JPH07244850A - Method and apparatus for manufacture of magnetic recording medium - Google Patents

Method and apparatus for manufacture of magnetic recording medium

Info

Publication number
JPH07244850A
JPH07244850A JP3062094A JP3062094A JPH07244850A JP H07244850 A JPH07244850 A JP H07244850A JP 3062094 A JP3062094 A JP 3062094A JP 3062094 A JP3062094 A JP 3062094A JP H07244850 A JPH07244850 A JP H07244850A
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
film
radicals
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3062094A
Other languages
Japanese (ja)
Inventor
Noriyuki Kitaori
典之 北折
Osamu Yoshida
修 吉田
Hirohide Mizunoya
博英 水野谷
Shigemi Wakabayashi
繁美 若林
Akira Shiga
章 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP3062094A priority Critical patent/JPH07244850A/en
Publication of JPH07244850A publication Critical patent/JPH07244850A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a magnetic recording medium which has excellent magnetic characteristics and corrosion-resistance efficiently by a method wherein radicals by which the magnetic characteristics are improved are applied to magnetic metal deposited on a supporter. CONSTITUTION:A supporter 1 is loaded in a vacuum chamber 8 and made to run. In this state, Fe 6 in a crucible 5 is melted and evaporated by an electron gun 7 and deposited on the supporter 1. In this state, nitride radicals are applied to the deposited Fe film by a radical irradiating apparatus 10. The applied nitride radicals react with Fe and an FexN ferromagnetic film is formed on the surface of the supporter 1. The irradiating apparatus 10 is composed of a gas introducing tube 11 and an ultraviolet radiation generating lamp 12 wound around the tube 11. Nitride gas is supplied from the base end side of the gas introducing tube 11 and radicals are produced by the ultraviolet radiation applied to the nitride gas en route and the nitrogen radicals are discharged from the tip side of the gas introducing tube 11. The magnetic film formed in this process has excellent corrosion resistance and its film forming speed is high. With this constitution, a magnetic recording medium having excellent corrosion- resistance and magnetic characteristics can be obtained efficiently.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属薄膜型磁気記録媒
体の製造技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for manufacturing a metal thin film type magnetic recording medium.

【0002】[0002]

【発明の背景】磁気テープ等の磁気記録媒体において
は、高密度記録化の要請から、非磁性支持体上に設けら
れる磁性層として、バインダ樹脂を用いた塗布型のもの
ではなく、バインダ樹脂を用いない金属薄膜型のものが
提案されていることは周知の通りである。
BACKGROUND OF THE INVENTION In a magnetic recording medium such as a magnetic tape, due to a demand for high density recording, a binder resin is not used as a magnetic layer provided on a non-magnetic support, instead of a coating type using a binder resin. It is well known that a metal thin film type that is not used has been proposed.

【0003】すなわち、無電解メッキといった湿式メッ
キ手段、真空蒸着、スパッタリングあるいはイオンプレ
ーティングといった乾式メッキ手段により磁性層を構成
した磁気記録媒体が提案されている。そして、この種の
磁気記録媒体は磁性体の充填密度が高いことから、高密
度記録に適したものである。ところで、この種の金属薄
膜型の磁気記録媒体における磁性層を構成する磁性材料
としては、例えばCo−Cr合金やCo−Ni合金など
の磁性金属が用いられている。しかしながら、Coは稀
少物質であることからコストの問題が有り、かつ、環境
汚染の問題がある。
That is, there has been proposed a magnetic recording medium having a magnetic layer formed by a wet plating means such as electroless plating, or a dry plating means such as vacuum deposition, sputtering or ion plating. Since the magnetic recording medium of this type has a high packing density of magnetic material, it is suitable for high-density recording. By the way, as a magnetic material forming a magnetic layer in a metal thin film type magnetic recording medium of this type, a magnetic metal such as a Co—Cr alloy or a Co—Ni alloy is used. However, since Co is a rare substance, there are problems of cost and environmental pollution.

【0004】これに対して、Feには前記のような問題
がないことに鑑み、金属薄膜型の磁気記録媒体の磁性材
料としてFeが注目され始めた。すなわち、非Co系金
属磁性材料としてはFeとNiが考えられるものの、飽
和磁化の大きさからはFeが好ましいものであると言わ
れている。ところで、FeはCo以上に錆やすいことか
ら、化学的に安定なものとする必要が有る。このような
観点から、磁性膜をFex Nで構成することが提案(特
開昭60−236113号公報、特開昭63−2372
19号公報)されている。そして、これらのFe系金属
化合物で磁性膜を構成した磁気記録媒体は、磁気特性が
良好で、かつ、耐蝕性に優れ、高密度記録に優れたもの
であると謳われている。
On the other hand, in view of the fact that Fe does not have the above-mentioned problems, Fe has begun to attract attention as a magnetic material for a metal thin film type magnetic recording medium. That is, although Fe and Ni can be considered as the non-Co-based metallic magnetic material, it is said that Fe is preferable in view of the magnitude of saturation magnetization. By the way, since Fe is more likely to rust than Co, it is necessary to be chemically stable. From such a point of view, it is proposed that the magnetic film is made of Fe x N (Japanese Patent Laid-Open Nos. 60-236113 and 63-2372).
No. 19). A magnetic recording medium having a magnetic film made of these Fe-based metal compounds is said to have good magnetic characteristics, excellent corrosion resistance, and excellent high-density recording.

【0005】これらFe系金属化合物の磁性膜を構成す
る手段としては、イオンガンを用いたイオンアシストに
よる手段が提案されている。すなわち、Feを支持体上
に斜め蒸着法により堆積させる過程において、窒素イオ
ンをイオンガンにより堆積金属膜に向けてぶつける手段
が提案されている。しかしながら、このようなイオンア
シスト法はイオンガンが高価なことからコストが高く付
き、又、製造効率的にも満足できるものではない。
As means for forming the magnetic film of these Fe-based metal compounds, means by ion assist using an ion gun has been proposed. That is, in the process of depositing Fe on the support by the oblique vapor deposition method, a means has been proposed in which nitrogen ions are bombarded toward the deposited metal film by an ion gun. However, such an ion assist method is expensive because the ion gun is expensive, and is not satisfactory in manufacturing efficiency.

【0006】[0006]

【発明の開示】本発明の目的は、コストが低廉で、製造
効率も良く、さらには磁気特性にも優れた磁気記録媒体
を提供することである。この本発明の目的は、磁性金属
を蒸発させ、この蒸発粒子を非磁性支持体上に堆積させ
る工程と、紫外線照射により発生し、前記磁性金属と反
応して磁気特性を向上させるラジカルを照射する工程と
を具備することを特徴とする磁気記録媒体の製造方法に
よって達成される。
DISCLOSURE OF THE INVENTION It is an object of the present invention to provide a magnetic recording medium which is low in cost, good in manufacturing efficiency, and excellent in magnetic characteristics. The object of the present invention is to evaporate a magnetic metal and deposit the evaporated particles on a non-magnetic support, and to irradiate radicals that are generated by UV irradiation and react with the magnetic metal to improve magnetic properties. And a step of manufacturing the magnetic recording medium.

【0007】又、磁性金属が入れられる容器と、この容
器内の磁性金属を蒸発させる蒸発手段と、この蒸発手段
により蒸発した蒸発粒子を堆積させる非磁性支持体と、
紫外線照射により発生し、前記磁性金属と反応して磁気
特性を向上させるラジカルを照射するラジカル照射手段
とを具備することを特徴とする磁気記録媒体の製造装置
によって達成される。
Further, a container containing the magnetic metal, an evaporation means for evaporating the magnetic metal in the container, and a non-magnetic support for accumulating evaporated particles evaporated by the evaporation means,
The present invention is achieved by an apparatus for manufacturing a magnetic recording medium, comprising: a radical irradiating unit that irradiates radicals that are generated by ultraviolet irradiation and react with the magnetic metal to improve magnetic characteristics.

【0008】本発明において用いられる蒸発源物質とし
ての磁性金属としては、例えば純度が99.95%以上
のFe、Fe−Co合金、Fe−Ni合金、Fe−Pt
合金(但し、二元蒸着と言った手段を採用する場合に
は、各々のルツボにFeとNi等の合金元素とを入れて
おけば良く、必ずしも合金を用いなくとも良い)と言っ
たような高純度Feやこれを主成分としたFe系の金属
が好ましい例として挙げられる。
As the magnetic metal used as the evaporation source material in the present invention, for example, Fe having a purity of 99.95% or more, Fe-Co alloy, Fe-Ni alloy, Fe-Pt are used.
Alloy (however, when adopting a method such as binary vapor deposition, it is sufficient to put Fe and an alloy element such as Ni in each crucible, and it is not always necessary to use an alloy) Preferred examples include high-purity Fe and Fe-based metals containing this as the main component.

【0009】又、磁性金属と反応して磁気特性を向上さ
せるラジカルを構成する為のものとしては、例えば窒素
ガス(N2 )、窒素と水素との混合ガス(N2
2 )、アンモニアと水素との混合ガス(NH3
2 )あるいは窒素と酸素との混合ガス(N2 +O2
等が挙げられる。以下、本発明について更に詳しく説明
する。
As a radical for reacting with a magnetic metal to improve magnetic properties, for example, nitrogen gas (N 2 ) or a mixed gas of nitrogen and hydrogen (N 2 +) is used.
H 2 ), mixed gas of ammonia and hydrogen (NH 3 +
H 2 ) or a mixed gas of nitrogen and oxygen (N 2 + O 2 ).
Etc. Hereinafter, the present invention will be described in more detail.

【0010】図1は、本発明の磁気記録媒体の製造方法
が実施される装置の概略図である。同図中、1は非磁性
の支持体であり、この支持体1はポリエチレンテレフタ
レート(PET)等のポリエステル、ポリアミド、ポリ
イミド、ポリスルフォン、ポリカーボネート、ポリプロ
ピレン等のオレフィン系の樹脂、セルロース系の樹脂、
塩化ビニル系の樹脂といった高分子材料、ガラスやセラ
ミック等の無機系材料、アルミニウム合金などの金属材
料が用いられる。
FIG. 1 is a schematic view of an apparatus for carrying out the method of manufacturing a magnetic recording medium of the present invention. In the figure, 1 is a non-magnetic support, and this support 1 is polyester such as polyethylene terephthalate (PET), polyamide, polyimide, polysulfone, polycarbonate, olefin resin such as polypropylene, cellulose resin,
Polymer materials such as vinyl chloride resins, inorganic materials such as glass and ceramics, and metal materials such as aluminum alloys are used.

【0011】支持体1面上には磁性膜との密着性を向上
させる為のアンダーコート層が設けられている。すなわ
ち、表面の粗さを適度に粗すことにより乾式メッキによ
り構成される磁性膜の密着性を向上させ、さらに磁気記
録媒体表面の表面粗さを適度なものとして走行性を改善
する為、例えばSiO2 等の粒子を含有させた厚さが
0.01〜0.5μmの塗膜を設けることによってアン
ダーコート層が構成されている。
An undercoat layer for improving the adhesion to the magnetic film is provided on the surface of the support 1. That is, in order to improve the adhesion of the magnetic film formed by dry plating by appropriately roughening the surface roughness and further improve the runnability by making the surface roughness of the magnetic recording medium surface moderate, for example, The undercoat layer is formed by providing a coating film containing particles such as SiO 2 and having a thickness of 0.01 to 0.5 μm.

【0012】2aは供給側ロール、2bは巻取側ロール
であって、この間を支持体1は走行するよう構成されて
いる。3は冷却キャンロール、4は遮蔽板、5はルツ
ボ、6は純度が99.95%以上のFe、7は電子銃、
8は真空容器、9は冷却キャンロール3に案内されてい
る支持体1に蒸着した膜に沿って酸素を照射する酸素ガ
ス供給ノズル、10は支持体1に蒸着した膜に向けて窒
素ラジカルを照射するラジカル照射装置である。
Reference numeral 2a is a supply side roll, 2b is a winding side roll, and the support 1 is configured to run between them. 3 is a cooling can roll, 4 is a shielding plate, 5 is a crucible, 6 is Fe with a purity of 99.95% or more, 7 is an electron gun,
Reference numeral 8 is a vacuum container, 9 is an oxygen gas supply nozzle that irradiates oxygen along the film deposited on the support 1 guided by the cooling can roll 3, and 10 is a nitrogen radical toward the film deposited on the support 1. It is a radical irradiation device for irradiation.

【0013】尚、このラジカル照射装置10は、図2に
示す如く構成されたものであり、紫外線吸収が殆どない
ガラスで構成されたガス導入管11の周囲に紫外線発生
ランプ12が巻き付けられたものであり、ガス導入管1
1の基端側から窒素ガスが供給されると、途中の経路に
おいて照射される紫外線によりラジカルが効率よく発生
し、ガス導入管11の先端側から窒素ラジカルが放出さ
れるようになっている。
The radical irradiating device 10 is constructed as shown in FIG. 2, in which an ultraviolet ray generating lamp 12 is wound around a gas introducing tube 11 made of glass which hardly absorbs ultraviolet rays. And gas introduction pipe 1
When the nitrogen gas is supplied from the base end side of No. 1, radicals are efficiently generated by the ultraviolet rays radiated along the way, and the nitrogen radicals are released from the tip end side of the gas introduction pipe 11.

【0014】そして、真空容器8内を所定の真空度のも
のに排気し、支持体1を走行させ、この状態で電子銃7
によりルツボ5内のFeを溶融・蒸発させ、支持体1に
堆積させる。この状態において、ラジカル照射装置10
から窒素ラジカルがFe蒸着膜に向けて照射されてお
り、この照射された窒素ラジカルがFeと反応し、支持
体1面上にはFex N強磁性膜が構成されることにな
る。
Then, the inside of the vacuum container 8 is evacuated to a predetermined vacuum degree, the support 1 is run, and in this state, the electron gun 7
Then, Fe in the crucible 5 is melted and evaporated, and deposited on the support 1. In this state, the radical irradiation device 10
From this, nitrogen radicals are radiated toward the Fe vapor deposition film, and the radiated nitrogen radicals react with Fe to form a Fe x N ferromagnetic film on the surface of the support 1.

【0015】又、この際、酸素ガス供給ノズル9から蒸
着(堆積)膜に向けて酸素を照射していると、表面酸化
が行われることになる。このようにして、イオンガンを
用いずとも、Fe系化合物強磁性膜が構成される。そし
て、この技術によれば、イオンガンを不要なものとした
から低廉なコストで磁気記録媒体を製造できるようにな
った。
Further, at this time, if oxygen is irradiated from the oxygen gas supply nozzle 9 toward the vapor deposition (deposition) film, surface oxidation will be performed. In this way, the Fe-based compound ferromagnetic film is formed without using an ion gun. Further, according to this technique, since the ion gun is not necessary, the magnetic recording medium can be manufactured at low cost.

【0016】更に、興味深い点は、イオンガンを用いて
成膜した場合よりも、保磁力Hcは高く、かつ、飽和磁
束密度Bsも大きいものであった。すなわち、磁気特性
に優れたものが得られた。更には、耐蝕性にも富むもの
であった。又、成膜速度も大きなものであった。
Furthermore, what is interesting is that the coercive force Hc is higher and the saturation magnetic flux density Bs is larger than that when the film is formed using an ion gun. That is, a magnetic material having excellent magnetic properties was obtained. Further, it was also excellent in corrosion resistance. In addition, the film forming rate was also high.

【0017】[0017]

【実施例】【Example】

〔実施例1〕図1に示される如くの斜め蒸着装置に厚さ
10μmのPETフィルム1を装着し、PETフィルム
1を5m/分の走行速度で走行させた。そして、酸化マ
グネシウム製のルツボ5に入れられている純度99.9
9%のFeを15kWの電子銃7を作動させて蒸発さ
せ、PETフィルム1にFeを付着・堆積させた。尚、
この時の真空容器8内は2×10-5Torrであった。
Example 1 A PET film 1 having a thickness of 10 μm was mounted on an oblique vapor deposition apparatus as shown in FIG. 1, and the PET film 1 was run at a running speed of 5 m / min. The purity of 99.9 contained in the magnesium oxide crucible 5
9% Fe was evaporated by operating the electron gun 7 of 15 kW, and Fe was deposited and deposited on the PET film 1. still,
At this time, the inside of the vacuum container 8 was 2 × 10 −5 Torr.

【0018】上記Fe蒸着時に、PETフィルム1に向
けてガス導入管11の基端側から窒素ガスを供給(30
cc/分)し、途中の経路において紫外線照射し、ガス
導入管11の先端側から窒素ラジカルを照射した。この
ようにして表面にFex N強磁性膜が1500Å厚構成
されたPETフィルム1の裏面側に、平均粒径が20n
mのカーボンブラックをウレタンプレポリマーと塩化ビ
ニル系樹脂とのバインダ樹脂中に分散させてなるバック
コート用の塗料をダイレクトグラビア法により乾燥厚さ
が0.5μmとなるように塗布し、乾燥させた。
At the time of Fe deposition, nitrogen gas is supplied toward the PET film 1 from the base end side of the gas introducing pipe 11 (30
cc / min), ultraviolet rays were irradiated in the middle of the passage, and nitrogen radicals were irradiated from the tip side of the gas introducing pipe 11. In this way, on the back surface side of the PET film 1 having the Fe x N ferromagnetic film formed on the front surface at a thickness of 1500 Å, the average particle size is 20 n.
m of carbon black was dispersed in a binder resin of urethane prepolymer and vinyl chloride resin, and a back coat paint was applied by a direct gravure method to a dry thickness of 0.5 μm and dried. .

【0019】この後、パーフルオロポリエーテル(FO
MBLIN Z DIAC カルボキシル基変性、日本
モンテジソン社製)をフッ素不活性液体(フロリナー
ト、FC−77、住友スリーエム社製)に0.1%とな
るよう希釈・分散させた塗料をダイ塗工方式により乾燥
後の厚さが20Å程度となるように金属磁性膜の表面に
塗布し、105℃で乾燥させ、所定の幅にスリットし、
磁気テープを得た。
After this, perfluoropolyether (FO
MBLIN Z DIAC Carboxyl group-modified, manufactured by Nippon Montedison Co., Ltd.) is diluted and dispersed in a fluorine-inert liquid (Fluorinert, FC-77, Sumitomo 3M Co., Ltd.) to a concentration of 0.1% and dried by a die coating method. It is applied to the surface of the metal magnetic film so that the thickness afterwards is about 20 Å, dried at 105 ° C, and slit into a predetermined width,
I got a magnetic tape.

【0020】〔実施例2〕実施例1において、成膜時
に、蒸着膜に向けて酸素を酸素ガス供給ノズル9から4
0sccm吹き付けた。 〔実施例3〕実施例1において、ガス導入管11に窒素
ガスを供給する代わりに、アンモニアと水素との混合ガ
ス(NH3 :H2 =3:1)を供給(30cc/分)し
た他は同様に行い、磁気テープを得た。
[Embodiment 2] In Embodiment 1, oxygen is supplied toward the vapor deposition film from the oxygen gas supply nozzles 9 to 4 during film formation.
It was sprayed at 0 sccm. [Third Embodiment] In the first embodiment, instead of supplying the nitrogen gas to the gas introducing pipe 11, a mixed gas of ammonia and hydrogen (NH 3 : H 2 = 3: 1) is supplied (30 cc / min). In the same manner, a magnetic tape was obtained.

【0021】〔実施例4〕実施例1において、純度9
9.99%のFeの代わりにFe−Ni合金を用いた他
は同様に行い、磁気テープを得た。 〔比較例1〕イオンアシスト斜め蒸着装置に厚さ10μ
mのPETフィルムを装着し、このPETフィルムを
0.8m/分の走行速度で走行させた。そして、酸化マ
グネシウム製のルツボに入れられている純度99.99
%のFeを15kWの電子銃を作動させて蒸発させた。
尚、この時の真空容器内は2×10-5Torrであっ
た。
[Example 4] In Example 1, the purity was 9
A magnetic tape was obtained in the same manner except that an Fe-Ni alloy was used instead of 9.99% Fe. [Comparative Example 1] Ion-assisted oblique vapor deposition apparatus with a thickness of 10 μm
m PET film was mounted and the PET film was run at a running speed of 0.8 m / min. And the purity of 99.99 put in the crucible made of magnesium oxide
% Fe was evaporated by operating a 15 kW electron gun.
The inside of the vacuum container at this time was 2 × 10 −5 Torr.

【0022】上記Fe蒸着時に、イオンガンにより窒素
イオンを蒸着膜に向けて照射し、1500Å厚のFex
N強磁性膜が構成された磁気テープを得た。 〔特性〕上記各例で得られた磁気テープについて、磁気
特性を調べたので、その結果を下記の表−1に示す。
At the time of Fe deposition, nitrogen ions are radiated toward the deposited film by an ion gun, and Fe x of 1500 Å is irradiated.
A magnetic tape having an N ferromagnetic film was obtained. [Characteristics] The magnetic characteristics of the magnetic tapes obtained in the above examples were investigated, and the results are shown in Table 1 below.

【0023】 表−1 保磁力(Oe) 飽和磁束密度(G) 耐蝕性ΔBs(%) 実施例1 2000 6000 3 実施例2 2400 4800 6 実施例3 2200 5900 3 実施例4 1700 4000 2 比較例1 1800 5000 5 *耐蝕性は5%食塩水に1週間浸けた時の飽和磁束密度
Bsの減少率 これによれば、イオンガンを用いた場合よりも磁気特性
に優れた高性能な磁気記録媒体を効率良く得られること
が判る。
Table-1 Coercive force (Oe) Saturation magnetic flux density (G) Corrosion resistance ΔBs (%) Example 1 2000 6000 3 Example 2 2400 4800 6 Example 3 2200 5900 3 Example 4 1700 4000 2 Comparative Example 1 1800 5000 5 * Corrosion resistance is the reduction rate of saturation magnetic flux density Bs when immersed in 5% saline for 1 week. This shows that a high-performance magnetic recording medium with excellent magnetic characteristics is more efficient than when an ion gun is used. It turns out that you can get it well.

【0024】又、得られた磁性膜の耐蝕性にも優れてい
ることが判る。さらには、成膜速度も大きなものであ
る。
Further, it can be seen that the obtained magnetic film is also excellent in corrosion resistance. Furthermore, the film forming rate is also high.

【0025】[0025]

【効果】本発明によれば、磁気特性及び耐蝕性に優れた
高性能な磁気記録媒体を効率良く得られる。
According to the present invention, a high-performance magnetic recording medium having excellent magnetic characteristics and corrosion resistance can be efficiently obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の磁気記録媒体製造装置の概略図FIG. 1 is a schematic view of a magnetic recording medium manufacturing apparatus of the present invention.

【図2】本発明の磁気記録媒体製造装置の要部の概略図FIG. 2 is a schematic view of a main part of a magnetic recording medium manufacturing apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 支持体 2a 供給側ロール 2b 巻取側ロール 3 冷却キャンロール 4 遮蔽板 5 ルツボ 6 純度が99.95%以上のFe 7 電子銃 8 真空容器 9 酸素ガス供給ノズル 10 ラジカル照射装置 11 ガス導入管 12 紫外線発生ランプ 1 Support 2a Supply Side Roll 2b Winding Side Roll 3 Cooling Can Roll 4 Shielding Plate 5 Crucible 6 Fe 7 Electron Gun with Purity of 99.95% or More 8 Vacuum Container 9 Oxygen Gas Supply Nozzle 10 Radical Irradiator 11 Gas Introducing Tube 12 UV lamp

───────────────────────────────────────────────────── フロントページの続き (72)発明者 若林 繁美 栃木県芳賀郡市貝町大字赤羽2606 花王株 式会社情報科学研究所内 (72)発明者 志賀 章 栃木県芳賀郡市貝町大字赤羽2606 花王株 式会社情報科学研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Shigemi Wakabayashi Inventor Shigemi Wakabayashi 2606 Akabane, Kaiga-cho, Haga-gun, Tochigi Kao Co., Ltd.Institute of Information Science (72) Inventor Akira Shiga 2606 Akabane, Kaiga-cho, Haga-gun, Tochigi Kao Company Information Science Laboratory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 磁性金属を蒸発させ、この蒸発粒子を非
磁性支持体上に堆積させる工程と、紫外線照射により発
生し、前記磁性金属と反応して磁気特性を向上させるラ
ジカルを照射する工程とを具備することを特徴とする磁
気記録媒体の製造方法。
1. A step of evaporating a magnetic metal and depositing the evaporated particles on a non-magnetic support, and a step of irradiating with radicals which are generated by irradiation of ultraviolet rays and react with the magnetic metal to improve magnetic properties. A method of manufacturing a magnetic recording medium, comprising:
【請求項2】 磁性金属が入れられる容器と、この容器
内の磁性金属を蒸発させる蒸発手段と、この蒸発手段に
より蒸発した蒸発粒子を堆積させる非磁性支持体と、紫
外線照射により発生し、前記磁性金属と反応して磁気特
性を向上させるラジカルを照射するラジカル照射手段と
を具備することを特徴とする磁気記録媒体の製造装置。
2. A container containing a magnetic metal, an evaporation means for evaporating the magnetic metal in the container, a non-magnetic support for accumulating evaporative particles evaporated by the evaporation means, and a non-magnetic support generated by ultraviolet irradiation, An apparatus for producing a magnetic recording medium, comprising: a radical irradiating unit that irradiates a radical that reacts with a magnetic metal to improve magnetic characteristics.
JP3062094A 1994-02-28 1994-02-28 Method and apparatus for manufacture of magnetic recording medium Pending JPH07244850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3062094A JPH07244850A (en) 1994-02-28 1994-02-28 Method and apparatus for manufacture of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3062094A JPH07244850A (en) 1994-02-28 1994-02-28 Method and apparatus for manufacture of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH07244850A true JPH07244850A (en) 1995-09-19

Family

ID=12308911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3062094A Pending JPH07244850A (en) 1994-02-28 1994-02-28 Method and apparatus for manufacture of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH07244850A (en)

Similar Documents

Publication Publication Date Title
US5538802A (en) Magnetic recording medium and process for producing the same
JPH01223632A (en) Method and device for manufacturing magnetic recording medium
JPH07244850A (en) Method and apparatus for manufacture of magnetic recording medium
JPH07244851A (en) Method and apparatus for manufacture of magnetic recording medium
JP2668313B2 (en) Magnetic recording medium and method of manufacturing the same
JPH08102068A (en) Formation of metal film and equipment therefor
JPS58220244A (en) Magnetic recording medium and its manufacture
JP2717611B2 (en) Magnetic recording medium and method of manufacturing the same
JPH06103552A (en) Magnetic recording medium and its production
JPH08194944A (en) Method and system for producing magnetic recording medium
JPH0974014A (en) Magnetic recording medium and manufacturing thereof
JPH08316083A (en) Production of magnetic recording medium
JPH07244846A (en) Method and apparatus for manufacture of magnetic recording medium
JPH0987840A (en) Magnetic recording medium and its production
JPH06104119A (en) Magnetic recording medium and its production
JPH087252A (en) Magnetic recording medium and its production
JPS58222439A (en) Magnetic recording medium and its manufacture
JPH0927110A (en) Magnetic recording medium and its production
JPH0963055A (en) Production of magnetic recording medium
JPH0927125A (en) Production of magnetic recording medium
JPH07311940A (en) Production of magnetic recording medium
JPH0991663A (en) Magnetic recording medium and its production
JPH09212858A (en) Production of magnetic recording medium and producing device therefor
JPH08102056A (en) Production of magnetic recording medium and device therefor
JPH06140245A (en) Magnetic recording medium and manufacture thereof