JPS6318124A - Exhaust pipe structure - Google Patents

Exhaust pipe structure

Info

Publication number
JPS6318124A
JPS6318124A JP16205886A JP16205886A JPS6318124A JP S6318124 A JPS6318124 A JP S6318124A JP 16205886 A JP16205886 A JP 16205886A JP 16205886 A JP16205886 A JP 16205886A JP S6318124 A JPS6318124 A JP S6318124A
Authority
JP
Japan
Prior art keywords
pipe
inner pipe
bead portion
exhaust
exhaust pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16205886A
Other languages
Japanese (ja)
Inventor
Masaki Okada
岡田 正貴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP16205886A priority Critical patent/JPS6318124A/en
Publication of JPS6318124A publication Critical patent/JPS6318124A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • F01N13/102Other arrangements or adaptations of exhaust conduits of exhaust manifolds having thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/14Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having thermal insulation
    • F01N13/141Double-walled exhaust pipes or housings

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Silencers (AREA)

Abstract

PURPOSE:To improve the inner pressure proof strength of an inner pipe, and prevent breakage or the like due to the thermal expansion of the inner pipe, by forming a bead portion outwardly projecting from the inner pipe formed of a heat resistant metal, and contacting the bead portion with an inner surface of an outer pipe formed of a cast iron. CONSTITUTION:An exhaust pipe 1 is formed in a three-layer structure including an inner pipe 2 formed of a heat resistant metal such as stainless steel, a heat insulator 3 such as alumina fiber to be wound around the outer circumference of the inner pipe 2, and an outer pipe 4 formed of cast iron to be so formed as to surround these members 2 and 3. In this structure, the inner pipe 2 and the outer pipe 4 are expanded by the heat of exhaust gas flowing in the exhaust pipe 1, and there is created a difference in expansion between both the pipes 2 and 4. To absorb the difference in expansion, the inner pipe 2 which tends to expand more than the outer pipe 4 is formed with a bead portion 9 for adsorbing the expansion. A head 10 of the bead portion 9 contacts an inner surface 4a of the outer pipe 4. Accordingly, it is possible to prevent breakage due to the thermal expansion of the inner pipe 2 and improve the inner pressure proof strength of the inner pipe 2.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、耐熱金属製の内管と断熱材及び鋳鉄製外管と
の三層からなる所熱性の高い排気管構造に係り、特にそ
の耐久性の向上を計った排気管構造に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an exhaust pipe structure with high heat retention consisting of three layers: an inner pipe made of a heat-resistant metal, a heat insulating material, and an outer pipe made of cast iron. Regarding the exhaust pipe structure designed to improve durability.

[従来の技術] 一般に、ターボ過給様を備えた内燃機関の場合、そのタ
ーボ過給機には機関から排出される排気ガスの熱損失を
できるだけ抑えてエネルギの高い高温の排気ガスを供給
した方が良く、がつ可動ノズルベーン等を有した可変容
量ターボ過給機を装着する場合には、供給する排気ガス
の脈動等の圧力変動を極力抑えるためにその可変容伍タ
ーボ過給機の上流側の排気管(排気マニホールド)には
チャンバを設けておく必要がある。
[Prior Art] Generally, in the case of an internal combustion engine equipped with turbocharging, the turbocharger is supplied with high-temperature exhaust gas with high energy while minimizing heat loss in the exhaust gas discharged from the engine. When installing a variable capacity turbocharger with movable nozzle vanes, etc., it is better to It is necessary to provide a chamber in the side exhaust pipe (exhaust manifold).

このため従来では、可変容量ターボ過給機を装着するに
適した排気マニホールドとして、第7図に示すようなも
のが使われていた。図示するようにこの排気マニホール
ドaは、別間の各気筒から排出される排気ガスを直方体
状の箱体すに形成したチャンバC内に集合させてその脈
動を緩衝した後に、可変8母ターボ過給機側に流出させ
るもので、第8図にも示すようにステンレス類の内管d
を箱状に形成して、その一側に長手方向に沿って内燃機
関の各気筒に接続す9るための分岐管jを形成する流入
管eを複数設けると共に、他側に可変8岳ターボ過給様
側への排出管kを形成する流出管fを設けて、この内管
dの外周にアルミナ繊維(M2O3)等の断熱材9を捲
付けた後、これを鋳込んでその外周側に鋳鉄製の外管り
を形成して、高い断熱性をもたせている。
For this reason, conventionally, as an exhaust manifold suitable for mounting a variable displacement turbocharger, an exhaust manifold as shown in FIG. 7 has been used. As shown in the figure, this exhaust manifold a collects the exhaust gas discharged from each separate cylinder in a chamber C formed in a rectangular parallelepiped box and buffers its pulsation, and then This is to flow out to the feeder side, and as shown in Figure 8, the stainless steel inner pipe d
is formed into a box shape, and a plurality of inlet pipes e forming branch pipes j for connecting to each cylinder of the internal combustion engine are provided along the longitudinal direction on one side, and a variable 8-tube turbo is provided on the other side. An outflow pipe f forming a discharge pipe k to the supercharging side is provided, and after wrapping a heat insulating material 9 such as alumina fiber (M2O3) around the outer circumference of this inner pipe d, this is cast and the outer circumferential side is A cast iron outer pipe is formed on the inside to provide high insulation properties.

[発明が解決しようとする問題点] ところが、上記の排気マニホールドaの使用条件笠をみ
てみると、排気ガス温度はそのチャンバC入口の流入ボ
ート部iで最高的850℃に達し、また排気圧力はチャ
ンバC内でR8約6に9/as2(排気ブレーキ作動時
)になる。このためステンレス類の内管dの温度T1は
約800℃前後まで上昇し、断熱jtAgを介した鋳鉄
製の外管h0′)温度T2は約500℃前後まで上昇す
る。従って、箱体すのA点を基準位置としてその端部の
P点までの熱膨張による伸びを計弾すると、A点からP
点までの長さしが500mあるとすれば、ステンレス類
の内管dの伸びΔJl’ (d)は、 ΔJNd)=T+ xα1xJ = 800X19X10  X 500=7.6(am
) (α1 :熱膨張係数) となり、鋳鉄製の外管りの伸びΔJll(b)は、ΔJ
l’(h) =T2 Xα2XJ = 500x llx 10  x 500= 2.7
5  (ash) (α2 :熱膨張係数) になって、それらの差はΔJ (d)−ΔJ(h)=7
.6−2.75 = 4.85  (m )にもなる。
[Problems to be Solved by the Invention] However, when looking at the operating conditions for the exhaust manifold a mentioned above, the exhaust gas temperature reaches a maximum of 850°C at the inflow port i at the inlet of the chamber C, and the exhaust pressure becomes R8 approximately 6 and 9/as2 in chamber C (when the exhaust brake is activated). Therefore, the temperature T1 of the stainless steel inner pipe d rises to about 800°C, and the temperature T2 of the cast iron outer pipe h0') via the heat insulation jtAg rises to about 500°C. Therefore, if we measure the elongation due to thermal expansion from point A to point P at the end of the box, then from point A to point P.
Assuming that the length to the point is 500 m, the elongation ΔJl' (d) of the stainless steel inner tube d is as follows: ΔJNd) = T + xα1xJ = 800X19X10 X 500 = 7.6 (am
) (α1: coefficient of thermal expansion), and the elongation ΔJll(b) of the cast iron outer pipe is ΔJ
l'(h) =T2 Xα2XJ = 500x llx 10 x 500= 2.7
5 (ash) (α2: coefficient of thermal expansion), and the difference between them is ΔJ (d) - ΔJ (h) = 7
.. 6-2.75 = 4.85 (m).

これにより、内管dと外管りとは互いに突張り合い、肉
厚が約1#1前後と薄いステンレス類の内管dに変形が
生じてしまうと共にその各部(特に流入管eの溶接部)
に応力が集中して亀裂が生じてしまう問題があった。
As a result, the inner tube d and the outer tube are stretched against each other, causing deformation of the thin stainless steel inner tube d, which has a wall thickness of about 1#1, and its various parts (especially the welded part of the inlet tube e).
There was a problem in that stress was concentrated on the parts and cracks were formed.

また、上述したように排気ブレーキの作動時にはチャン
バC内の排気圧力は6に9/al!2にも達するので、
断面が矩形状の箱形の内管dであるとその圧力に耐える
ことができず強度が不足して変形及び亀裂が生じてしま
う問題があった。
Furthermore, as mentioned above, when the exhaust brake is activated, the exhaust pressure in chamber C is 6 to 9/al! Since it reaches 2,
If the inner tube d is box-shaped and has a rectangular cross section, there is a problem in that it cannot withstand the pressure and lacks strength, resulting in deformation and cracking.

尚、熱膨張の伸びの差による変形及び亀裂の発生は、実
開Ki 59−196514号公報の「排気マニホール
ド」で開示したように、内管dに熱膨張を吸収するため
のビード部を形成することによって防止することが可能
である。
Incidentally, deformation and cracking due to differences in elongation due to thermal expansion can be avoided by forming a bead in the inner pipe d to absorb thermal expansion, as disclosed in "Exhaust Manifold" in Japanese Utility Model Application Publication No. Ki 59-196514. This can be prevented by doing so.

[問題点を解決するための手段] 本発明は上記の問題点を解決するために、排気管構造を
下記のように構成するものである。
[Means for Solving the Problems] In order to solve the above problems, the present invention configures the exhaust pipe structure as follows.

ステンレス等の耐熱金属でなる内管と、該内管の外周側
に捲付けられる断熱材と、これらを包む鋳鉄製外管とか
らなり、上記内管にはその熱膨張を吸収するためのビー
ド部を形成し、該ビード部を上記外管の内側に接触させ
て形成する。
It consists of an inner tube made of heat-resistant metal such as stainless steel, a heat insulating material wrapped around the outer circumference of the inner tube, and an outer cast iron tube that encases these.The inner tube has beads to absorb the thermal expansion. The bead portion is formed by contacting the inner side of the outer tube.

[作 用コ 排気管の内管には排気ガスの圧力が作用して外方に膨ら
もうとするが、その内管に形成したビード部によってそ
の耐内圧強度は向上されている。
[Function] The pressure of exhaust gas acts on the inner pipe of the exhaust pipe and tends to expand outward, but the bead formed on the inner pipe improves its strength against internal pressure.

更にそのと一ド部は外管の内側に接触されているので、
内圧による荷重はビード部から外管に支持され、その内
管の変形は可及的に抑えられる。これにより、内管の変
形による亀裂等の発生が可及的に防止され、その耐久性
が大巾に向上される。
Furthermore, since the end portion is in contact with the inside of the outer tube,
The load due to the internal pressure is supported by the outer tube from the bead portion, and deformation of the inner tube is suppressed as much as possible. This prevents the occurrence of cracks and the like due to deformation of the inner tube as much as possible, and greatly improves its durability.

[実施例〕 以下に本発明の好適一実施例を添付図面に基づき詳述す
る。
[Embodiment] A preferred embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

第1図に示すように、排気マニホールド(排気管ン1は
、ステンレス箸の耐熱金属でなる内管2と、この内管2
の外周側に捲付けられるアルミナ繊l(M2O3)等の
断熱材3、及びこれらを鋳込んでその外側を包むように
形成されるvI鉄製の外管4との三層構造でなり、その
内管2は第2図にも示すように、所定の容積を有するヂ
ャンバ2aとして断面矩形状の箱体に形成されて、その
一側には長手方向に沿って内燃機関の8気n(図示せず
)に接続するための分岐管5を形成する流入管6が複数
形成され、他側には可変客足ターボ過給機側に排気ガス
を流出させるための排出管7を形成する流出管8が形成
される笠、その主たる構成は前述した従来例と同様にな
っている。
As shown in FIG.
It has a three-layer structure, consisting of a heat insulating material 3 such as alumina fiber (M2O3) wrapped around the outer circumference of the tube, and an outer tube 4 made of iron made by casting these materials to wrap around the outside. 2 is formed into a box with a rectangular cross section as a chamber 2a having a predetermined volume, as shown in FIG. ) A plurality of inflow pipes 6 are formed to form a branch pipe 5 for connecting to the variable traffic turbo supercharger side, and an outflow pipe 8 is formed on the other side to form a discharge pipe 7 for flowing exhaust gas to the variable foot turbo supercharger side. The main structure of the shade is the same as that of the conventional example described above.

ところで本発明では、排気マニホールド1内を流れる排
気ガスの熱で膨張する内管2と外管4との伸びの差を吸
収させるために、伸びmが大きくなる内管2にその熱膨
張による伸びを許容吸収するためのビード部9を設けて
いる。このビード部9は、適宜間隔を隔てて長手方向に
沿って設けられた複数の流入管6の間にその周側に沿っ
て設けられ、第3図に示すように新面をU字状にして外
方に突出されて形成される。
By the way, in the present invention, in order to absorb the difference in elongation between the inner tube 2 and the outer tube 4, which expand due to the heat of the exhaust gas flowing inside the exhaust manifold 1, the inner tube 2, which has a larger elongation m, is made to elongate due to the thermal expansion. A bead portion 9 is provided for permissibly absorbing. This bead portion 9 is provided along the circumferential side between a plurality of inflow pipes 6 provided along the longitudinal direction at appropriate intervals, and has a U-shaped new surface as shown in FIG. It is formed so as to protrude outward.

断熱材3は、そのビード部9の頭部10を除く内管2の
ほぼ全周側を覆って捲付けられ、そのビード部9の頭部
10は、これら内管2と断熱材3とを鋳込んでその外側
に形成される鋳鉄製の外管4の内側面4aに接触される
The heat insulating material 3 is wrapped around almost the entire circumference of the inner tube 2 except for the head 10 of the bead 9, and the head 10 of the bead 9 connects the inner tube 2 and the heat insulating material 3. It comes into contact with the inner surface 4a of a cast iron outer tube 4 formed on the outside by casting.

このように形成された排気マニホールド1では、内管2
と外管4との熱膨張による伸びの差は、伸び量が大きく
なる内管2側の伸びがこれに形成された各ビード部9の
変形によって低応力で吸収される。このため、熱変形に
よる応力集中が各流入管6の溶接部等の各部に生じなく
なり内管2の耐久性が向上されると共に、内管2と外管
4との相対移動により生じる断熱材3のズレをビード部
9によって防止できるようになる。
In the exhaust manifold 1 formed in this way, the inner pipe 2
The difference in elongation due to thermal expansion between the inner tube 2 and the outer tube 4 is absorbed with low stress by the deformation of the bead portions 9 formed on the inner tube 2, which has a larger amount of elongation. Therefore, stress concentration due to thermal deformation does not occur in various parts such as the welded parts of each inflow pipe 6, and the durability of the inner pipe 2 is improved. The bead portion 9 can prevent this shift.

また、チャンバ2a内の排気圧力によって箱状の内管2
は外方に膨らんで変形しようとするが、ビード部9が補
強リブとして機能するためその内圧に対する強度は向上
されており、かつビード部9の頭部10が外管4の内側
面4aに接触されているため、その内圧による荷重は外
管4に支持される。これにより、内管2の排気圧力によ
る変形は可及的に抑えられるようになり、耐久性が向上
されて亀裂の発生等を可及的に防止できるようになる。
In addition, the box-shaped inner tube 2 is
tends to bulge outward and deform, but since the bead portion 9 functions as a reinforcing rib, its strength against internal pressure is improved, and the head portion 10 of the bead portion 9 contacts the inner surface 4a of the outer tube 4. Therefore, the load due to the internal pressure is supported by the outer tube 4. As a result, deformation of the inner tube 2 due to exhaust pressure can be suppressed as much as possible, durability is improved, and occurrence of cracks can be prevented as much as possible.

また、内管2と断熱材3とを鋳込んでそれらの外周側に
外管4を成型する際には、内管2のビード部9の頭部1
0が成形される外管4に溶着しないようにする必要があ
る。このため、第4図に示すように内管2のビード部9
には、その頭部10の接触部に予め溶着を防止するため
の耐熱無機剤層(例えば、ジルコン塗型、アロンセラミ
ック)11を形成しておくようにしても良い。
In addition, when casting the inner tube 2 and the heat insulating material 3 and molding the outer tube 4 on the outer circumferential side thereof, the head portion 1 of the bead portion 9 of the inner tube 2
It is necessary to prevent the 0 from being welded to the outer tube 4 to be molded. Therefore, as shown in FIG. 4, the bead portion 9 of the inner tube 2
A heat-resistant inorganic agent layer (for example, zircon coating, aron ceramic) 11 may be formed in advance on the contact portion of the head 10 to prevent welding.

尚、第9図は、従来の分岐管jのシリンダヘッド1との
接合部の拡大図を示しているが、従来の排気マニホール
ドaでは熱膨張によって分岐管j部の外管りと内管dと
に軸心のズレが生じる虞れがあったので、その分岐管j
の端部は内+jddと外管りとが相対移動できるように
、それらを面接触させてそこに応力集中が生じないよう
にしていた。
FIG. 9 shows an enlarged view of the joint part of the conventional branch pipe j with the cylinder head 1. In the conventional exhaust manifold a, the outer pipe of the branch pipe J and the inner pipe d are damaged due to thermal expansion. Since there was a risk of axis misalignment between the branch pipe and
The ends of the inner +jdd and outer pipes were brought into surface contact so that they could move relative to each other to prevent stress concentration there.

このため、それらの面接触部間に微少な隙間が生じて排
気ガスがリークし、そのリークガスが内管dと外管りと
の間に入り込んで断熱材qを移動させてしまうという問
題もあった。
For this reason, there is a problem in that a minute gap is created between these surface contact parts and exhaust gas leaks, and the leaked gas enters between the inner pipe d and the outer pipe and moves the heat insulating material q. Ta.

ところが、本発明の排気マニホールド1では内管2の熱
膨張をビード部っで吸収できるので、内管2と外管4と
には軸心のズレが生じなくなる。
However, in the exhaust manifold 1 of the present invention, the thermal expansion of the inner tube 2 can be absorbed by the bead portion, so that the axes of the inner tube 2 and the outer tube 4 will not be misaligned.

このため第5図または第6図とに示すように、分岐管5
の端部は内管2の管端を外管4に形成するフランジ部4
bに埋め込んで剛に接続でさるようになり、ここからの
排気ガスのリーク及びこのリークガスによる断熱材3の
移動を防止できるようになる。
For this reason, as shown in FIG. 5 or 6, the branch pipe 5
The end portion is a flange portion 4 that forms the tube end of the inner tube 2 into the outer tube 4.
b, so that it can be rigidly connected to prevent leakage of exhaust gas from here and movement of the heat insulating material 3 due to this leakage gas.

[発明の効果] 以上型するに、本発明によれば次の如き優れた効果を発
揮する。
[Effects of the Invention] As described above, the present invention exhibits the following excellent effects.

(1)  耐熱金属製の内管の外周に断熱材を捲付けた
後、これらを鋳込んでその外周側に鋳鉄製の外管を形成
してなる三層構造の排気管において、熱膨張量の大きい
内管にその伸びを吸収するためのビード部を設【ノ、か
つそのビード部の頭部を外管の内周面に接触させるよう
にしたので、内管の熱膨張による破損を可及的に防止で
きると共に、そのビード部によって内管の耐内圧強度を
向上させ得、かつその内圧により内管に作用する何重を
ビード部から外管に支持さぼることができ、内管の変形
を可及的に抑えてその破損を防止し、もって耐久性を向
上できる。
(1) The amount of thermal expansion in an exhaust pipe with a three-layer structure, in which a heat-resistant metal inner pipe is wrapped with heat insulating material and then cast iron is cast to form a cast iron outer pipe on the outer periphery of the heat-resistant metal inner pipe. The inner tube, which has a large diameter, has a bead section to absorb the elongation, and the head of the bead section is brought into contact with the inner circumferential surface of the outer tube, which prevents damage due to thermal expansion of the inner tube. In addition, the bead part can improve the internal pressure resistance of the inner pipe, and the internal pressure can support the outer pipe from the bead part and prevent deformation of the inner pipe. It is possible to suppress damage as much as possible and prevent damage, thereby improving durability.

(2)  内管の耐内圧強度を向上できるので、排気管
に断面矩形の箱状のチャンバを形成してもその箱状の内
管に亀裂等の損傷が生じることを可及的に防止できるよ
うになり、可変容ロターボ過給機の装着に適した断熱性
の高い容積型の排気管の耐久性を大巾に向上させること
ができる。
(2) Since the internal pressure resistance of the inner pipe can be improved, even if a box-shaped chamber with a rectangular cross section is formed in the exhaust pipe, damage such as cracks to the box-shaped inner pipe can be prevented as much as possible. As a result, the durability of a displacement type exhaust pipe with high insulation properties suitable for mounting a variable displacement rotor turbocharger can be greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る排気管構造を採用した排気マニホ
ールドの好適一実施例を示す一部破断側面図、第2図は
第1図中に示される内管の一部破断側面図、第3図は第
1図中の要部拡大図、第4図は第3図に示す要部の変形
例を示す要部拡大図、第5図と第6図はそれぞれ分岐管
の端部構造を示す図、第7図〜第9図は従来の排気管構
造を示す図である。 図中、1は排気管たる排気マニホールド、2は内管、3
は断熱材、4は外管、6は流入管、9はビード部、10
は接触部たる頭部、11は耐熱無機剤層である。
1 is a partially cutaway side view showing a preferred embodiment of an exhaust manifold employing the exhaust pipe structure according to the present invention; FIG. 2 is a partially cutaway side view of the inner pipe shown in FIG. 1; Figure 3 is an enlarged view of the main part in Figure 1, Figure 4 is an enlarged view of the main part showing a modification of the main part shown in Figure 3, and Figures 5 and 6 respectively show the end structure of the branch pipe. The figures shown in FIGS. 7 to 9 are views showing conventional exhaust pipe structures. In the figure, 1 is the exhaust manifold, 2 is the inner pipe, and 3 is the exhaust manifold.
is a heat insulating material, 4 is an outer pipe, 6 is an inflow pipe, 9 is a bead part, 10
1 is a head which is a contact part, and 11 is a heat-resistant inorganic agent layer.

Claims (3)

【特許請求の範囲】[Claims] (1)ステンレス等の耐熱金属でなる内管と、該内管の
外周側に捲付けられる断熱材と、これらを包む鋳鉄製外
管とからなり、上記内管にはその熱膨張を吸収するため
のビード部を形成し、該ビード部を上記外管の内側に接
触させて形成したことを特徴とする排気管構造。
(1) Consists of an inner tube made of heat-resistant metal such as stainless steel, a heat insulating material wrapped around the outer circumference of the inner tube, and an outer cast iron tube that encases these.The inner tube absorbs the thermal expansion. 1. An exhaust pipe structure characterized in that a bead portion is formed for the purpose of the exhaust pipe, and the bead portion is formed in contact with the inside of the outer pipe.
(2)上記ビード部が、上記外管との接触部に溶着防止
用の耐熱無機剤層を有する上記特許請求の範囲第1項記
載の排気管構造。
(2) The exhaust pipe structure according to claim 1, wherein the bead portion has a heat-resistant inorganic agent layer for preventing welding at the contact portion with the outer pipe.
(3)上記内管が断面矩形の箱体でなり、かつその一側
に長手方向に沿って各気筒に接続されるための複数の流
入管を有すると共に、その各流入管の間に上記ビード部
が形成された上記特許請求の範囲第1項または第2項の
いずれかに記載の排気管構造。
(3) The inner pipe is a box with a rectangular cross section, and has a plurality of inflow pipes on one side thereof to be connected to each cylinder along the longitudinal direction, and the bead is provided between each of the inflow pipes. The exhaust pipe structure according to claim 1 or 2, wherein the exhaust pipe structure is formed with a portion.
JP16205886A 1986-07-11 1986-07-11 Exhaust pipe structure Pending JPS6318124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16205886A JPS6318124A (en) 1986-07-11 1986-07-11 Exhaust pipe structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16205886A JPS6318124A (en) 1986-07-11 1986-07-11 Exhaust pipe structure

Publications (1)

Publication Number Publication Date
JPS6318124A true JPS6318124A (en) 1988-01-26

Family

ID=15747291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16205886A Pending JPS6318124A (en) 1986-07-11 1986-07-11 Exhaust pipe structure

Country Status (1)

Country Link
JP (1) JPS6318124A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2885384A1 (en) * 2005-05-04 2006-11-10 Renault Soc Par Actions Simpli Internal combustion engine exhaust manifold for guiding e.g. exhaust gas, has molded structure with input and output flanges covered by interface plates defining support surface of corresponding flange
EP2530294A1 (en) 2011-05-31 2012-12-05 Caterpillar Motoren GmbH & Co. KG Double-walled fuel supply line element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2885384A1 (en) * 2005-05-04 2006-11-10 Renault Soc Par Actions Simpli Internal combustion engine exhaust manifold for guiding e.g. exhaust gas, has molded structure with input and output flanges covered by interface plates defining support surface of corresponding flange
EP2530294A1 (en) 2011-05-31 2012-12-05 Caterpillar Motoren GmbH & Co. KG Double-walled fuel supply line element
WO2012163462A1 (en) 2011-05-31 2012-12-06 Caterpillar Motoren Gmbh & Co. Kg Double-walled fuel supply line element

Similar Documents

Publication Publication Date Title
US20090078499A1 (en) Muffler
WO2009114568A2 (en) Exhaust manifold of an internal combustion engine
JP2012515295A (en) Connection arrangement of turbine housing and bearing housing and exhaust turbocharger
US5784881A (en) Multi-part exhaust manifold assembly with welded connections
US7258842B2 (en) Catalyst assembly with a fixed catalyst carrier body
JPS6318124A (en) Exhaust pipe structure
JP4709682B2 (en) Engine exhaust system
US9719402B2 (en) Exhaust runner collar
CN113906199B (en) catalytic converter
JPH07247836A (en) Exhaust manifold
JP2959307B2 (en) Exhaust pipe of internal combustion engine
RU2675295C2 (en) Turbine with sheet metal housing with reinforcing element in form of cellular structure (versions)
JP4568582B2 (en) Exhaust manifold in multi-cylinder internal combustion engine
JPH068265Y2 (en) Exhaust manifold structure
US20180149068A1 (en) Internal combustion engine
JPS6081420A (en) Exhaust manifold of internal-combustion engine
JPH0515533Y2 (en)
JPH07224649A (en) Exhaust manifold structure
JP3006376B2 (en) Exhaust pipe of internal combustion engine
JPH0536986Y2 (en)
JPH0541223Y2 (en)
JPH0536984Y2 (en)
JPH0540261Y2 (en)
JPH08334017A (en) Double exhaust pipe of engine
KR100398205B1 (en) An automotive manifold for protecting crack causing to thermal expansion