JPH07246384A - Water purifying treatment and water purifying treatment device - Google Patents

Water purifying treatment and water purifying treatment device

Info

Publication number
JPH07246384A
JPH07246384A JP3800394A JP3800394A JPH07246384A JP H07246384 A JPH07246384 A JP H07246384A JP 3800394 A JP3800394 A JP 3800394A JP 3800394 A JP3800394 A JP 3800394A JP H07246384 A JPH07246384 A JP H07246384A
Authority
JP
Japan
Prior art keywords
ozone
water
treatment
water purification
absorbance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3800394A
Other languages
Japanese (ja)
Inventor
Keiichi Tsukitari
圭一 月足
Tetsufumi Watanabe
哲文 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP3800394A priority Critical patent/JPH07246384A/en
Publication of JPH07246384A publication Critical patent/JPH07246384A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To execute a water purifying treatment with high responsiveness meeting water quality by determining a normal absorbance value at the time of determining a correlation between the absorbance of test water and the concn. of materials to be removed and executing the water purifying treatment in such a manner that the value of the absorbance of the test water after the water purifying treatment attains the normal absorbance value or below. CONSTITUTION:The water purifying treatment device for executing mainly an ozone treatment has a water tank 1 for the water to be ozone treated in which raw water (the water to be ozone treated) is stored, an ozone treatment column 2 which executes the ozone treatment, an ozonizer 3 which supplies ozone to the ozone treatment column 2 and an ozone treated water tank 4 in which the water after the ozone treatment is stored. The absorbance value of the test water after the ozone treatment is determined from the correlation between the absorbance value of the test water before the ozone treatment and a correlation storage section in a control section 7 to which the respective measured values of UV meters (a), (b), flow meters QLa, b and gaseous phase ozone concn. meter 6, etc., are inputted. The amt. of the ozone to be injected necessary for decreasing the absorbance value to the normal absorbance value or below is determined, by which the ozonizer 3 is controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は浄水処理技術に関し、特
に被処理水に含まれる有機物、かび臭物質、トリハロメ
タン等を除去する高度浄水処理技術に関する
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water purification technology, and more particularly to an advanced water purification technology for removing organic substances, musty odor substances, trihalomethanes, etc. contained in water to be treated.

【0002】[0002]

【従来の技術】近年、水道水源である河川、湖沼、地下
水から様々な有害物質が検出されるようになり、これに
対応して平成5年12月1日には規制項目が大幅に増加
した水道水新水質基準が施行された。
2. Description of the Related Art In recent years, various harmful substances have been detected in rivers, lakes and marshes, which are tap water sources, and correspondingly, on December 1, 1993, the number of regulated items increased significantly. New tap water quality standards have been enforced.

【0003】今回の新水質基準では、現状の浄水処理で
は対応が困難な揮発性有機塩素化合物、かび臭物質、農
薬、消毒副生成物が多数規制項目に加えられた。このよ
うな状況の中で、オゾン・活性炭による高度浄水処理設
備の重要性がますます高まっている。
According to the new water quality standards of this time, many volatile organic chlorine compounds, musty odor substances, pesticides, and disinfection by-products, which are difficult to deal with in the present water treatment, are added to the regulation items. Under such circumstances, the importance of advanced water treatment equipment using ozone and activated carbon is increasing.

【0004】特に、浄水処理後の総トリハロメタン(T
HM)に対しては、0.1mg/Lの基準値が示された。上水
のTHMは主に浄水工程の塩素消毒により生成される。
THMを低減するには、塩素消毒を他の消毒方法に変更
する、生成されたTHMを除去する、THMの前駆物質
を除去する、等の方法が考えられる。
In particular, total trihalomethane (T
For HM) a reference value of 0.1 mg / L was shown. The THM of clean water is mainly produced by chlorine disinfection in the water purification process.
In order to reduce THM, methods such as changing chlorine disinfection to another disinfection method, removing THM produced, and removing precursors of THM can be considered.

【0005】しかし、現在の浄水処理において塩素消毒
は不可避であること、THM自体を除去する方法として
の活性炭吸着、曝気などはともにコスト高い割りに効果
がないことから、THM前駆物質をいかに除去するかが
問題となる。
However, since chlorine disinfection is unavoidable in the present water purification treatment, and adsorption of activated carbon as a method for removing THM itself and aeration are ineffective at a high cost, the THM precursor is removed. Becomes a problem.

【0006】徐々に導入されてきた高度処理(オゾン・
活性炭処理)ではTHM前駆物質の除去が可能であり、
THMの除去または低減方法として期待がもたれてい
る。現在、THM前駆物質は、THM生成能(ある一定
条件下で生成するTHM濃度、以下THMFP)として
測定されている。
The advanced treatment (ozone,
With activated carbon treatment), THM precursor can be removed.
There are expectations as a method for removing or reducing THM. Currently, THM precursors are measured as their ability to produce THM (THM concentration produced under certain conditions, hereinafter THMFP).

【0007】このような高度浄水処理を行う高度浄水処
理施設は平成2年において12ケ所の浄水場で導入され
ている。これらの施設はかび臭、色度、トリハロメタ
ン、過マンガン酸カリウム消費量等の有機物の除去を目
的としている。
Advanced water purification treatment facilities for performing such advanced water purification treatment were introduced in 12 water purification plants in 1990. These facilities are aimed at removing organic substances such as musty odor, chromaticity, trihalomethane and potassium permanganate consumption.

【0008】高度浄水処理の一つであるオゾン処理は、
オゾンの持つ強力な酸化力によって水中のバクテリア、
細菌等の殺菌および水にとけ込んでいる溶解性微量有害
物質の酸化除去を行うものである。
Ozone treatment, which is one of the advanced water purification treatments,
Bacteria in water, due to the strong oxidizing power of ozone,
It disinfects bacteria and oxidizes and removes trace amounts of soluble harmful substances dissolved in water.

【0009】一般に、オゾン処理施設の運転には、オゾ
ン注入率が操作条件として用いられる。ここでオゾン注
入率(D)を以下の式に示す。
Generally, the ozone injection rate is used as an operating condition for the operation of the ozone treatment facility. Here, the ozone injection rate (D) is shown in the following formula.

【0010】[0010]

【数1】 D=C03in*q03/QL D:オゾン注入率(mg/l) C03in:注入オゾン濃度(g/Nm3) q03:オゾンガス吹き込み量(l/分) QL:処理水量(l/分) 一般に、浄水場におけるオゾン注入率は、処理対象物質
の種類や濃度によって異なるが、約2〜3mg/lで行
っている。このオゾン注入率は、各浄水場のオゾン被処
理水に対してあらかじめ室内実験等で求めている。
[ Equation 1] D = C0 3in * q0 3 / QL D: ozone injection rate (mg / l) C0 3in : injected ozone concentration (g / Nm 3 ) q0 3 : ozone gas injection amount (l / min) QL: treated water amount (l / min) Generally, the ozone injection rate in a water purification plant is about 2-3 mg / l, although it varies depending on the type and concentration of the substance to be treated. This ozone injection rate is obtained in advance by laboratory experiments or the like for the ozone treated water of each water purification plant.

【0011】また、処理工程水のTHMFPを連続的に
測定し、監視することは、各処理工程の処理状況の把
握、後段の塩素消毒により生成するTHMの管理を行う
上でも重要な要素となっている。
Further, continuously measuring and monitoring THMFP of the treatment process water is an important factor for grasping the treatment situation of each treatment process and controlling THM generated by chlorine sterilization in the subsequent stage. ing.

【0012】[0012]

【発明が解決しようとする課題】オゾン注入率制御を行
ううえでは、THMFP等の有害物質の濃度を連続的か
つリアルタイムに測定し、これらの有害物質濃度が基準
値以下になるように効率的な制御を行うことが好まし
い。
In controlling the ozone injection rate, the concentration of harmful substances such as THMFP is measured continuously and in real time, and it is efficient to keep the concentration of these harmful substances below the reference value. It is preferable to perform control.

【0013】しかし、例えばTHMFPを測定するに
は、ガスクロマトグラフ(GC)、ガスクロマトグラフ
−質量分析計(GC−MS)といった分析機器を用いて
専用の分析室で行う必要があり、測定時間も24h以上
の時間がかかる。しかも、処理工程水を連続的に測定す
るのは非常に困難である。
However, for example, in order to measure THMFP, it is necessary to use an analytical instrument such as a gas chromatograph (GC) or a gas chromatograph-mass spectrometer (GC-MS) in a dedicated analysis room, and the measurement time is 24 hours. It takes more time. Moreover, it is very difficult to continuously measure the process water.

【0014】このように、連続自動モニタリングができ
ない物質(例:かび臭物質)に対してはオゾン処理効果
が把握できない。
As described above, the ozone treatment effect cannot be grasped for substances that cannot be continuously and automatically monitored (eg, musty odor substances).

【0015】従って、前述したように実際のオゾン処理
設備では、計画水量に対して室内実験等で設定したオゾ
ン注入率になるように注入オゾン濃度を決定して運転を
行っている。つまりオゾン注入率一定制御を行ってい
る。
Therefore, as described above, in the actual ozone treatment facility, the injected ozone concentration is determined so that the ozone injection rate set by the indoor experiment or the like is determined with respect to the planned water amount. That is, the constant ozone injection rate is controlled.

【0016】オゾン注入率一定制御においては、オゾン
被処理水の水質が変動した場合に注入オゾン量の不足ま
たは過剰注入が生じる。つまり、オゾン処理効果の低
下、オゾン運転の無駄が生じ、運転コストも高くなる。
In the constant ozone injection rate control, when the water quality of the ozone treated water changes, the injected ozone amount becomes insufficient or excessive. That is, the ozone treatment effect is reduced, the ozone operation is wasted, and the operation cost is increased.

【0017】また、注入オゾン量が過剰であった場合、
排オゾン量の増加を引き起こし、排オゾン処理施設への
負荷を増加することになる。注入オゾン量が少ない場合
には、オゾン処理効果の低下を引き起こし、オゾン処理
水水質の悪化につながる。
If the injected ozone amount is excessive,
This causes an increase in the amount of exhaust ozone, which increases the load on the exhaust ozone treatment facility. When the amount of injected ozone is small, the ozone treatment effect is reduced and the quality of the ozone-treated water is deteriorated.

【0018】本発明は上記課題のもとになされたもので
あり、被処理水の水質に応じたフレキシブルな浄水処理
を迅速に行うことのできる浄水処理技術を提供すること
を目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a water purification technology capable of promptly performing flexible water treatment according to the quality of water to be treated.

【0019】[0019]

【課題を解決するための手段及び作用】上記課題を解決
するために、本発明は検水の吸光度と除去対象物質濃度
との相関を求め、前記相関を用いて除去対象物質の規定
濃度に対応する規定吸光度値を求め、浄水処理後の検水
の吸光度の値が前記規定吸光度値以下になるように浄水
処理を行うことを特徴とする浄水処理方法を提供する。
Means and Actions for Solving the Problems In order to solve the above problems, the present invention obtains a correlation between the absorbance of sample water and the concentration of a substance to be removed, and uses the correlation to correspond to a specified concentration of the substance to be removed. There is provided a water purification treatment method, characterized in that the water absorption treatment is performed so that the absorbance value of the test water after the water purification treatment becomes equal to or less than the prescribed light absorption value.

【0020】このように浄水処理を行うことで、直接除
去対象物質の濃度測定を行うことなく、吸光度のみを測
定することで検水中の除去対象物質の濃度を規定濃度以
下にする制御がなされる。
By performing the water purification treatment in this manner, the concentration of the substance to be removed in the test water is controlled to be equal to or lower than the specified concentration by measuring only the absorbance without directly measuring the concentration of the substance to be removed. .

【0021】除去対象物質の濃度を測定する場合、その
測定には長時間を要する場合も多く、このような場合に
は浄水処理の制御を効率的に行うことは困難であり、リ
アルタイムでの浄水処理制御は非常に困難である。
When measuring the concentration of a substance to be removed, it often takes a long time to measure the concentration, and in such a case, it is difficult to control the water purification treatment efficiently, and the water purification in real time is difficult. Process control is very difficult.

【0022】これに対し、吸光度の測定は迅速に行うこ
とが可能であるので、除去対象物質の種類にかかわらず
迅速に浄水処理の制御を行うことができ、リアルタイム
での浄水処理制御も容易に実現できる。
On the other hand, since the absorbance can be measured quickly, the water purification treatment can be quickly controlled regardless of the type of the substance to be removed, and the water purification treatment control in real time is easy. realizable.

【0023】この吸光度の波長としては除去対象物質と
の相関が高い波長を用いることが好ましい。例えば検水
中の有機物を除去対象とする場合には、紫外線、特に波
長254(nm)程度の紫外線を用いた測定を行うことが好
ましい。このような測定方法としてE260測定が知ら
れており、このような測定を行うことが特に好ましい。
As the wavelength of this absorbance, it is preferable to use a wavelength having a high correlation with the substance to be removed. For example, when the organic matter in the test water is to be removed, it is preferable to perform measurement using ultraviolet rays, particularly ultraviolet rays having a wavelength of about 254 (nm). E260 measurement is known as such a measurement method, and it is particularly preferable to perform such measurement.

【0024】また、浄水処理前の検水の吸光度を検出
し、浄水処理の進行度と検水の吸光度との相関を求め、
この相関と浄水処理前の検水の吸光度値とを用いて、浄
水処理後の検水の吸光度値を前記規定吸光度値以下の値
にするために必要な浄水処理の規定進行度を求めて浄水
処理の進行度を制御することを特徴とする浄水処理方法
も提供される。
Further, the absorbance of the test water before the water purification treatment is detected, and the correlation between the progress of the water purification treatment and the absorbance of the water test is obtained,
Using this correlation and the absorbance value of the test water before the water purification treatment, the water purification value after the water purification treatment is obtained by determining the prescribed degree of progress of the water purification treatment required to make the absorbance value below the prescribed absorbance value. There is also provided a water purification method characterized by controlling the progress of the treatment.

【0025】このような制御方法によって、浄水処理を
どの程度進行させればよいかがわかり、迅速にかつ効率
的に浄水処理が行われる。例えば浄水処理として活性炭
処理を行う場合には活性炭との接触時間等が進行度に相
当し、オゾン処理においては、接触時間、注入オゾン濃
度が進行度に相当する。
With such a control method, it is possible to know to what extent the water purification treatment should proceed, and the water purification treatment can be performed quickly and efficiently. For example, when activated carbon treatment is performed as water purification treatment, the contact time with activated carbon or the like corresponds to the degree of progress, and in ozone treatment, the contact time and injected ozone concentration correspond to the degree of progress.

【0026】これらの規定進行度を求めることで、処理
時間、接触時間、注入濃度等の規定値が求められる。こ
のように浄水処理の目標値が具体的に得られるので、こ
の値をその時点での目標値として浄水処理を行うこと
で、効率的な制御が行われる。
By obtaining these prescribed progress rates, prescribed values such as processing time, contact time, and injection concentration can be obtained. Since the target value of the water purification process is specifically obtained in this way, efficient control is performed by performing the water purification process using this value as the target value at that time.

【0027】浄水処理の好適な例としてはオゾン処理が
挙げられる。この場合、浄水処理の進行度としてオゾン
注入量を用い、浄水処理後の検水の吸光度値を前記規定
吸光度値以下の値にするために必要な規定オゾン注入量
によってオゾン注入量を制御する。
A suitable example of the water purification treatment is ozone treatment. In this case, the ozone injection amount is used as the degree of progress of the water purification process, and the ozone injection amount is controlled by the specified ozone injection amount necessary for making the absorbance value of the test water after the water purification process equal to or less than the specified absorbance value.

【0028】尚、E260によって吸光度を測定する際
には、オゾン濃度によって吸光度の値に影響がでるの
で、この影響を補正した値を用いることが好ましい。
When measuring the absorbance by E260, the value of the absorbance is influenced by the ozone concentration, so it is preferable to use a value corrected for this influence.

【0029】また、浄水処理後の検水の吸光度を求める
とともに、この吸光度と前記規定吸光度値とを比較し
て、浄水処理の進行度を補正することで、より効率的な
浄水処理制御が行われる。
Further, by obtaining the absorbance of the test water after the water purification treatment and comparing the absorbance with the specified absorbance value to correct the progress of the water purification treatment, more efficient water purification treatment control can be performed. Be seen.

【0030】このような浄水処理を行う浄水処理装置と
して、検水にオゾンを注入するオゾン処理によって除去
対象物質の除去を行うオゾン処理部を備えた浄水処理装
置であって、検水の規定吸光度値の格納部と、オゾン処
理前の検水の吸光度の測定部と、検水に対するオゾン注
入量と検水の吸光度との相関を格納する相関格納部と、
オゾン処理前の検水の吸光度値と、前記相関格納部から
得られる相関と、からオゾン処理後の検水の吸光度値を
前記規定吸光度値以下の値にするために必要なオゾン注
入量を求めてオゾン注入量を制御するオゾン注入量制御
部と、を有することを特徴とする浄水処理装置も提供さ
れる。
As a water purification apparatus for performing such water purification treatment, there is provided a water purification apparatus having an ozone treatment unit for removing a substance to be removed by an ozone treatment in which ozone is injected into the water to be detected. A storage unit for the value, a measurement unit for measuring the absorbance of the test water before ozone treatment, and a correlation storage unit for storing the correlation between the ozone injection amount for the test water and the absorbance of the test water,
From the absorbance value of the test water before ozone treatment, and the correlation obtained from the correlation storage unit, from the correlation value obtained from the correlation storage unit, obtain the ozone injection amount necessary to make the absorbance value of the test water after ozone treatment equal to or less than the specified absorbance value. There is also provided an ozone injection amount control unit for controlling the ozone injection amount according to the present invention.

【0031】[0031]

【実施例】以下、図面を用いて本発明の実施例を説明す
る。この実施例では、オゾン処理後の有機物濃度と注入
オゾン濃度との相関を求め、オゾン処理後の有機物濃度
を目標値以下にするために必要な注入オゾン濃度を求め
た。E260の値は迅速に測定することが可能なので、
この相関を求めることによって注入オゾン濃度をリアル
タイムに制御することが可能となる。
Embodiments of the present invention will be described below with reference to the drawings. In this example, the correlation between the organic substance concentration after the ozone treatment and the injected ozone concentration was obtained, and the injected ozone concentration necessary for making the organic substance concentration after the ozone treatment below the target value was obtained. Since the value of E260 can be measured quickly,
By obtaining this correlation, it becomes possible to control the injected ozone concentration in real time.

【0032】次に、かび臭物質濃度、トリハロメタン生
成能(THMFP)とE260との相関を求めた。これ
らの物質とE260との相関が求められれば、これらの
物質を有機物濃度と注入オゾン濃度との相関式を用い
て、これらの値を目標値以下にするために必要な注入オ
ゾン濃度を求めることができる。以下、各物質に対して
相関式を求めることにより注入オゾン濃度を制御する例
を示す。
Next, the correlation between the musty odor substance concentration, the trihalomethane-forming ability (THMFP) and E260 was determined. If the correlation between these substances and E260 can be obtained, the injected ozone concentration necessary for making these values below the target value can be obtained by using the correlation formula between the organic substance concentration and the injected ozone concentration for these substances. You can Hereinafter, an example of controlling the injected ozone concentration by obtaining a correlation formula for each substance will be shown.

【0033】実施例1:有機物濃度及びかび臭物質濃度
に対する注入オゾン濃度の制御例 図1に本実施例に係る浄水処理装置を示す。
Example 1: Example of control of injected ozone concentration with respect to organic substance concentration and musty odor substance concentration FIG. 1 shows a water purification apparatus according to this example.

【0034】この浄水処理装置は、主にオゾン処理を行
うものであり、処理対象となる原水(オゾン被処理水)
を貯蔵するオゾン被処理水槽1、オゾン被処理水にオゾ
ン処理を行うオゾン処理塔2、オゾン処理塔2にオゾン
を供給するオゾナイザー3、オゾン処理された被処理水
を貯蔵するオゾン処理水槽4を有する。
This water purifying apparatus mainly performs ozone treatment, and the raw water to be treated (ozone treated water)
An ozone treated water tank 1 that stores ozone, an ozone treatment tower 2 that performs ozone treatment on ozone treated water, an ozonizer 3 that supplies ozone to the ozone treatment tower 2, and an ozone treated water tank 4 that stores ozone treated water. Have.

【0035】流量計QL1はオゾン被処理水槽1からオ
ゾン処理塔2へのオゾン被処理水の流量を測定し、流量
QL2はオゾン処理塔からオゾン処理水槽に流入するオ
ゾン処理されたオゾン被処理水の流量を測定する。
The flow meter QL1 measures the flow rate of the ozone-treated water from the ozone-treated water tank 1 to the ozone treatment tower 2, and the flow rate QL2 is the ozone-treated ozone-treated water flowing from the ozone treatment tower to the ozone-treated water tank. Measure the flow rate of.

【0036】オゾナイザー3で生成されるオゾンは散気
装置5を通じてオゾン処理塔内のオゾン被処理水に散気
される。排オゾンは排オゾンガス流量計qG2で流量を
測定される。その後、排オゾンの一部はオゾナイザー3
で発生するオゾンとともに再度オゾン処理塔2に返送さ
れる。その他の排オゾンは排オゾン処理塔に運ばれて処
理される。
Ozone generated by the ozonizer 3 is diffused through the diffuser 5 to the ozone-treated water in the ozone treatment tower. The flow rate of the discharged ozone is measured by the discharged ozone gas flow meter qG2. After that, part of the exhausted ozone was generated by the ozonizer 3.
It is returned to the ozone treatment tower 2 again together with the ozone generated in 1. Other waste ozone is carried to the waste ozone treatment tower for processing.

【0037】注入オゾンガス流量計qG1はオゾン処理
塔に流入するオゾンガス(排オゾンガスを含む)流量を
測定する。
The injected ozone gas flow meter qG1 measures the flow rate of ozone gas (including exhaust ozone gas) flowing into the ozone treatment tower.

【0038】気相オゾン濃度計6はオゾナイザーで発生
するオゾン及び排オゾンのオゾン濃度を測定する。
The gas-phase ozone concentration meter 6 measures the ozone concentrations of ozone generated by the ozonizer and exhaust ozone.

【0039】UV計a,bは紫外線吸光光度計であり、
UV計aはオゾン処理塔に流入するオゾン被処理水内の
有機物濃度を測定する。UV計bはオゾン処理塔から流
出するオゾン処理水内の有機物濃度を測定する。
The UV meters a and b are ultraviolet absorptiometers,
The UV meter a measures the concentration of organic substances in the ozone-treated water flowing into the ozone treatment tower. The UV meter b measures the concentration of organic substances in the ozone-treated water flowing out from the ozone treatment tower.

【0040】上記UV計a,b、流量計QLa,b,オ
ゾンガス流量計a,b及び気相オゾン濃度計から得られ
る各測定値は制御部(CPU/DDC)に送られる。
The respective measured values obtained from the UV meters a and b, the flow meters QLa and b, the ozone gas flow meters a and b and the gas phase ozone concentration meter are sent to the control unit (CPU / DDC).

【0041】制御部7はこれらの値をもとにしてオゾナ
イザーを制御し、オゾン処理水中のオゾン濃度が予め設
定された許容有機物濃度以下になるために必要な注入オ
ゾン濃度を決定する。
The control unit 7 controls the ozonizer based on these values, and determines the injected ozone concentration necessary for the ozone concentration in the ozone-treated water to be equal to or lower than the preset allowable organic substance concentration.

【0042】本実施例においては、有機物指標として2
60nmの紫外線の吸光度(E260)を選定し、UV
計a,bでオゾン被処理水及び及びオゾン処理水の連続
自動モニタリングを行う。また、かび臭物質に関して
も、同様にUV計a,bを用いてE260を測定してオ
ゾン処理効果のモニタリングを行う。
In this embodiment, 2 is used as an organic matter index.
UV absorption of 60nm (E260) is selected and UV
Continuous automatic monitoring of ozone-treated water and ozone-treated water is carried out with a total of a and b. Similarly, for musty odor substances, E260 is similarly measured using UV meters a and b to monitor the ozone treatment effect.

【0043】まず、予め室内実験を行っておき、オゾン
による有機物濃度(E260)の残存比とオゾン接触時
間θの関係を求めておく。図2にE260の残存比(オ
ゾン被処理水濃度Ciに対するオゾン処理水濃度Co比)
とオゾン接触時間θとの関係を示す。
First, an indoor experiment is conducted in advance to find the relationship between the residual ratio of the organic matter concentration (E260) due to ozone and the ozone contact time θ. Fig. 2 shows the residual ratio of E260 (ratio of ozone treated water concentration Ci to ozone treated water concentration Co)
And the ozone contact time θ.

【0044】図2よりオゾンによるE260の除去速度
が得られる。図3は、図2より得られたE260のオゾ
ンによる除去速度[反応速度定数(1/分)]ko3と吸
収オゾン量との関係を示す。図3から、k03と吸収オ
ゾン量(ηD)の関係式が以下に示される。
From FIG. 2, the removal rate of E260 by ozone can be obtained. FIG. 3 shows the relationship between the removal rate [reaction rate constant (1 / min)] ko 3 of ozone and E260 obtained from FIG. 2 and the amount of absorbed ozone. From FIG. 3, the relational expression between k0 3 and the absorbed ozone amount (ηD) is shown below.

【0045】[0045]

【数2】 k03=0.2367*(ηD)0・6733 (1) また、オゾン処理によるE260の物質収支式を示す式
は(2)式で示される
[Equation 2] k0 3 = 0.2367 * (ηD) 0 ・ 6733 (1) Further, the equation showing the mass balance equation of E260 by ozone treatment is given by the equation (2).

【0046】。..

【数3】 V(dCo/dt)=Q(Ci−Co)−VRo3 (2) Ci:オゾン処理前のE260値[オゾン被処理水のE
260値](abs) Co オゾン処理後のE260値[オゾン処理水のE26
0値](abs) θ(=V/QL):オゾン接触時間(分) V:オゾン処理塔容量(l) QL:オゾン処理水量(l/分) Ro3:オゾン処理によるE260除去速度(abs) 図2より反応速度Ro3は1次反応に近似できるので、以
下の式が成り立つ。
Equation 3] V (dCo / dt) = Q (Ci-Co) -VRo 3 (2) Ci: E260 value before ozone treatment [ozone water to be treated E
260 value] (abs) Co E260 value after ozone treatment [E26 of ozone-treated water
0 value] (abs) θ (= V / QL): ozone contact time (min) V: ozone treatment tower capacity (l) QL: ozone treated water amount (l / min) Ro 3 : E260 removal rate by ozone treatment (abs) 2) Since the reaction rate Ro 3 can be approximated to the first-order reaction from FIG. 2, the following equation holds.

【0047】[0047]

【数4】 Ro3=(dCo/dt)=ko3Co (3) (2)式での定常状態(dCo/dt=0)における式と
(3)式とから、ko3とE260値との相関を示す
(4)式が求められる。
[Equation 4] Ro 3 = (dCo / dt) = ko 3 Co (3) From the equation in the steady state (dCo / dt = 0) in the equation (2) and the equation (3), ko 3 and E260 value are obtained. Equation (4) showing the correlation of is obtained.

【0048】[0048]

【数5】 Co/Ci=1/(1+ko3・θ) (4) (4)式に(1)式を代入すると、オゾン処理水濃度を
表す(5)式が得られる。
Co / Ci = 1 / (1 + ko 3 · θ) (4) By substituting the equation (1) into the equation (4), the equation (5) representing the ozone-treated water concentration is obtained.

【0049】[0049]

【数6】 Co/Ci=1/(1+0.2367*(ηD)0・6733・θ) (5) また吸収オゾン量(ηD)は以下の式で表される。[Equation 6] Co / Ci = 1 / (1 + 0.2367 * (ηD) 0 · 6733 · θ) (5) The absorbed ozone amount (ηD) is expressed by the following formula.

【0050】[0050]

【数7】 ηD=(Co3in−Co3out)*qo3/QL (6) Co3in:注入オゾン濃度(g/Nm3) Co3out:排オゾン濃度(g/Nm3)、 qo3:注入オゾン流量(l/分) ここで、(6)式において、排オゾン濃度Co3out=0
と近似することができ、このとき(4)式は以下の式と
なる。
[Equation 7] ηD = (Co 3 in-Co 3out) * qo 3 / QL (6) Co 3 in: injecting ozone concentration (g / Nm 3) Co 3 out: exhaust ozone concentration (g / Nm 3), qo 3 : Flow rate of injected ozone (l / min) Here, in the formula (6), the exhaust ozone concentration Co 3 out = 0
Can be approximated, and at this time, the equation (4) becomes the following equation.

【0051】[0051]

【数8】 ηD=Co3in*qo3/QL (7) (5)式と(6)式からηDを消去すると、注入オゾン
濃度Co3inはCo3out、Co、Ci、θ、qo3、QLの関
数で表される。
[Equation 8] ηD = Co 3 in * qo 3 / QL (7) (5) equation (6) If you clear the ηD from the equation, injecting ozone concentration Co 3 in the Co 3out, Co, Ci, θ , qo 3 , QL.

【0052】特に、Co3out=0とした場合には、
(5)式と(7)式からηDを消去して、注入オゾン濃
度Co3inはCo、Ci、θ、qo3、QLの関数で表され
る。
Especially, when Co 3out = 0,
By removing ηD from the equations (5) and (7), the injected ozone concentration Co 3 in is represented by a function of Co, Ci, θ, qo 3 and QL.

【0053】ここで、qo3は 図1中のqGaで、QL
はQLbでモニタリングしており、θはV/QLより求
められる。また、オゾン被処理水のE260値CiもU
V計aで計測しており、既知の値として扱うことができ
る。
Here, qo 3 is qGa in FIG. 1, and QL
Is monitored by QLb, and θ is calculated from V / QL. Also, the E260 value Ci of ozone-treated water is U
It is measured by the V meter a and can be treated as a known value.

【0054】このように、注入オゾン濃度Co3inはCo
及びCo3outの関数として表されるので、適当な方法で
Co3outの値を設定すると、Co3inは以下のようにCoを
未知数とする相関式で決定することができる。
In this way, the injected ozone concentration Co 3in is Co
, And Co 3out as a function of Co 3out , if the value of Co 3out is set by an appropriate method, then Co 3in can be determined by the following correlation equation with Co as an unknown.

【0055】[0055]

【数9】Co3in=f(Co) 本実施例においては、(7)式のようにCo3out=0と
してCo3inを求めた。尚、Co3outの値は他の方法によ
って適切に設定することができる。例えば、Co3out
値は他のパラメータの値に比べて変動が小さいので、そ
の平均値を固定値として用いてもよい。
## EQU9 ## Co 3in = f (Co) In this example, Co 3in was determined with Co 3out = 0 as in the equation (7). The value of Co 3out can be appropriately set by another method. For example, the value of Co 3out has less variation than the values of the other parameters, so its average value may be used as a fixed value.

【0056】浄水処理を行う場合、オゾン処理水のE2
60値Coの値が一定値以下になるように注入オゾン濃
度を調整することが求められるが、本実施例によれば、
Coの値に目標値を設定すると、上記相関式を用いて、
その値に対応するCo3inの値を算出することができる。
When performing purified water treatment, E2 of ozone-treated water
Although it is required to adjust the injected ozone concentration so that the value of the 60-value Co becomes a certain value or less, according to the present embodiment,
When a target value is set for the value of Co, using the above correlation equation,
The value of Co 3in corresponding to that value can be calculated.

【0057】また、E260の測定は連続モニタリング
が可能なので、迅速にオゾン注入量Co3の値を最適値に
制御することができる。
Further, since the E260 measurement can be continuously monitored, the value of the ozone injection amount Co 3 can be quickly controlled to the optimum value.

【0058】さらに、UV計bではCoの現在値をモニ
タリングしているので、この値を用いて注入オゾン濃度
Co3inの補正を行うことにより、一層効率のよいオゾン
注入制御を行うことができる。尚、この例では注入オゾ
ン濃度Co3inを制御するものとしたが、Co3inとqG1
との積はオゾン注入量となるので、オゾン注入量を制御
する構成と本質的にかわらない。以下の例でも同様であ
る。
Furthermore, since the UV meter b monitors the current value of Co, by correcting the injected ozone concentration Co 3in using this value, more efficient ozone injection control can be performed. In this example, the injected ozone concentration Co 3in was controlled, but Co 3in and qG1
Since the product of and is the ozone injection amount, it is essentially the same as the configuration for controlling the ozone injection amount. The same applies to the following examples.

【0059】次に、水道水の異臭味被害を与える物質の
一つであるかび臭物質に関する制御方法を述べる。
Next, a control method for a musty odor substance, which is one of the substances which gives offensive odor damage to tap water, will be described.

【0060】この場合においても、E260と同様にU
V計a,bを用いてモニタリングを行う。図4にかび臭
物質の一つである2メチルイソボルネオール(2MI
B)とE260の残存比とオゾン接触時間θの関係を示
す。
In this case as well, as in E260, U
Monitoring is performed using V meters a and b. Fig. 4 shows that one of the musty odorous substances, 2-methylisoborneol (2MI
The relationship between the residual ratio of B) and E260 and the ozone contact time θ is shown.

【0061】図4より、各水質の残存比とオゾン接触時
間の関係はそれぞれ以下の式で近似される。
From FIG. 4, the relationship between the residual ratio of each water quality and the ozone contact time is approximated by the following equations.

【0062】[0062]

【数10】 (Co/Ci)2MIB=EXP(−0.155・θ) (8) (Co/Ci)E260=EXP(−0.071・θ) (9) (8)、(9)の両式から、(Co/Ci)2MIB/(Co
/Ci)E260を求めると以下の式が得られる。
[ Equation 10] (Co / Ci) 2MIB = EXP (-0.155 ・ θ) (8) (Co / Ci) E260 = EXP (-0.071 ・ θ) (9) From both equations (8) and (9), (Co / Ci) 2MIB / (Co
/ Ci) E260 gives the following formula.

【0063】[0063]

【数11】 (Co/Ci)2MIB/(Co/Ci)E260=EXP(−0.084・θ) (10) この式から、オゾン被処理水と処理水のE260をモニ
タリングする事によって、かび臭物質である2MIBの
残存比の推定ができる。2MIBの濃度は、上記残存比
及び被処理水における2MIBの濃度から求められる。
[ Equation 11] (Co / Ci) 2MIB / (Co / Ci) E260 = EXP (-0.084 · θ) (10) From this formula, by monitoring E260 of ozone-treated water and treated water, it is possible to detect musty substances. The residual ratio of a certain 2MIB can be estimated. The concentration of 2MIB is obtained from the above-mentioned residual ratio and the concentration of 2MIB in the water to be treated.

【0064】従って2MIBに目標値を設定すると、2
MIBに関するE260の目標値が決定されので、この
目標値からCo3inの最適値を求めることができる。
Therefore, if the target value is set to 2 MIB, 2
Since the target value of E260 for the MIB is determined, the optimum value of Co 3in can be obtained from this target value.

【0065】有機物濃度及びかび臭物質濃度の制御方法
を図5のフローチャートに示す。
A method of controlling the organic matter concentration and musty odor substance concentration is shown in the flowchart of FIG.

【0066】この制御方法では、予めCoとCo3inとの
相関式を求めておく。そして、有機物濃度及びかび臭物
質濃度に対して、それぞれの目標値からCoの目標値を
設定する(S1)。その後にθ、qo3、QL等の各パラ
メータの値を検出する(S2)。
In this control method, the correlation equation between Co and Co 3in is obtained in advance. Then, for the organic substance concentration and musty odor substance concentration, the target value of Co is set from the respective target values (S1). After that, the value of each parameter such as θ, qo 3 , and QL is detected (S2).

【0067】得られた値を相関式に代入し(S3)、C
o3inを算出する(S4)。そして、Co3inの値が上記得
られた値になるようにオゾナイザーを制御する(S
5)。
Substituting the obtained value into the correlation equation (S3), C
o 3in is calculated (S4). Then, the ozonizer is controlled so that the value of Co 3in becomes the value obtained above (S
5).

【0068】更に、Coの実測値を検出し(S6)、Co
の値が目標値に一致していないばあいにはCo3inの値を
補正する(S7,S8)。浄水処理が終了するまでこの
制御を繰り返す(S9)。
Further, the measured value of Co is detected (S6), and Co
If the value of does not match the target value, the value of Co 3in is corrected (S7, S8). This control is repeated until the water purification process is completed (S9).

【0069】以上説明したように、予めCo3inとCoと
の相関を求めておき、浄水処理に必要な各パラメータの
値を測定することによって、有機物濃度、かび臭物質を
目標値以下にするために必要なCo3inを求めることがで
きる。
As described above, the correlation between Co 3in and Co is obtained in advance, and the value of each parameter required for water purification treatment is measured to reduce the organic matter concentration and musty odor substance to below the target values. You can find the required Co 3in .

【0070】実施例2:トリハロメタン生成能に対する
注入オゾン濃度の制御例 この実施例では、E260を図6に示すUV計を用いて
測定し、その測定値からオゾン処理後、活性炭処理後の
THMFPを連続的に求めることにり、これらの値を目
標値以下にするのに必要とされるオゾン注入量を求め
た。
Example 2 Example of Controlling Injection Ozone Concentration for Trihalomethane Production Ability In this example, E260 was measured using the UV meter shown in FIG. 6, and THMFP after ozone treatment and activated carbon treatment was measured from the measured value. By continuously obtaining these values, the ozone injection amount required to bring these values below the target values was obtained.

【0071】まず、ダム湖水を水源とする浄水場の凝集
沈殿水を原水とし、日量20m3を処理する高度浄水処
理プラント(オゾン・活性炭組み合わせ処理)における
各処理工程水のE260(50mmセルを用いた254
nmの紫外線吸光光度)、原水に対するTHMFPの各
平均除去率を調べた。
First, E260 (50 mm cell for each treatment process water in the advanced water treatment plant (combined treatment with ozone and activated carbon) that treats 20 m 3 per day as coagulation sedimentation water of a water purification plant using dam lake water as a water source is used. Used 254
(UV absorptance of nm), and the average removal rate of THMFP with respect to raw water.

【0072】その結果、オゾン処理においてはE260
においては62.2%であるのに対し、THMFPでは40.7
%となった。これに対し、オゾン・活性炭処理において
はE260では74.8%,THMFPでは72.6%と同程度
の値が得られた。
As a result, in the ozone treatment, E260
Is 62.2% while THM is 40.7%.
It became%. On the other hand, in the ozone / activated carbon treatment, values of 74.8% for E260 and 72.6% for THMFP were obtained, which were comparable.

【0073】以上のことから、活性炭処理後の最終的な
除去率は両指標とも同程度であるのに対し、オゾン処理
後の両指標の除去率は異なっている。以上より、E26
0とTHMFPの関係を凝沈水とオゾン処理水、凝沈と
活性炭処理水の2系統にわけてプロットしたものが、図
7,図8である。両系とも相関が高く、このように2系
統に分けることにより、オゾン処理水、活性炭処理水の
E260を測定すれば、各THMFPを推定できること
が確認できた。
From the above, the final removal rates after activated carbon treatment are similar for both indicators, whereas the removal rates for both indicators after ozone treatment are different. From the above, E26
7 and 8 are plots of the relationship between 0 and THMFP divided into two systems, coagulated water and ozone-treated water, and coagulation and activated carbon-treated water. It was confirmed that each THMFP can be estimated by measuring E260 of ozone-treated water and activated carbon-treated water by dividing the two systems into two systems as described above.

【0074】図7のグラフから、E260の測定値をe
として、以下の式が得られる。
From the graph of FIG. 7, the measured value of E260 is e
As a result, the following equation is obtained.

【0075】[0075]

【数12】 凝沈・O3処理系:THMFP(μg/L)=189.5×e+120 相関係数r=0.731(n=56) 同様に、図8のグラフから以下の式が得られる。## EQU12 ## Coagulation / O 3 processing system: THMFP (μg / L) = 189.5 × e + 120 Correlation coefficient r = 0.731 (n = 56) Similarly, the following equation is obtained from the graph of FIG.

【0076】[0076]

【数13】 凝沈・活性炭処理系:THMFP(μg/L)=240.2×e+0.59 相関係数r=0.873(n=140) 以上の結果から、図9に示す浄水処理装置にて浄水処理
制御を行った。
[Equation 13] Coagulation / activated carbon treatment system: THMFP (μg / L) = 240.2 × e + 0.59 Correlation coefficient r = 0.873 (n = 140) From the above results, the water treatment equipment shown in FIG. Control was performed.

【0077】図9において、UV計を被オゾン処理水槽
(凝沈水槽)、オゾン処理水槽、活性炭処理水槽に設置
検水(凝沈処理水、オゾン処理水、活性炭処理水)がフ
ローセル形式で、測定セル長50mmを通過し、UV信
号(254nmの紫外線吸光光度(abs))とVIS信号
(546nmの吸光光度(abs))の各信号を計測する。
In FIG. 9, a UV meter is installed in an ozone-treated water tank (coagulation / sedimentation water tank), an ozone-treated water tank, and an activated carbon-treated water tank. After passing through a measuring cell length of 50 mm, each signal of a UV signal (ultraviolet absorptivity (abs) at 254 nm) and a VIS signal (absorptivity (abs) at 546 nm) is measured.

【0078】UV信号またはUV−VIS信号(濁度補
正信号)から、各検水に応じたT−THMFP(クロロ
ホルム、ジクロロブロモメタン、クロロジブロモメタ
ン、ブロモホルムの各生成能の合計)を推定するととも
に、UV信号、VIS信号をそれぞれ出力する。
From the UV signal or the UV-VIS signal (turbidity correction signal), T-THMFP (total of each forming ability of chloroform, dichlorobromomethane, chlorodibromomethane and bromoform) corresponding to each test water is estimated. , UV signal and VIS signal are output respectively.

【0079】オゾン被処理水のE260値をUV計で測
定して後段のオゾン処理部、活性炭処理部におけるE2
60値の目標値をそれぞれ設定する。
The E260 value of the ozone treated water was measured with a UV meter to measure the E2 in the ozone treatment section and activated carbon treatment section in the subsequent stage.
Target values of 60 values are set respectively.

【0080】オゾン処理部では、E260値がオゾン処
理部に設定された目標値よりも小さくなるまでオゾン処
理を行う。同様に、活性炭処理部では、E260値が活
性炭処理部に設定されたE260値よりも小さくなるま
で活性炭処理を行う。
In the ozone processing section, ozone processing is performed until the E260 value becomes smaller than the target value set in the ozone processing section. Similarly, the activated carbon treatment unit performs the activated carbon treatment until the E260 value becomes smaller than the E260 value set in the activated carbon treatment unit.

【0081】このように、E260値を用いて、THM
FPが目標値よりも小さくなるようにオゾン・活性炭処
理水の制御を行うことで、各検水のTHMFPが推定で
き、処理状況の把握が可能となり、オゾン処理部、活性
炭処理部の効率的な制御が可能となる。
Thus, using the E260 value, THM
By controlling the ozone / activated carbon treated water so that the FP becomes smaller than the target value, the THMFP of each sample water can be estimated and the treatment status can be grasped, and the ozone treatment unit and the activated carbon treatment unit can be efficiently used. It becomes possible to control.

【0082】尚、上記実施例1、2でUV計をオゾン処
理水槽に設置する場合、溶存オゾンの影響を考慮する必
要がある。オゾンの最大の吸収帯は254nm付近にあ
り、溶存オゾンの存在下で本考案のUV計をそのまま用
いた場合のUV信号は、溶存オゾンによる吸収が上乗せ
されて出力される。
When the UV meter is installed in the ozone-treated water tank in the above Examples 1 and 2, it is necessary to consider the influence of dissolved ozone. The maximum absorption band of ozone is in the vicinity of 254 nm, and when the UV meter of the present invention is used as it is in the presence of dissolved ozone, the UV signal is output after absorption by dissolved ozone is added.

【0083】そこで本UV計を用いてオゾン処理水を測
定する場合、検水中の溶存オゾン濃度を測定してその吸
収分を補正する必要がある。このように溶存オゾン濃度
の補正方法は例えば特開平5−12102号公報、及び
特開平5−12101号公報等に開示されている。
Therefore, when ozone-treated water is measured using this UV meter, it is necessary to correct the absorbed amount by measuring the dissolved ozone concentration in the test water. Thus, the method of correcting the dissolved ozone concentration is disclosed in, for example, Japanese Patent Application Laid-Open Nos. 5-12102 and 5-12101.

【0084】また、この実施例測においては、定セルが
フローセル形式をとっているので、UV値、濁度補正U
V値を連続的に測定できる。このようにフローセル形式
のUV値連続測定を行うことによって、THMFPの推
定を連続的に時間誤差無く行うことができる。
Further, in this embodiment, since the constant cell is of the flow cell type, the UV value and the turbidity correction U
The V value can be continuously measured. By continuously measuring the UV values in the flow cell format in this way, THMFP can be estimated continuously without any time error.

【0085】また、上記各実施例においては吸光測定時
の光線の波長として主に254(nm)を用いているが、有機
物濃度、かび臭物質濃度、THMFPとの相関がとれる
ものであればよい。通常はこのような波長として紫外線
が用いられ、特に上記実施例のように有機物濃度と相関
が高いE260を用いることが好ましい。
In each of the above-mentioned embodiments, 254 (nm) is mainly used as the wavelength of the light beam at the time of absorption measurement, but any wavelength can be used as long as it can be correlated with the organic matter concentration, musty odor substance concentration and THMFP. Usually, ultraviolet rays are used as such a wavelength, and it is particularly preferable to use E260, which has a high correlation with the concentration of organic substances, as in the above embodiment.

【0086】[0086]

【発明の効果】以上説明したように、本発明によれば、
除去対象物質の種類にかかわらず迅速に浄水処理の制御
を行うことができ、リアルタイムでの浄水処理制御を行
うことができる。
As described above, according to the present invention,
Regardless of the type of substance to be removed, the water purification treatment can be quickly controlled, and the water purification treatment control can be performed in real time.

【0087】また、浄水処理前の検水の吸光度を測定し
て浄水処理後の検水の吸光度値を前記規定吸光度値以下
の値にするために必要な浄水処理の規定進行度を求める
ことで、被処理水の水質に応じた注入オゾン濃度の設定
が行える。
Further, by measuring the absorbance of the test water before the water purification treatment and obtaining the prescribed progress degree of the water purification treatment necessary for making the absorbance value of the test water after the water purification treatment equal to or less than the prescribed absorbance value. The concentration of injected ozone can be set according to the quality of the water to be treated.

【0088】このように、検水の水質に応じて浄水処理
を進行させることができるので、最適な進行度合いで運
転できる。従って浄水処理の過剰な進行を行うことがな
くなる。例えば、オゾン処理を行う場合にはオゾンの過
剰注入を抑制することができ、運転コストの低減が図ら
れる。また、オゾン注入量の不足もなくなるために、安
定したオゾン処理水質が得られる。
As described above, since the water purification treatment can be progressed according to the quality of the test water, the operation can be performed at an optimum degree of progress. Therefore, the excessive progress of the water purification treatment is prevented. For example, when the ozone treatment is performed, it is possible to suppress the excessive injection of ozone and reduce the operating cost. In addition, since there is no shortage of ozone injection amount, stable ozone-treated water quality can be obtained.

【0089】特に、従来は非常に困難であった、かび臭
物質(2MIB)のオゾン処理効果の連続モニタリング
も容易に行うことができる。
In particular, continuous monitoring of the ozone treatment effect of musty odor substance (2MIB), which has been very difficult in the past, can be easily performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1に係る浄水処理装置の説明図。FIG. 1 is an explanatory diagram of a water purification device according to a first embodiment.

【図2】E260残存比とオゾン接触時間との相関を示
すグラフ。
FIG. 2 is a graph showing a correlation between E260 residual ratio and ozone contact time.

【図3】反応速度定数とηDとの相関を示すグラフ。FIG. 3 is a graph showing a correlation between a reaction rate constant and ηD.

【図4】2MIB、E260の残存比とオゾン接触時間
との相関を示すグラフ。
FIG. 4 is a graph showing the correlation between the residual ratio of 2MIB and E260 and the ozone contact time.

【図5】本発明の1実施例に係るオゾン処理方法を示す
フローチャート。
FIG. 5 is a flowchart showing an ozone treatment method according to one embodiment of the present invention.

【図6】凝沈・オゾン処理系におけるTHMFPとE2
60との相関を示すグラフ。
FIG. 6: THMFP and E2 in coagulation / ozone treatment system
The graph which shows the correlation with 60.

【図7】凝沈・活性炭処理系におけるTHMFPとE2
60との相関を示すグラフ。
FIG. 7: THMFP and E2 in the coagulation / activated carbon treatment system
The graph which shows the correlation with 60.

【図8】UV計の説明図。FIG. 8 is an explanatory diagram of a UV meter.

【図9】実施例2に係る浄水処理装置の説明図。FIG. 9 is an explanatory diagram of the water purification device according to the second embodiment.

【符号の説明】[Explanation of symbols]

1…オゾン被処理水槽 2…オゾン処理塔 3…オゾナイザー 4…オゾン処理水槽 5…散気装置 6…気相オゾン濃度計 7…制御部 1 ... Ozone treated water tank 2 ... Ozone processing tower 3 ... Ozonizer 4 ... Ozone treated water tank 5 ... Air diffuser 6 ... Gas phase ozone concentration meter 7 ... Control part

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 検水の吸光度と除去対象物質濃度との相
関を求め、 前記相関を用いて除去対象物質の規定濃度に対応する規
定吸光度値を求め、 浄水処理後の検水の吸光度の値が前記規定吸光度値以下
になるように浄水処理を行うことを特徴とする浄水処理
方法。
1. The correlation between the absorbance of the test water and the concentration of the substance to be removed, the standard absorbance value corresponding to the standard concentration of the substance to be removed is calculated using the correlation, and the absorbance value of the test water after the water purification treatment is calculated. The water purification method is characterized in that the water purification treatment is performed so that the value becomes equal to or less than the specified absorbance value.
【請求項2】 請求項1記載の浄水処理方法において、 浄水処理前の検水の吸光度を検出し、 浄水処理の進行度と検水の吸光度との相関を求め、この
相関と浄水処理前の検水の吸光度値とを用いて、浄水処
理後の検水の吸光度値を前記規定吸光度値以下の値にす
るために必要な浄水処理の規定進行度を求めて浄水処理
の進行度を制御することを特徴とする浄水処理方法。
2. The water purification method according to claim 1, wherein the absorbance of the test water before the water purification treatment is detected, and the correlation between the progress of the water purification treatment and the absorbance of the water detection is obtained, and the correlation and the water purification treatment before the water purification treatment are performed. Using the absorbance value of the test water, control the progress degree of the water purification treatment by obtaining the prescribed progress degree of the water purification treatment required to make the absorbance value of the test water after the water purification treatment equal to or less than the prescribed absorbance value. A water purification method characterized in that
【請求項3】 請求項2記載の浄水処理方法において、 前記浄水処理としてオゾン処理を行うとともに浄水処理
の進行度としてオゾン注入量を用い、 浄水処理後の検水の吸光度値を前記規定吸光度値以下の
値にするために必要な規定オゾン注入量によってオゾン
注入量を制御することを特徴とする浄水処理方法。
3. The water purification method according to claim 2, wherein ozone treatment is performed as the water purification treatment, and the ozone injection amount is used as the degree of progress of the water purification treatment, and the absorbance value of the test water after the water purification treatment is the specified absorbance value. A purified water treatment method characterized in that the ozone injection amount is controlled by a prescribed ozone injection amount required to achieve the following values.
【請求項4】 請求項2または3記載の浄水処理方法に
おいて、 浄水処理後の検水の吸光度を求めるとともに、この吸光
度と前記規定吸光度値とを比較して、浄水処理の進行度
を補正することを特徴とする浄水処理方法。
4. The water purification method according to claim 2 or 3, wherein the absorbance of the test water after the water purification is calculated, and the absorbance is compared with the specified absorbance value to correct the progress of the water purification. A water purification method characterized in that
【請求項5】 検水にオゾンを注入するオゾン処理によ
って除去対象物質の除去を行うオゾン処理部を備えた浄
水処理装置であって、 検水の規定吸光度値の格納部と、 オゾン処理前の検水の吸光度の測定部と、 検水に対するオゾン注入量と検水の吸光度との相関を格
納する相関格納部と、 オゾン処理前の検水の吸光度値と、前記相関格納部から
得られる相関と、からオゾン処理後の検水の吸光度値を
前記規定吸光度値以下の値にするために必要なオゾン注
入量を求めてオゾン注入量を制御するオゾン注入量制御
部と、を有することを特徴とする浄水処理装置。
5. A water purification apparatus comprising an ozone treatment unit for removing a substance to be removed by an ozone treatment of injecting ozone into the test water, comprising a storage unit for a specified absorbance value of the test water and an ozone treatment unit before the ozone treatment. Measurement unit for absorbance of test water, correlation storage unit for storing correlation between ozone injection amount and absorbance of test water, absorbance value of test water before ozone treatment, and correlation obtained from the correlation storage unit And an ozone injection amount control unit for controlling the ozone injection amount by obtaining the ozone injection amount necessary for making the absorbance value of the test water after the ozone treatment equal to or less than the specified absorbance value. Water purification equipment.
JP3800394A 1994-03-09 1994-03-09 Water purifying treatment and water purifying treatment device Pending JPH07246384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3800394A JPH07246384A (en) 1994-03-09 1994-03-09 Water purifying treatment and water purifying treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3800394A JPH07246384A (en) 1994-03-09 1994-03-09 Water purifying treatment and water purifying treatment device

Publications (1)

Publication Number Publication Date
JPH07246384A true JPH07246384A (en) 1995-09-26

Family

ID=12513406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3800394A Pending JPH07246384A (en) 1994-03-09 1994-03-09 Water purifying treatment and water purifying treatment device

Country Status (1)

Country Link
JP (1) JPH07246384A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005230774A (en) * 2004-02-23 2005-09-02 Kurita Water Ind Ltd Water treatment method and water treatment apparatus
KR101326663B1 (en) * 2011-01-31 2013-11-08 주식회사 조은환경 Water treatment method controlling filtering variable by quantity of state of treated water and filtering apparatus therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005230774A (en) * 2004-02-23 2005-09-02 Kurita Water Ind Ltd Water treatment method and water treatment apparatus
KR101326663B1 (en) * 2011-01-31 2013-11-08 주식회사 조은환경 Water treatment method controlling filtering variable by quantity of state of treated water and filtering apparatus therefor

Similar Documents

Publication Publication Date Title
Rathi et al. Photodegradation of direct yellow-12 using UV/H2O2/Fe2+
US10287182B2 (en) Regulating method for a water treatment installation using measured parameters and control of an ozonisation device
JP2005305328A (en) Water treatment controlling system
EP3261984A1 (en) Methods and systems for producing high purity gaseous chlorine dioxide
JP2007083186A (en) Water treatment system
KR101253251B1 (en) Realtime monitoring and controlling apparatus of taste-odor matters for drinking water treatment, and method for the same
WO2019198831A1 (en) Accelerated oxidation water treatment system and method
JPH07246384A (en) Water purifying treatment and water purifying treatment device
JP4334404B2 (en) Water treatment method and water treatment system
JP4660211B2 (en) Water treatment control system and water treatment control method
JP4509644B2 (en) Ozone gas injection control system
JP3803590B2 (en) Hydrogen peroxide residual concentration controller
JP2004136208A (en) Water treatment device, water treatment method, and water treatment program
JP4542815B2 (en) Water treatment equipment
JPH0663570A (en) Method for determining and controlling ozone injection quantity and purified water treatment device
JP4331048B2 (en) Ozone water treatment control system
JPH04225896A (en) Ozone injection controller
US9594015B2 (en) Method and device for determining radical attrition potential
JP2003088882A (en) Method for water treatment
JPH08141551A (en) Water purifying apparatus
JP2000107778A (en) Method and apparatus for treating water
JPH08318286A (en) Ozone treating method and apparatus in high-degree water purifying treatment
JP3223726B2 (en) Method and apparatus for measuring ultraviolet absorbance for process
Cromphout et al. Optimization of the ozone dosage at the drinking water treatment plant of Kluizen
JPH10314764A (en) Method for control of catalyst wet type oxidation treating device