気筒からの排気ガスの流路と、2番気筒と3番気筒からの排気ガスの流路とを集合管内で二つに分けることにより、各気筒の排気ガスが次の気筒の爆発燃焼による排気干渉を避けるように設けられている。そして、該排気マニホルド1aの出口フランジ6には、ガスケット7を挟んでボルトで接合された内面仕切り壁を有した排気ガスタービン過給機8(以下、単に過給機と記す)がつながっており、この過給機8もまた、排気ガスによる排気干渉を防止するように、内面仕切り壁が設けられ、内部を2つの空間に区分し、その端面13は過給機入口側にある。前記排気マニホルドの1番気筒と4番気筒の排気ガスの流路が前記空間の片方の空間につながり、2番気筒と3番気筒の排気ガスの流路がもう一つの空間につながっている。
【0003】
図3は、内面仕切り壁の端面形状の一例を示す図である。(3a)に示すように直線的な端面や(3b)に示すような曲線的な端面もある。前記排気マニホルド1aと前記過給機8との接合部における両者の内面仕切り壁端面12,13の合わせ面においては、過給機の性能を維持するために、両端面の交差角度ならびに両端面間の隙間間隔は、限界まで小さく設計されている。
【0004】
ここで交差角度とは、図4に示すように排気マニホルドの内面仕切り壁の端面12の中央線と、過給機の内面仕切り壁の端面13の中央線とを、排気マニホルドと過給機との接合面に投影して出来る2直線あるいは2曲線の交差の角度を言う。
【0005】
前記内面仕切り壁の両端面の交差角度が大きくなると、排気ガスの流れを阻害し過給機の性能を低下させることとなる。また、この内面仕切り壁の両端面の交差角度が大きくなると、あるいは仕切り壁の両端面間の隙間間隔が大きくなると、1番気筒と4番気筒からつながる集合管から排気されたガスと、2番気筒と3番気筒からつながる集合管から排気されたガスが、過給機の仕切り壁にて区分されている2つの空間に完全に分離されずに流入することになり、過給機の性能を大きく低下させることになる。すなわち、排気干渉によるブースト圧の低下ならびにエンジントルクの低下等が懸念されることになる。その結果、ターボチャージャシステムとして当初の性能を発揮することができず、エンジン性能そのものを低下させることになる。従来のフランジ部をボルト接合している排気マニホルドと過給機においては、この排気マニホルド1aと過給機8との接続部は、フランジ部及びフランジ部ボルト孔の加工による誤差や、フランジの熱変形、さらに長時間の使用におけるボルトの緩み等により、仕切り壁の両端面の交差角度ならびに両端面間の隙間間隔は次第に大きくなり、過給機の性能に影響を及ぼすという問題が生じていた。また、接続のためにフランジ部を有することから重量増となるとともに狭いエンジンルーム内で場所を取り、さらに、ボルト、ナット及びガスケットといった接続のための部品の管理及びコストが増加するといった問題を有していた。
【0006】
従って、上記問題点を解決する手段として、特許文献1に排気マニホルドと過給機とを鋳造にて一体成形したタービンハウジングの開示がなされている。また、特許文献2に排気マニホルドと過給機とを摩擦圧接にて一体形状とした過給機付き排気マニホルドの開示がなされている。また、摩擦圧接部品の接合部の形状に関するものとして、特許文献3に排気系部品が提案されている。さらに位相制御に関するものとしては、例えば、特許文献4に被摩擦圧接素材相互の位相角を特定条件に保って摩擦圧接を完了するための装置として開示されている。
【0007】
【特許文献1】
実開昭59−18098号公報
【特許文献2】
特開平9−242539号公報
【特許文献3】
特開2001−182533号公報
【特許文献4】
特公平8−15673号公報
【0008】
【発明が解決しようとする課題】
上記特許文献1による提案は、排気マニホルドと過給機とを鋳造により一体形状とした構成を特徴とするものであり、排気マニホルドと過給機を一体として鋳造すると外径寸法が大きくなり、通常の鋳枠の寸法からはみ出す場合もあり、鋳枠の寸法から形状に制限をうけるとともに、特に内面に仕切り壁を有する排気マニホルドと過給機の場合には、複雑な形状になることから、例えば見切り面が3次元化することによる中子点数の増加や、薄肉である内面仕切り壁を一体で鋳造するための方案の複雑化に伴う鋳造歩留りの低下といった問題による製造コストの上昇が懸念される。
【0009】
特許文献2による提案は、排気マニホルドと過給機とを摩擦圧接により接合し一体形状とした構成を特徴とするものであるが、内面仕切り壁の両端面の交差角度や隙間間隔といった過給機の性能に影響を与えるものについて考慮したものではない。また、特許文献3による提案は、排気系部品の接合部形状に言及したものの、過給機の性能上において問題となる内面仕切り壁の両端面の交差角度や隙間間隔に関しては、わずかに仕切り壁が、摩擦圧接後に相互に圧接しない隙間を形成する必要があることを述べているに過ぎず、前記隙間間隔が大きくなると仕切り壁で分離されていた排気ガスが互いに流入し、過給機の性能を低下させる恐れがあることを考慮したものではない。
【0010】
仕切り壁を有した排気マニホルドと過給器を接合する場合、単に摩擦圧接を用いただけでは解決できない仕切り壁の両端面の交差角度と隙間間隔の問題点があり、また、位相制御を行う摩擦圧接機を用いたとしても目標とする交差角度を明かにしておく必要があるが、上記のように、内面仕切り壁の両端面の交差角度や隙間間隔といった過給機の性能を考慮した考案は例がない。本発明者が、実際に行った摩擦圧接による接合方法では、位相制御を行わずに接合すると、被摩擦圧接材相互の位相角は目標位相と大きくずれ、内面仕切り壁の両端面の交差角度も目標角度の範囲に入らずに接合がなされてしまう。前記交差角を小さくするため、接合時の回転速度を極限まで低く設定し、さらに、目標となる形状ポイントと装置の所定のポイントとが一致するタイミングを別途計測装置例えば光センサーで計測し、数度の予備試験によりばらつきが安定して交差角度が一定となったと推定される時点で装置の回転を止め、接合する。そのときの公差角度は、回転速度が小さいために慣性力を考慮することによりある範囲に抑えることができるものの、決められた交差角度内に入れることは実質的に不可能であった。
【0011】
本発明の目的は、上記課題を解決し、別体にて製造された内面に仕切り壁を有する排気マニホルドと過給機とを摩擦圧接にて接合し、内面仕切り壁の両端面の交差角度と隙間間隔をある限度以下とすることにより、安価でかつ信頼性に富む高性能な過給機付き排気系部品を提供するものである。
【0012】
【課題を解決するための手段】
本発明者は、排気系部品として常に接合して構成される内面仕切り壁を有する排気マニホルドと過給機とを位相制御を付加した摩擦圧接にて接合することができれば、当初より一体型にて複雑な形状にして鋳造することによる中子点数の増加および鋳造歩留りの低下を回避でき、さらに接合に必要なフランジが削減でき、自動車の軽量化に効果があること、また、接合フランジ部の熱変形によるガス漏れを防止できること、さらに内面仕切り壁同士の交差角度や隙間間隔を制御することにより過給機の大幅な性能向上が図れることに着目し鋭意研究の結果本発明に想到した。
【0013】
すなわち、本発明の過給機付き排気系部品は、排気ガスタービン過給機及び排気マニホルドを有する排気系部品において、前記排気ガスタービン過給機及び排気マニホルドが内面に仕切り壁を有するとともに、前記排気マニホルドの内面仕切り壁の排気ガスタービン過給機側端面と、前記排気ガスタービン過給機の内面仕切り壁の排気マニホルド側端面との交差角度を1°以下となるように前記排気マニホルドと前記過給機とを接合したことを特徴とするものである。また、本発明の過給機付き排気系部品の製造方法は、前記過給機付き排気系部品において、排気マニホルドと過給機とを位相制御を有する摩擦圧接機にて接合するものである。仕切り壁の交差角度を1゜以下とする事により過給器の性能を落すことなく、また摩擦圧接により接合することで、軽量であり安価でありかつ信頼性に富む過給機付き排気系部品を得ることが出来る。
【0014】
また、本発明の過給機付き排気系部品は、排気ガスタービン過給機及び排気マニホルドを有する排気系部品において、前記排気ガスタービン過給機及び排気マニホルドが内面に仕切り壁を有するとともに、前記排気マニホルドの内面仕切り壁の排気ガスタービン過給機側端面と、前記排気ガスタービン過給機の内面仕切り壁の排気マニホルド側端面にて形成される両面の間隔を0.5mm以下とし、摩擦圧接により前記排気マニホルドと前記過給機とを接合したことを特徴とする過給機付き排気系部品である。仕切り壁の隙間間隔を0.5mm以下とすることにより過給器の性能を落すことなく、過給機付き排気系部品を得ることが出来る。仕切り壁の隙間間隔が0.5mmを越えると排気マニホルドの仕切り壁にて分離されていた排気ガスが、前記仕切り壁の隙間にて干渉し、エンジンの性能が低下するため、仕切り壁の隙間間隔を0.5mm以下とすることが望ましい。
【0015】
また、本発明の過給機付き排気系部品は、前記排気マニホルドと前記過給機のハウジングとが鋳鋼または鋳鉄で製造されることが好ましく、また、前記鋳鋼が耐熱鋳鋼であり、前記鋳鉄が球状黒鉛鋳鉄であることがより好ましい。これにより、耐熱性に優れた過給機付き排気系部品を得ることができる。
【0016】
【発明の実施の形態】
本発明の実施の形態につき図面を参照して説明する。図1は本発明に係る摩擦圧接により接合し得られた過給機付き排気系部品1の正面図である。この過給機付き排気系部品1は、各々別体にて鋳造された耐熱鋳鋼製排気マニホルドと過給機とからなっている。このように、別体にて鋳造することにより鋳物形状が複雑にならず、従来の方案技術で容易に鋳造することが可能である。
【0017】
本発明の過給機付き排気系部品1を得るために、図6に示す位相制御を有する摩擦圧接装置を用い、過給機8を回転側固定治具14に固定し、排気マニホルド15を固定側治具16に固定した。過給機8と排気マニホルド15とを摩擦圧力20〜40MPa、摩擦時間20〜120秒で部材同士を摩擦しつつ相対運動させた後、目標位相にて爪付きクラッチ17及び位相制御装置18の作動と同時に、アプセット圧力80〜140MPa、アプセット時間6〜10秒でアプセットを行うことにより、内面仕切り壁同士の交差角度を1°以下に抑えて接合を行う。そして過給機と排気マニホルドのそれぞれの仕切り壁の端面は、アプセット後の仕切り壁同士の隙間が0.5mm以下となるように、予め過給機と排気マニホルドの接合面から奥まったところに位置するように成形する。
【0018】
このようにして接合した摩擦圧接部10の境界にはチルは存在せず、その接合は極めて良好である。また、本実施例では交差角度は0.5度以下に収まった。
【0019】
次に、フェライト系耐熱鋳鋼製の排気マニホルド1と過給機を上記条件にて摩擦圧接にて接合し一体形状とした過給機付き排気マニホルド1の信頼性を評価する手段として、排気量3.0リットルの直列4気筒高性能ガソリンエンジンによる加熱・冷却試験を行った。試験条件としては、機関回転数6000rpmでの全負荷運転相当の加熱(5分)−冷却(5分)を1サイクルとする冷熱(GO−STOP)サイクルで500時間実施した。全負荷時の排気ガス温度は、約830℃であった。この条件下での過給機付き排気系部品1の集合管5部の温度は約750℃であった。上記評価試験の結果、従来のボルト接合した排気系部品は、出口フランジ6の熱変形及びガスケットの損傷により、排気マニホルド1aと過給機8のフランジ9との接合面からガス漏れが生じたのに対し、本発明の過給機付き排気系部品1は、摩擦圧接面10及びその他の部位からもガス漏れ及び亀裂は生じなかった。
【0020】
図5は、従来のボルト接合した排気系部品にて上記評価試験を終了後の接合部分の状態を模式的に示したものである。長時間の耐久試験によりボルト接合力及びガスケット性能が低下したボルト接合品の内面仕切り壁の隙間間隔は、ガスケットの厚みを差し引いても最大0.8mmに達した。
【0021】
図7は上記評価試験によるボルトの緩みに伴い内面仕切り壁の交差角度が不安定で、隙間間隔が約0.8mmであるボルト接合品と、位相制御を付加しない摩擦圧接により内面仕切り壁の交差角度が約4.96°、隙間間隔が約0.7mmである比較品と位相制御付加の摩擦圧接により内面仕切り壁の交差角度が約0.51°、隙間間隔が約0.2mmである本発明品において、過給機の性能に関係するブースト圧を比較した図である。位相制御付加の摩擦圧接により、内面仕切り壁の交差角度と隙間間隔を小さくなるようにした本発明品は、従来品や位相制御を付加しない摩擦圧接による対象品と比較して、ブースト圧に関して数%から数十%の過給機性能の向上を有することが確認された。
【0022】
図8は上記耐久試験によるボルトの緩みに伴い内面仕切り壁の交差角度が不安定で、隙間間隔が約0.8mmであるボルト接合品と位相制御を付加しない摩擦圧接により内面仕切り壁の交差角度が約4.96°、隙間間隔が約0.7mmである対象品と位相制御付加の摩擦圧接により内面仕切り壁の交差角度が約0.51°、隙間間隔が約0.2mmである本発明品において、過給機の性能に関係するエンジントルクを比較した図である。位相制御付加の摩擦圧接により、内面仕切り壁の交差角度と隙間間隔を小さくなるようにした本発明品は、従来品や位相制御を付加しない摩擦圧接による対象品と比較して、トルクに関して数%から数十%の過給機性能の向上を有することが確認された。
【0023】
図9は、3.0Lのガソリンエンジンにおいて交差角度とトルクの関係を比較した図である。交差角度が1°を超えるとトルクが急激に低下することが確認された。さらに、安定したトルク性能を得るには、交差角度を±0.5°以下に制御することが望ましい。また、図10は上記と同じ3.0Lのガソリンエンジンにおいて、仕切り壁の隙間間隔とトルクの関係を比較した図である。隙間間隔が0.5mmを越えると急激に低下することが確認された。
【0024】
以上の結果より、本発明の過給機付き排気系部品1は優れた耐久性、信頼性及び大幅な過給機性能の向上を有することが確認された。
【0025】
【発明の効果】
以上の説明の通り本発明の過給機付き排気系部品よれば、内面仕切り壁の交差角度を1°以下として接合することにより高性能な過給機付き排気形部品を得ることが出来、また内面仕切り壁の隙間間隔を0.5mm以下として摩擦圧接にて接合することにより高性能な過給機付き排気形部品を得ることが出来る。
【図面の簡単な説明】
【図1】本発明に係る摩擦圧接方法によって接合されて得られた過給機付き排気系部品を示す図である。
【図2】従来のフランジ接合された過給機付き排気系部品を示す図である。
【図3】内面仕切り壁の端面形状の一例を示す図である。
【図4】交差角度の意味を示す図である。
【図5】ボルト接合品の耐久試験終了後における接合部分を示す図である。
【図6】実施の形態での、排気マニホルド1を得るために使用する摩擦圧接装置を示す図である。
【図7】上記耐久終了したボルト接合品である従来品と位相制御を付加しない摩擦圧接品と位相制御付加の摩擦圧接による本発明品において、過給機のブースト圧を比較した図である。
【図8】上記耐久終了したボルト接合品である従来品と位相制御を付加しない摩擦圧接品と位相制御付加の摩擦圧接による本発明品において、過給機の性能に関係するエンジントルクを比較した図である。
【図9】摩擦圧接された過給機付き排気系部品において、仕切り壁端面の交差角度とエンジントルクとの関係を示す図である。
【図10】摩擦圧接された過給機付き排気形部品において、仕切り壁端面の隙間間隔とエンジントルクとの関係を示す図である。
【符号の説明】
1:過給機付き排気系部品
1a:従来の排気マニホルド
2:シリンダヘッド
3:取付けフランジ
4:枝管
5:集合管
6:エキマニ出口フランジ
7:ガスケット
8:過給機
9:過給機入口フランジ
10:摩擦圧接接合部
11:排気マニホルド内面仕切り壁
12:排気マニホルド内面仕切り壁端面
13:過給機内面仕切り壁端面
14:回転側固定治具
15:排気マニホルド
16:固定側治具
17:爪付きクラッチ
18:位相制御装置
A:フランジの変形
B:フランジの隙間
C:交差角度
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an exhaust system component in which an exhaust manifold used for an internal combustion engine and a housing of an exhaust gas turbine supercharger are joined.
[0002]
[Prior art]
DESCRIPTION OF RELATED ART Conventionally, as a tubular heat-resistant member which collects the exhaust gas of an engine and sends it to a muffler (muffler), there is an exhaust manifold shown in FIG. 2, for example. The exhaust manifold 1a includes a mounting flange 3 attached to the cylinder head 2, a branch pipe 4 connected to each exhaust port of the cylinder head 2 via the mounting flange 3, a collecting pipe 5 for collecting the branch pipes 4, and an outlet. And a flange 6. Further, in order to avoid the exhaust interference between the exhaust gases at the respective exhaust ports, an internal partition wall 11 is provided so as to control the flow and pressure of the exhaust gas in consideration of the explosion order of each cylinder of the engine. Is on the exhaust manifold outlet side. For example, in the case of a four-cylinder vertical engine, a cylinder that exhausts exhaust gas to each exhaust port of the cylinder head 2 is generally the first cylinder, the second cylinder, the third cylinder, and the fourth cylinder from the front of the vehicle in Japan. It is called the cylinder number, and the explosion order of each cylinder of the engine is generally 1-3-4-2. The partition wall 11 separates the flow paths of the exhaust gas from the first cylinder and the fourth cylinder and the flow paths of the exhaust gas from the second cylinder and the third cylinder into two in the collecting pipe, thereby forming each of the cylinders. The exhaust gas is provided so as to avoid exhaust interference due to explosive combustion of the next cylinder. An exhaust gas turbine supercharger 8 (hereinafter, simply referred to as a supercharger) having an inner partition wall connected by bolts across a gasket 7 is connected to the outlet flange 6 of the exhaust manifold 1a. The supercharger 8 is also provided with an inner partition wall so as to prevent exhaust gas interference caused by exhaust gas, and divides the inside into two spaces, and an end face 13 thereof is on the inlet side of the supercharger. The exhaust gas passages of the first and fourth cylinders of the exhaust manifold are connected to one of the spaces, and the exhaust gas passages of the second and third cylinders are connected to another space.
[0003]
FIG. 3 is a diagram illustrating an example of an end surface shape of the inner partition wall. There are also linear end faces as shown in (3a) and curved end faces as shown in (3b). In order to maintain the performance of the turbocharger, the intersection angle between both end surfaces and the distance between both end surfaces are required to maintain the performance of the turbocharger at the joining surface of the inner partition walls 12 and 13 at the joint between the exhaust manifold 1a and the supercharger 8. Is designed to be as small as possible.
[0004]
Here, the intersection angle refers to the center line of the end face 12 of the inner partition wall of the exhaust manifold and the center line of the end face 13 of the inner partition wall of the supercharger as shown in FIG. Means the angle of intersection of two straight lines or two curves formed on the joint surface.
[0005]
When the crossing angle between both end surfaces of the inner partition wall increases, the flow of exhaust gas is hindered, and the performance of the turbocharger is reduced. Also, when the crossing angle between both end faces of the inner partition wall increases, or when the gap between both end faces of the partition wall increases, the gas exhausted from the collecting pipe connected from the first and fourth cylinders, The gas exhausted from the collecting pipe connecting the cylinder and the third cylinder flows into the two spaces divided by the partition wall of the supercharger without being completely separated, and the performance of the supercharger is reduced. It will be greatly reduced. That is, there is a concern about a decrease in the boost pressure and a decrease in the engine torque due to the exhaust interference. As a result, the original performance of the turbocharger system cannot be exhibited, and the engine performance itself is reduced. In a conventional exhaust manifold and a turbocharger in which a flange portion is bolted, a connection portion between the exhaust manifold 1a and the supercharger 8 may have an error due to processing of the flange portion and the flange portion bolt hole, and a heat of the flange. Due to deformation, loosening of bolts after long-time use, and the like, the intersection angle between the two end surfaces of the partition wall and the gap between the two end surfaces gradually increase, which has a problem of affecting the performance of the supercharger. In addition, the provision of a flange portion for connection increases the weight and takes up space in a narrow engine room, and further increases the management and cost of connection components such as bolts, nuts, and gaskets. Was.
[0006]
Therefore, as a means for solving the above-mentioned problems, Japanese Patent Application Laid-Open Publication No. H11-163873 discloses a turbine housing in which an exhaust manifold and a supercharger are integrally formed by casting. Further, Patent Document 2 discloses an exhaust manifold with a supercharger in which an exhaust manifold and a supercharger are integrally formed by friction welding. Patent Document 3 proposes an exhaust system component relating to the shape of a joint portion of a friction welding component. Further, as a device relating to phase control, for example, Patent Document 4 discloses an apparatus for completing friction welding by maintaining the phase angle between friction welding materials under specific conditions.
[0007]
[Patent Document 1]
JP-A-59-18098 [Patent Document 2]
Japanese Patent Application Laid-Open No. 9-242538 [Patent Document 3]
JP 2001-182533 A [Patent Document 4]
Japanese Patent Publication No. Hei 8-15673
[Problems to be solved by the invention]
The proposal by Patent Document 1 is characterized by a configuration in which the exhaust manifold and the supercharger are integrally formed by casting. When the exhaust manifold and the supercharger are integrally cast, the outer diameter becomes large, In some cases, the shape of the flask may protrude from the dimensions of the flask, and the shape is limited by the dimensions of the flask, and in particular, in the case of an exhaust manifold having a partition wall on the inner surface and a supercharger, since the shape becomes complicated, for example, There is a concern that the production cost will increase due to problems such as an increase in the number of cores due to the three-dimensional parting surface and a decrease in the casting yield due to the complexity of the scheme for integrally casting the thin inner partition wall. .
[0009]
The proposal in Patent Document 2 is characterized by a structure in which the exhaust manifold and the supercharger are joined by friction welding to form an integral shape. However, the supercharger includes a crossing angle between both end surfaces of the inner partition wall and a gap interval. It does not take into account what affects the performance of the device. Further, although the proposal in Patent Document 3 mentions the shape of the joint of the exhaust system parts, the intersection angle and the gap between both end surfaces of the inner partition wall, which are problematic in the performance of the supercharger, are slightly changed. However, it merely states that it is necessary to form a gap that does not press against each other after friction welding, and when the gap is increased, the exhaust gas separated by the partition wall flows into each other, and the performance of the turbocharger It does not take into account the possibility of lowering
[0010]
When joining an exhaust manifold with a partition wall to a supercharger, there are problems with the intersection angle and gap between the two end surfaces of the partition wall that cannot be solved by simply using friction welding, and friction welding that performs phase control Even if a turbocharger is used, it is necessary to clarify the target intersection angle.However, as described above, a device that takes into account the performance of the turbocharger, such as the intersection angle of both end surfaces of the inner partition wall and the gap interval, is an example. There is no. The present inventor, in the joining method by friction welding actually performed, when joining without performing phase control, the phase angle between the friction welded members greatly deviates from the target phase, the intersection angle of both end surfaces of the inner partition wall also. The joining is performed without entering the range of the target angle. In order to reduce the crossing angle, the rotational speed at the time of joining is set as low as possible, and the timing at which the target shape point coincides with the predetermined point of the device is separately measured with a measuring device, for example, an optical sensor. The rotation of the apparatus is stopped at the time when it is presumed that the variation is stable and the crossing angle becomes constant by the preliminary test of the degree, and the joining is performed. Although the tolerance angle at that time can be suppressed to a certain range by considering the inertial force due to the low rotation speed, it was practically impossible to fall within the determined intersection angle.
[0011]
An object of the present invention is to solve the above-mentioned problems, and to join an exhaust manifold having a partition wall to an inner surface manufactured separately and a supercharger by friction welding, and to determine an intersection angle of both end surfaces of the inner partition wall. An object of the present invention is to provide an inexpensive and reliable high-performance exhaust system component with a supercharger by setting the gap interval to a certain limit or less.
[0012]
[Means for Solving the Problems]
The inventor of the present invention has proposed that an exhaust manifold having an inner partition wall constantly joined as an exhaust system component and a supercharger can be joined by friction welding with phase control added, so that the exhaust manifold is integrated from the beginning. An increase in the number of cores and a reduction in casting yield due to casting with a complicated shape can be avoided, and the flange required for joining can be reduced, which is effective in reducing the weight of an automobile. Focusing on the fact that gas leakage due to deformation can be prevented, and that the performance of the turbocharger can be significantly improved by controlling the intersection angle and gap between the inner partition walls, the present inventors have arrived at the present invention as a result of intensive studies.
[0013]
That is, the exhaust system component with a supercharger of the present invention is an exhaust system component having an exhaust gas turbine supercharger and an exhaust manifold, wherein the exhaust gas turbine supercharger and the exhaust manifold have a partition wall on an inner surface thereof, and The exhaust manifold and the exhaust manifold such that the intersection angle between the end face of the exhaust gas turbine supercharger side of the inner partition wall of the exhaust manifold and the end face of the exhaust manifold side of the inner partition wall of the exhaust gas turbocharger is 1 ° or less. It is characterized by being joined to a supercharger. In the method of manufacturing an exhaust system part with a supercharger according to the present invention, in the exhaust system part with a supercharger, the exhaust manifold and the supercharger are joined by a friction welding machine having phase control. Exhaust system parts with supercharger that are lightweight, inexpensive and highly reliable by reducing the crossing angle of the partition wall to 1 ° or less without deteriorating the performance of the turbocharger and by joining by friction welding. Can be obtained.
[0014]
Further, the exhaust system component with a supercharger of the present invention is an exhaust system component having an exhaust gas turbine supercharger and an exhaust manifold, wherein the exhaust gas turbine supercharger and the exhaust manifold have a partition wall on an inner surface thereof, and The gap between the two surfaces formed by the exhaust gas turbine supercharger end face of the inner wall of the exhaust manifold and the exhaust manifold side end face of the inner wall of the exhaust gas turbocharger is 0.5 mm or less, and friction welding is performed. The exhaust manifold with a supercharger is characterized in that the exhaust manifold and the supercharger are joined together. By setting the gap between the partition walls to 0.5 mm or less, it is possible to obtain an exhaust system part with a supercharger without deteriorating the performance of the supercharger. If the gap between the partition walls exceeds 0.5 mm, the exhaust gas separated at the partition wall of the exhaust manifold interferes with the gap between the partition walls, and the performance of the engine is reduced. Is desirably 0.5 mm or less.
[0015]
Further, in the exhaust system part with a supercharger of the present invention, it is preferable that the exhaust manifold and the housing of the supercharger are made of cast steel or cast iron, and the cast steel is heat-resistant cast steel, and the cast iron is More preferably, it is spheroidal graphite cast iron. This makes it possible to obtain a supercharger-equipped exhaust system component having excellent heat resistance.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a front view of a supercharger-equipped exhaust system component 1 obtained by joining by friction welding according to the present invention. The supercharger-equipped exhaust system component 1 comprises a heat-resistant cast steel exhaust manifold and a supercharger, each of which is separately cast. As described above, casting by a separate body does not complicate the shape of the casting, and can be easily cast by the conventional plan technology.
[0017]
In order to obtain the exhaust system part 1 with the supercharger of the present invention, the supercharger 8 is fixed to the rotation-side fixing jig 14 and the exhaust manifold 15 is fixed by using a friction welding device having a phase control shown in FIG. It was fixed to the side jig 16. After the turbocharger 8 and the exhaust manifold 15 are relatively moved while rubbing the members with a friction pressure of 20 to 40 MPa and a friction time of 20 to 120 seconds, the operation of the pawl clutch 17 and the phase control device 18 is performed at the target phase. At the same time, by performing upset at an upset pressure of 80 to 140 MPa and an upset time of 6 to 10 seconds, the joining is performed with the intersection angle between the inner partition walls being suppressed to 1 ° or less. The end surfaces of the partition walls of the turbocharger and the exhaust manifold are located in advance in a position deep from the joint surface between the turbocharger and the exhaust manifold so that the gap between the partition walls after the upset is 0.5 mm or less. To form
[0018]
There is no chill at the boundary of the friction welding portions 10 thus joined, and the joining is extremely good. Further, in this embodiment, the intersection angle was within 0.5 degree.
[0019]
Next, the exhaust manifold 1 made of heat-resistant ferritic cast steel and the supercharger were joined by friction welding under the above conditions to evaluate the reliability of the integrated exhaust manifold 1 with the supercharger. A heating / cooling test was performed using a 2.0-liter inline 4-cylinder high-performance gasoline engine. As a test condition, a cooling (GO-STOP) cycle in which heating (5 minutes) -cooling (5 minutes) corresponding to a full load operation at an engine speed of 6000 rpm as one cycle was performed for 500 hours. The exhaust gas temperature at full load was about 830 ° C. Under these conditions, the temperature of the collecting pipe 5 of the exhaust system part 1 with the supercharger was about 750 ° C. As a result of the above evaluation test, gas leakage occurred from the joint surface between the exhaust manifold 1a and the flange 9 of the supercharger 8 due to the thermal deformation of the outlet flange 6 and the damage of the gasket in the conventional bolted exhaust system component. On the other hand, in the exhaust system part 1 with the turbocharger of the present invention, gas leakage and cracks did not occur from the friction welding surface 10 and other parts.
[0020]
FIG. 5 schematically shows a state of a joint portion after the above-described evaluation test is completed in a conventional exhaust system component joined by bolts. The gap interval between the inner partition walls of the bolt-joined product whose bolt joining force and gasket performance were reduced by the long-term durability test reached a maximum of 0.8 mm even when the thickness of the gasket was subtracted.
[0021]
FIG. 7 shows that the crossing angle of the inner partition walls is unstable due to the loosening of the bolts in the above evaluation test, and the intersection of the bolted joints with a gap interval of about 0.8 mm and the inner partition walls by friction welding without adding phase control. A book with an angle of about 4.96 °, a gap of about 0.7 mm, and a crossing angle of the inner partition wall of about 0.51 ° and a gap of about 0.2 mm by friction welding with phase control added. FIG. 5 is a diagram comparing boost pressures related to supercharger performance in the invention. The product of the present invention, in which the intersection angle and the gap interval of the inner partition walls are reduced by the friction welding with the addition of the phase control, is smaller than the conventional product and the target product by the friction welding without the phase control with respect to the boost pressure. % To several tens% of turbocharger performance.
[0022]
FIG. 8 shows the crossing angle of the inner partition wall due to the frictional welding without the phase control being applied to the bolted joint having a gap interval of about 0.8 mm, with the crossing angle of the inner partition wall being unstable due to the loosening of the bolt in the above durability test. The present invention has an intersection angle of about 0.51 ° and a gap of about 0.2 mm between the target product having a gap of about 4.96 ° and a gap of about 0.7 mm by friction welding with phase control added. FIG. 5 is a diagram comparing engine torques related to the performance of a supercharger in products. The product of the present invention, in which the crossing angle of the inner partition wall and the gap interval are reduced by the friction welding with the addition of the phase control, is several% lower in torque than the conventional product and the target product by the friction welding without the phase control. From the results, it was confirmed that the turbocharger performance was improved by several tens%.
[0023]
FIG. 9 is a diagram comparing the relationship between the intersection angle and the torque in a 3.0 L gasoline engine. It was confirmed that when the crossing angle exceeded 1 °, the torque sharply decreased. Further, in order to obtain stable torque performance, it is desirable to control the crossing angle to ± 0.5 ° or less. FIG. 10 is a diagram comparing the relationship between the gap distance between the partition walls and the torque in the same 3.0 L gasoline engine as described above. It was confirmed that the gap sharply decreased when the gap interval exceeded 0.5 mm.
[0024]
From the above results, it was confirmed that the exhaust system component 1 with the turbocharger of the present invention has excellent durability, reliability, and significant improvement in turbocharger performance.
[0025]
【The invention's effect】
As described above, according to the exhaust system part with a supercharger of the present invention, a high-performance exhaust part with a supercharger can be obtained by joining the inner partition walls at an intersection angle of 1 ° or less, By joining the inner partition walls by friction welding with the gap between the inner partition walls being 0.5 mm or less, a high-performance exhaust type part with a supercharger can be obtained.
[Brief description of the drawings]
FIG. 1 is a view showing an exhaust system part with a supercharger obtained by joining by a friction welding method according to the present invention.
FIG. 2 is a view showing a conventional exhaust system part with a turbocharger which is flange-joined.
FIG. 3 is a diagram illustrating an example of an end surface shape of an inner partition wall.
FIG. 4 is a diagram illustrating the meaning of an intersection angle.
FIG. 5 is a diagram showing a joint portion after the endurance test of the bolt joined product.
FIG. 6 is a view showing a friction welding device used to obtain the exhaust manifold 1 in the embodiment.
FIG. 7 is a diagram comparing the boost pressure of the supercharger between the conventional bolt-joined product that has been durable and the friction-welded product without phase control and the product of the present invention by friction welding with phase control added.
FIG. 8 compares the engine torque related to the performance of the supercharger between the conventional bolt-joined product whose durability has been completed, the friction-welded product without phase control, and the product of the present invention using friction welding with phase control. FIG.
FIG. 9 is a diagram showing a relationship between an intersection angle of an end face of a partition wall and an engine torque in an exhaust system part with a supercharger which is friction-welded.
FIG. 10 is a diagram showing a relationship between a gap interval between partition wall end faces and engine torque in a friction-welded exhaust type part with a supercharger.
[Explanation of symbols]
1: Exhaust system part 1a with a supercharger: Conventional exhaust manifold 2: Cylinder head 3: Mounting flange 4: Branch pipe 5: Collecting pipe 6: Exhaust manifold outlet flange 7: Gasket 8: Supercharger 9: Supercharger inlet Flange 10: Friction welded joint 11: Exhaust manifold inner partition wall 12: Exhaust manifold inner partition wall end 13: Turbocharger inner partition wall end 14: Rotating side fixing jig 15: Exhaust manifold 16: Fixed side jig 17: Claw clutch 18: Phase control device A: Flange deformation B: Flange clearance C: Crossing angle

Claims (5)

排気ガスタービン過給機及び排気マニホルドを有する排気系部品において、前記排気ガスタービン過給機及び排気マニホルドが内面に仕切り壁を有するとともに、前記排気マニホルドの内面仕切り壁の排気ガスタービン過給機側端面と、前記排気ガスタービン過給機の内面仕切り壁の排気マニホルド側端面との交差角度を1°以下となるように前記排気マニホルドと前記過給機とを接合したことを特徴とする過給機付き排気系部品。In an exhaust system component having an exhaust gas turbine supercharger and an exhaust manifold, the exhaust gas turbine supercharger and the exhaust manifold have a partition wall on an inner surface, and the exhaust gas turbine supercharger side of an inner surface partition wall of the exhaust manifold. The supercharger is characterized in that the exhaust manifold and the supercharger are joined so that an intersection angle between an end face and an exhaust manifold side end face of an inner partition wall of the exhaust gas turbine supercharger is 1 ° or less. Exhaust system parts. 請求項1に記載の過給機付き排気系部品において、排気マニホルドと過給機とを位相制御を有する摩擦圧接機にて接合することを特徴とする過給機付き排気系部品。The exhaust system part with a supercharger according to claim 1, wherein the exhaust manifold and the supercharger are joined by a friction welding machine having phase control. 排気ガスタービン過給機及び排気マニホルドを有する排気系部品において、前記排気ガスタービン過給機及び排気マニホルドが内面に仕切り壁を有するとともに、前記排気マニホルドの内面仕切り壁の排気ガスタービン過給機側端面と、前記排気ガスタービン過給機の内面仕切り壁の排気マニホルド側端面にて形成される両面の間隔を0.5mm以下とし、摩擦圧接により前記排気マニホルドと前記過給機とを接合したことを特徴とする過給機付き排気系部品。In an exhaust system component having an exhaust gas turbine supercharger and an exhaust manifold, the exhaust gas turbine supercharger and the exhaust manifold have a partition wall on an inner surface, and the exhaust gas turbine supercharger side of an inner surface partition wall of the exhaust manifold. The gap between the end face and the both faces formed at the exhaust manifold side end face of the inner partition wall of the exhaust gas turbine turbocharger is 0.5 mm or less, and the exhaust manifold and the turbocharger are joined by friction welding. Exhaust system parts with a turbocharger. 前記排気マニホルドと前記過給機のハウジングとが鋳鋼または鋳鉄で製造されることを特徴とする請求項1乃至請求項3のいずれかに記載の過給機付き排気系部品The exhaust system part with a supercharger according to any one of claims 1 to 3, wherein the exhaust manifold and the housing of the supercharger are made of cast steel or cast iron. 前記鋳鋼が耐熱鋳鋼であり、前記鋳鉄が球状黒鉛鋳鉄であることを特徴とする請求項4に記載の過給機付き排気系部品。The exhaust system part with a turbocharger according to claim 4, wherein the cast steel is a heat-resistant cast steel, and the cast iron is a spheroidal graphite cast iron.
JP2003094837A 2003-03-31 2003-03-31 Exhaust system component with supercharger Pending JP2004301012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003094837A JP2004301012A (en) 2003-03-31 2003-03-31 Exhaust system component with supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003094837A JP2004301012A (en) 2003-03-31 2003-03-31 Exhaust system component with supercharger

Publications (1)

Publication Number Publication Date
JP2004301012A true JP2004301012A (en) 2004-10-28

Family

ID=33407319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003094837A Pending JP2004301012A (en) 2003-03-31 2003-03-31 Exhaust system component with supercharger

Country Status (1)

Country Link
JP (1) JP2004301012A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008038838A (en) * 2006-08-09 2008-02-21 Toyota Motor Corp Internal combustion engine
JP2008064058A (en) * 2006-09-08 2008-03-21 Toyota Motor Corp Internal combustion engine
JP2010185403A (en) * 2009-02-13 2010-08-26 Mazda Motor Corp Exhaust gas passage structure for multi-cylinder engine
JP2010185401A (en) * 2009-02-13 2010-08-26 Mazda Motor Corp Exhaust passage structure of multi-cylinder engine
WO2016200312A1 (en) * 2015-06-11 2016-12-15 Scania Cv Ab Turbo-charged internal combustion engine
KR101776307B1 (en) * 2011-05-04 2017-09-08 현대자동차주식회사 Twin Scroll Type Turbo Charger

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008038838A (en) * 2006-08-09 2008-02-21 Toyota Motor Corp Internal combustion engine
JP4525646B2 (en) * 2006-08-09 2010-08-18 トヨタ自動車株式会社 Internal combustion engine
JP2008064058A (en) * 2006-09-08 2008-03-21 Toyota Motor Corp Internal combustion engine
JP2010185403A (en) * 2009-02-13 2010-08-26 Mazda Motor Corp Exhaust gas passage structure for multi-cylinder engine
JP2010185401A (en) * 2009-02-13 2010-08-26 Mazda Motor Corp Exhaust passage structure of multi-cylinder engine
KR101776307B1 (en) * 2011-05-04 2017-09-08 현대자동차주식회사 Twin Scroll Type Turbo Charger
WO2016200312A1 (en) * 2015-06-11 2016-12-15 Scania Cv Ab Turbo-charged internal combustion engine

Similar Documents

Publication Publication Date Title
US8733088B2 (en) Exhaust manifold system and collar coolant jacket
JP2012515295A (en) Connection arrangement of turbine housing and bearing housing and exhaust turbocharger
JP2012241715A (en) Exhaust turbocharger
JP2004301012A (en) Exhaust system component with supercharger
JP2007297923A (en) Structure of cylinder liner
US10240564B2 (en) Intake manifold for internal combustion engine
JP6384522B2 (en) Engine exhaust system
US9719402B2 (en) Exhaust runner collar
JPH05240347A (en) Piston abrasion-proof ring for engine
JP2018532953A (en) Component assembly including a clamp and a vehicle
JP2000027643A (en) Fastening structure of exhaust manifold
JP2021105391A (en) Water-cooled exhaust turbocharger
JPH09242540A (en) Integral exhaust manifold
JPH07247836A (en) Exhaust manifold
JP3593802B2 (en) Method of fastening intake manifold in internal combustion engine having two cylinder rows
JPS6327062Y2 (en)
JPS6245046Y2 (en)
CN112513437B (en) Double-walled integrated flange joint
JPS6339371Y2 (en)
JPH09242539A (en) Exhaust manifold with supercharger
US11692505B2 (en) Cylinder head with integrated turbocharger
JP2000161056A (en) Exhaust system parts and manufacture thereof
RU2249708C1 (en) Exhaust gas system of internal combustion engine
JPS61187511A (en) Construction of gasket for exhaust system of engine
JP4893699B2 (en) Piston with wear-resistant ring and method for manufacturing the same