JPH07244308A - Optical wavelength conversion element and its production - Google Patents

Optical wavelength conversion element and its production

Info

Publication number
JPH07244308A
JPH07244308A JP3442794A JP3442794A JPH07244308A JP H07244308 A JPH07244308 A JP H07244308A JP 3442794 A JP3442794 A JP 3442794A JP 3442794 A JP3442794 A JP 3442794A JP H07244308 A JPH07244308 A JP H07244308A
Authority
JP
Japan
Prior art keywords
harmonic
wavelength conversion
face
conversion element
antireflection film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3442794A
Other languages
Japanese (ja)
Inventor
Kozaburo Yano
光三郎 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP3442794A priority Critical patent/JPH07244308A/en
Publication of JPH07244308A publication Critical patent/JPH07244308A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an optical wavelength conversion element constituted to realize higher efficiency, higher reliability and lower cost. CONSTITUTION:Substrate glass 4a on which an antireflection film 5 for basic waves is formed by a vacuum vapor deposition method is adhered by a UV curing resin 3a to the incident end of a glass fiber consisting of two layers; a core 1 and a clad 2. Similarly, substrate glass 4b on which an antireflection film 6 of second higher harmonic waves is formed by a vacuum vapor deposition method is adhered by a UV curing resin 3b at the exit end. The antireflection film 5 of the basic waves is formed at the incident end face, by which scattering of the basic waves at the incident end face and the loss by reflection are suppressed. The loss of the radiated second higher harmonic waves by scattering and reflect at the exit end face is prevented by the antireflection film 6 and the efficient taking out of the second higher harmonic waves is possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光波長変換素子及びそ
の製造方法に関し、より詳細には、光ディスクやレーザ
プリンタなどの光を応用した民生用機器、あるいは業務
用機器に使用できるレーザ光源としての光波長変換素子
及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light wavelength conversion element and a method for manufacturing the same, and more particularly, as a laser light source which can be used in light-applied consumer equipment such as optical disks and laser printers, or commercial equipment And a method for manufacturing the same.

【0002】[0002]

【従来の技術】光ディスク、コンパクトディスク、レー
ザディスク、あるいは光磁気ディスク等のピックアップ
用光源として、従来主に赤から赤外(650nm〜83
0nm)の波長の半導体レーザを使用しているが、記録
容量の向上を図るため、さらに短波長のレーザを光源と
して用いるための検討が現在進められている。一つは直
接青色発振が可能なII−VI族化合物半導体レーザであ
り、また一方では、既存の半導体レーザを用いてSHG
(Second Harmonic Generation:第2高調波発生)
素子によりその半分を波長のレーザ光を得ようとするも
のである。
2. Description of the Related Art As a light source for pickup of optical discs, compact discs, laser discs, magneto-optical discs, etc., conventionally, mainly from red to infrared (650 nm to 83 nm).
Although a semiconductor laser having a wavelength of 0 nm) is used, studies are currently underway to use a laser having a shorter wavelength as a light source in order to improve the recording capacity. One is a II-VI group compound semiconductor laser capable of direct blue oscillation, and the other is an SHG using an existing semiconductor laser.
(Second Harmonic Generation: Second harmonic generation)
The element is intended to obtain a laser beam having a wavelength of half of that.

【0003】特に、SHG素子を用いた短波長光源はそ
の実用性から現在盛んに研究開発が進められている。S
HG素子では高効率波長変換を実現するため、有機非線
形光学結晶に入射する基本波のエネルギーを可能な限り
減衰させないこと、また、非線形光学結晶から出射する
第2高調波を有効に素子外部へ取り出すこと、加えて有
機非線形光学結晶の劣化を防ぐことが重要である。この
ため、従来から導波路型の波長変換素子やバルク結晶を
用いる共振器型の波長変換素子において、光の入出射時
における反射や散乱によるエネルギ損失を少なくし、高
効率化を図る試みもなされている。
In particular, a short wavelength light source using an SHG element is currently under active research and development because of its practicality. S
In order to realize highly efficient wavelength conversion in the HG element, the energy of the fundamental wave incident on the organic nonlinear optical crystal should not be attenuated as much as possible, and the second harmonic wave emitted from the nonlinear optical crystal should be effectively extracted to the outside of the element. In addition, it is important to prevent the deterioration of the organic nonlinear optical crystal. For this reason, it has been attempted to reduce the energy loss due to reflection and scattering at the time of entering and exiting the light in the wavelength converting element of the waveguide type or the resonator type wavelength converting element using the bulk crystal to improve the efficiency. ing.

【0004】例えば、特開平2−254426号公報に
記載の「光波長変換素子」は、有機非線形光学材料の端
面を含む光波長変換素子の端面に、あるいは有機非線形
光学材料のバルク結晶の表面に遮断器を設けることによ
り、有機非線形光学材料の昇華や変成を防止するもので
ある。
For example, the "optical wavelength conversion element" described in Japanese Patent Application Laid-Open No. 2-254426 is on the end face of the optical wavelength conversion element including the end face of the organic nonlinear optical material or on the surface of the bulk crystal of the organic nonlinear optical material. By providing the circuit breaker, the sublimation and metamorphosis of the organic nonlinear optical material are prevented.

【0005】また、導波路型にしてもバルク型にしても
従来から考案されている方法では、誘電体多層膜あるい
は単層膜といった反射防止膜を、有機非線形光学結晶の
表面に直接製膜するといったものであり、このような誘
電体膜を作製する場合には、一般的には真空蒸着法が用
いられ、直接製膜する際には真空チャンバ内に有機非線
形光学結晶を設置しなければならず、製膜時において有
機結晶が損傷を受けてしまうといった問題があり、原理
的には高効率化が図れるものの素子作製プロセス上実現
は不可能であった。このように有機結晶の保護と反射防
止を兼ねた技術の実現の試みはなされているものの従来
技術では困難であった。
In addition, according to the conventionally devised method regardless of the waveguide type or bulk type, an antireflection film such as a dielectric multilayer film or a single layer film is directly formed on the surface of the organic nonlinear optical crystal. When forming such a dielectric film, a vacuum vapor deposition method is generally used, and an organic nonlinear optical crystal must be installed in a vacuum chamber when directly forming a film. However, there is a problem that the organic crystal is damaged during film formation, and although it is possible to achieve high efficiency in principle, it was impossible to realize in the device manufacturing process. Although attempts have been made to realize a technique that protects an organic crystal and prevents reflection as described above, it has been difficult with the conventional technique.

【0006】また、結晶端面からの基本波の反射は、そ
の反射光が一次光源へ戻った場合、強度のふらつきや一
次光源の破壊の原因となる。従来は、これを防ぐため、
ファラデー回転子のようなアイソレータを一次光源とS
HG素子の間に挿入することによって、反射による戻り
光を遮蔽していた。しかしこの場合、部品点数が増える
ことからコスト高につながるという欠点があった。
Further, the reflection of the fundamental wave from the end face of the crystal causes the fluctuation of the intensity or the destruction of the primary light source when the reflected light returns to the primary light source. Conventionally, to prevent this,
An isolator such as a Faraday rotator and a primary light source and an S
By inserting between the HG elements, the return light due to reflection was shielded. However, in this case, there is a drawback that the number of parts increases, leading to high cost.

【0007】[0007]

【発明が解決しようとする課題】光記録システムの記録
密度の向上には、上述のようにSHG素子を光源として
用いることにより対応可能であるが、SHG素子の高効
率化が重要である。そのため、上記従来技術に記載のよ
うな工夫が試みられているが、実際の素子作製が難しく
作製プロセス上実用化が困難であった。また高効率化だ
けでなく、SHG素子の入射端面からの基本波の反射に
よる戻り光は、一次光源にも悪影響を及ぼすことから、
従来から反射防止あるいは反射による戻り光の遮蔽に関
して、前述のように改良が試みられてきた。しかしなが
ら、製造方法やコストの両面において実現することが困
難であった。
The recording density of the optical recording system can be improved by using the SHG element as a light source as described above, but it is important to improve the efficiency of the SHG element. Therefore, attempts have been made as described in the above-mentioned prior art, but it is difficult to actually manufacture the element, and it is difficult to put it into practical use in the manufacturing process. In addition to high efficiency, the return light due to the reflection of the fundamental wave from the incident end face of the SHG element also adversely affects the primary light source,
Heretofore, improvements have been attempted as described above with respect to antireflection or shielding of return light by reflection. However, it was difficult to realize both in terms of manufacturing method and cost.

【0008】本発明は、このような実情に鑑みてなされ
たもので、有機非線形光学結晶の入出射端面に誘電体多
層膜あるいは単層膜を製膜したガラス基板を貼り付けた
構成を有し、高効率化、高信頼性、低コスト化の実現を
図るようにした光波長変換素子及びその製造方法を提供
することを目的としている。
The present invention has been made in view of the above circumstances, and has a structure in which a glass substrate on which a dielectric multilayer film or a single layer film is formed is attached to the input / output end face of an organic nonlinear optical crystal. It is an object of the present invention to provide an optical wavelength conversion element and a method for manufacturing the same, which are intended to realize high efficiency, high reliability, and low cost.

【0009】[0009]

【課題を解決するための手段】本発明は、上記目的を達
成するために、(1)レーザ光の波長を半分にする第2
高調波発生素子を用いた光波長変換素子において、中心
部に第2高調波発生効率の高い有機非線形光学材料で形
成されたコアと、該コアの周辺に、コアより屈折率が低
くかつ第2高調波光の光透過性のよい物質で形成された
クラッド層と、中心部の有機非線形光学材料を保護する
ために、基本波が入射する端面と第2高調波が出射する
端面に、それぞれ設けられた光透過性の高い板材とから
成ること、更には、(2)前記基本波が入射する素子端
面に貼り付けられた光透過性の高い板材の表面に、基本
波の反射を防止する反射防止膜を設けたこと、更には、
(3)前記第2高調波が出射する素子端面に貼り付けら
れた光透過性の高い板材の表面に、第2高調波の反射を
防止する反射防止膜を設けたこと、或いは、(4)有機
非線形光学材料のバルク結晶を用いた共振器構造を有す
る前記光波長変換素子の製造方法において、バルク結晶
の励起光が入射する端面と第2高調波が出射する端面
に、それぞれ光透過性の高い板材を貼り付けられて形成
し、かつ貼り付けられた光透過性の高い板材の、励起光
が入射する板材端面に、励起光の反射防止と第2高調波
の全反射の作用を合わせ持つ膜を形成し、かつ第2高調
波が出射する板材端面に、励起光の全反射と第2高調波
の反射防止の作用を合わせ持つ膜を形成することを特徴
としたものである。
According to the present invention, in order to achieve the above object, (1) the wavelength of laser light is halved.
In an optical wavelength conversion element using a harmonic wave generation element, a core formed of an organic nonlinear optical material having a high second harmonic wave generation efficiency in a central part, and a core having a refractive index lower than that of the core and formed around the core. In order to protect the clad layer formed of a material having a high transmittance of harmonic light and the organic non-linear optical material in the central portion, it is provided on the end face where the fundamental wave is incident and the end face where the second harmonic is emitted, respectively. And a high-transmissivity plate material, and (2) antireflection for preventing reflection of the fundamental wave on the surface of the high-transmissivity plate material attached to the element end face on which the fundamental wave is incident. With the provision of a membrane,
(3) An antireflection film for preventing reflection of the second harmonic is provided on the surface of a plate material having a high light transmittance, which is attached to the end face of the element from which the second harmonic is emitted, or (4) In the method of manufacturing an optical wavelength conversion element having a resonator structure using a bulk crystal of an organic nonlinear optical material, in the end surface of the bulk crystal on which the excitation light is incident and the end surface on which the second harmonic wave is emitted, a light transmissive element is used. Formed by attaching a high plate material, and having the plate material end face of the adhered high light transmitting plate on which the excitation light is incident, has both the function of preventing the reflection of the excitation light and the effect of the total reflection of the second harmonic. The present invention is characterized in that a film is formed and a film having both the total reflection of excitation light and the antireflection of the second harmonic is formed on the end surface of the plate material from which the second harmonic is emitted.

【0010】[0010]

【作用】光波長変換素子の特徴は、400nm台の波長
のレーザ光を容易に得られることである。しかしなが
ら、高効率化(ハイパワー化)を達成するためには、前
述のような問題点がある。本発明では、これらの課題を
解決するために、まず、SHG素子の入射端面に有機非
線形光学結晶の保護とその端面の反射防止を兼ねた板材
を取り付ける構造を有している。この板材には予め基本
波の反射を防止するため、誘電体多層膜あるいは単層膜
を真空蒸着法により製膜している。これをSHG素子の
入射端面に、例えばエポキシ樹脂等光学用途の接着剤に
より貼り付けて構成する。同様に、第2高調波の出射端
にも予め第2高調波の反射を防止する反射防止膜を製膜
し、出射端に貼り付ける。
A feature of the light wavelength conversion element is that laser light having a wavelength in the 400 nm range can be easily obtained. However, in order to achieve high efficiency (high power), there are the above-mentioned problems. In order to solve these problems, the present invention firstly has a structure in which a plate material that protects the organic nonlinear optical crystal and prevents the reflection of the end face is attached to the incident end face of the SHG element. In order to prevent reflection of the fundamental wave, a dielectric multilayer film or a single layer film is previously formed on this plate material by a vacuum evaporation method. This is attached to the incident end face of the SHG element with an adhesive for optical use such as epoxy resin. Similarly, an antireflection film for preventing reflection of the second harmonic is formed in advance on the emitting end of the second harmonic and is attached to the emitting end.

【0011】本発明のような構造とすることで、まず、
素子の入出射端面における有機非線形光学材料と空気と
の接触を遮蔽でき、それによる有機非線形光学材料の昇
華や変性による劣化を防止できる作用がある。次に、素
子の入出射端面に取り付ける反射防止膜により、入射端
面からの反射を防ぎ、効率よく非線形光学結晶に基本波
を結合させることを可能ならしめる作用があるととも
に、入射端からの反射が少なくなることから、一次光源
への戻り光による素子劣化を防止できる作用を有する。
出射端面に取り付ける反射防止膜は、基本的に入射端面
に取り付けるものとは異なり、光波長変換素子により発
生した第2高調波を素子内部で反射による損失を生じる
ことなく、素子外部に有効に取り出せる作用を有してい
る。前述のように、素子性能に関する作用としては、一
次光源、有機非線形光学材料を含めた光波長変換素子全
体の特性劣化を防止するだけでなく、高効率の波長変換
特性を持たせられること、並びに効率よく発生した第2
高調波を素子外部に取り出せるようにしていることか
ら、高効率、長寿命、高信頼性の光波長変換素子を実現
できる。
With the structure of the present invention, first,
There is an effect that the contact between the organic nonlinear optical material and the air on the input / output end face of the element can be shielded, and thereby the deterioration of the organic nonlinear optical material due to sublimation or modification can be prevented. Next, an anti-reflection film attached to the input / output end face of the element has the function of preventing reflection from the incident end face, allowing the fundamental wave to be efficiently coupled to the nonlinear optical crystal, and reflecting from the incident end. Since the amount is small, it has an effect of preventing element deterioration due to the return light to the primary light source.
The antireflection film attached to the emitting end face is basically different from the one attached to the incident end face, and the second harmonic generated by the optical wavelength conversion element can be effectively taken out to the outside of the element without causing loss due to reflection inside the element. Has an effect. As described above, as the function relating to the element performance, not only preventing the characteristic deterioration of the entire optical wavelength conversion element including the primary light source and the organic nonlinear optical material, but also providing a highly efficient wavelength conversion characteristic, and Second efficiently generated
Since the harmonics can be taken out of the device, it is possible to realize an optical wavelength conversion device with high efficiency, long life and high reliability.

【0012】さらに、本発明による光波長変換素子の製
造方法は、基本波用及び第2高調波用の反射防止膜をそ
れぞれ個別にまず板材の表面に製膜した後、大気中でS
HG素子の入出射端面に取り付けるという製造プロセス
を採用しており、従来技術に記載のように、直接有機非
線形光学結晶の表面に製膜する場合と比較して製膜時点
での結晶の昇華や変性といった劣化を防止できる作用が
ある。また、本製造プロセスを採用することは実用的な
光波長変換素子を製造する上で非常に重要なことであ
る。
Further, in the method of manufacturing an optical wavelength conversion element according to the present invention, the antireflection films for the fundamental wave and the second harmonic wave are individually formed on the surface of the plate material first, and then S
The manufacturing process of attaching to the input / output end face of the HG element is adopted, and as described in the prior art, the sublimation of the crystal at the time of film formation and the case of directly forming a film on the surface of the organic nonlinear optical crystal are performed. It has an effect of preventing deterioration such as denaturation. Further, the adoption of this manufacturing process is very important in manufacturing a practical optical wavelength conversion element.

【0013】また、光ディスクや光磁気ディスクに代表
される光記録システムの記録密度を向上させるために
は、超解像を利用するなどシステムサイドでの改良もさ
ることながら、光源に従来よりも短波長のレーザを用い
ることが有用である。さらに、本発明の光波長変換素子
では上述の通り、高効率化、耐環境性、低コスト化、長
寿命化、信頼性の向上とともに、製造方法の改良により
実用性の高い光波長変換素子を製造することが可能であ
る。
In addition, in order to improve the recording density of an optical recording system represented by an optical disk or a magneto-optical disk, the light source is shorter than the conventional one, in addition to the improvement on the system side such as utilizing super-resolution. It is useful to use a wavelength laser. Furthermore, in the optical wavelength conversion element of the present invention, as described above, a highly practical optical wavelength conversion element can be provided by improving the manufacturing method while improving efficiency, environment resistance, cost reduction, long life, and reliability improvement. It is possible to manufacture.

【0014】[0014]

【実施例】実施例について、図面を参照して以下に説明
する。図1は、本発明による光波長変換素子の一実施例
を説明するための構成図で、ファイバ導波路型SHG素
子の構成図である。図中、1はコア、2はクラッド、3
a,3bは紫外線硬化樹脂、4a,4bは基板ガラス、
5は反射防止膜(基本波用)、6は反射防止膜(第2高
調波用)、7は基本波、8は第2高調波である。基本構
成としては、コア1とクラッド2の2層からなるガラス
ファイバに、入射端には基板ガラス4aに基本波の反射
防止膜5を真空蒸着法で製膜したものを紫外線硬化樹脂
3aで接着し、また同様に出射端には基板ガラス4bに
第2高調波の反射防止膜6を真空蒸着法で製膜したもの
を紫外線硬化樹脂3bで接着して設けたものである。
Embodiments will be described below with reference to the drawings. FIG. 1 is a configuration diagram for explaining an embodiment of an optical wavelength conversion device according to the present invention, which is a configuration diagram of a fiber waveguide type SHG device. In the figure, 1 is a core, 2 is a clad, 3
a and 3b are ultraviolet curable resins, 4a and 4b are substrate glass,
Reference numeral 5 is an antireflection film (for a fundamental wave), 6 is an antireflection film (for a second harmonic), 7 is a fundamental wave, and 8 is a second harmonic. As a basic configuration, a glass fiber consisting of two layers of a core 1 and a clad 2 is bonded at the incident end with a substrate glass 4a on which an antireflection film 5 of a fundamental wave is formed by a vacuum deposition method with an ultraviolet curable resin 3a. Similarly, at the exit end, the substrate glass 4b is provided with a second harmonic antireflection film 6 formed by a vacuum vapor deposition method and bonded with an ultraviolet curable resin 3b.

【0015】入射端面に基本波の反射防止膜5を形成す
ることにより、入射端面での基本波の散乱や反射による
損失を抑制し、そのため非常に効率よくコア1内に結合
された基本波7は屈折率の高いコア1内に閉じ込められ
伝播し、該コア1の非線形材料との相互作用により発生
した第2高調波8は、コア1とクラッド2の相互の屈折
率で決まるある角度でクラッド2の内部に放射される。
放射された第2高調波はクラッド層2を伝播し、出射端
面より取り出されるが、この時、出射端面に形成された
第2高調波の反射防止膜6により、出射端面での第2高
調波の散乱や反射による損失なく、効率的に第2高調波
を取り出すことができる。
By forming the antireflection film 5 for the fundamental wave on the incident end face, the loss due to scattering and reflection of the fundamental wave on the incident end face is suppressed, and therefore the fundamental wave 7 coupled in the core 1 very efficiently. Is propagated while being confined in the core 1 having a high refractive index, and the second harmonic wave 8 generated by the interaction with the nonlinear material of the core 1 is clad at an angle determined by the mutual refractive index of the core 1 and the clad 2. 2 is emitted inside.
The radiated second harmonic propagates through the cladding layer 2 and is taken out from the emitting end face. At this time, the second harmonic antireflection film 6 formed on the emitting end face causes the second harmonic at the emitting end face. It is possible to efficiently extract the second harmonic without loss due to scattering and reflection.

【0016】本実施例では、クラッドガラスにFD11
(米国ショット社の重フリント系ガラス)、コア材料に
3,5−ジメチル−1−(4−ニトロフェニル)ピラゾ
ール(PRA)、コア径:1.4μm、外径:1mmの
ファイバー導波路型SHG素子を用いた。また、本発明
による特徴である基本波及び第2高調波の反射防止膜は
MgF2単層膜(入射側膜厚:0.16μm、出射側膜
厚:0.08μm)を用いた。
In this embodiment, FD11 is used as the cladding glass.
(Heavy flint glass from Schott, USA), 3,5-dimethyl-1- (4-nitrophenyl) pyrazole (PRA) as the core material, fiber waveguide type SHG with a core diameter of 1.4 μm and an outer diameter of 1 mm. A device was used. A MgF 2 single layer film (incident side film thickness: 0.16 μm, emission side film thickness: 0.08 μm) was used as the antireflection film for the fundamental wave and the second harmonic, which is a feature of the present invention.

【0017】図2は、本実施例に用いたMgF2単層反
射防止膜の反射率の波長依存性を示す。この結果により
反射率は入出射側ともに1.5%以下に抑えられ、基本
波の結合効率及び第2高調波の出射効率の向上に寄与し
ていることが分る。
FIG. 2 shows the wavelength dependence of the reflectance of the MgF 2 single-layer antireflection film used in this example. From this result, it can be seen that the reflectance is suppressed to 1.5% or less on both the input and output sides, which contributes to the improvement of the coupling efficiency of the fundamental wave and the emission efficiency of the second harmonic.

【0018】図3(a)〜(c)は、本発明によるSH
G素子の製造方法の一実施例を示す図で、図中の参照番
号は図1と同じである。まず、図(a)に示すように、
両面を光学研磨し、洗浄により油分や水分を十分に除去
したガラス基板4aを用意し、該ガラス基板4a上に入
射基本波の反射防止膜5を真空蒸着法にて製膜する。同
様に、図(b)に示すように、別のガラス基板4bを用
意し、第2高調波の反射防止膜6を真空蒸着法にて製膜
する。次に、図(c)に示すように、FD11をクラッ
ドガラスとする中空キャピラリ内に、コア材料である
3,5−ジメチル−1−(4−ニトロフェニル)ピラゾ
ールを充填、結晶化したファイバを用意し、該ファイバ
の両端面に、紫外線硬化樹脂3a,3b、あるいはエポ
キシ樹脂等の接着剤を塗布し、予め用意した基本波用反
射防止膜付きガラス基板4aを入射側端面に、第2高調
波用反射防止膜付きガラス基板4bを出射側端面に接着
して封止する。上述のように本発明による製造方法では
有機非線形光学結晶を真空中に暴露することなく作るこ
とが可能となる。
3 (a) to 3 (c) show SH according to the present invention.
It is a figure which shows one Example of the manufacturing method of G element, The reference number in a figure is the same as FIG. First, as shown in FIG.
A glass substrate 4a having both surfaces optically polished and sufficiently removed of oil and water by washing is prepared, and an incident fundamental wave antireflection film 5 is formed on the glass substrate 4a by a vacuum deposition method. Similarly, as shown in FIG. 2B, another glass substrate 4b is prepared, and the second harmonic antireflection film 6 is formed by the vacuum evaporation method. Next, as shown in FIG. (C), a hollow capillary having FD11 as a cladding glass is filled with 3,5-dimethyl-1- (4-nitrophenyl) pyrazole as a core material to crystallize a fiber. An ultraviolet curing resin 3a, 3b, or an adhesive such as an epoxy resin is applied to both end faces of the fiber, and a glass substrate 4a with an antireflection film for a fundamental wave prepared in advance is applied to the incident side end face as the second harmonic. The glass substrate 4b with the antireflection film for waves is adhered and sealed to the end face on the emission side. As described above, the manufacturing method according to the present invention makes it possible to manufacture an organic nonlinear optical crystal without exposing it to a vacuum.

【0019】なお、本実施例で用いたコア材料は、3,
5−ジメチル−1−(4−ニトロフェニル)ピラゾール
に限らず、MNA(ジメチルニトロアニリン),DAN
(4−(N,N−dimethylamino)−3−acetoamindoni
trobenzene)といった他の有機非線形物質を用いても同
様の効果が得られる。また、クラッド材料については、
コア材料よりも屈折率の低い材料であればよく、本実施
例にて使用した材料に限るものではない。また、基本波
及び第2高調波用の反射防止膜についても、各々の波長
での透過特性を満足すれば、誘電体多層膜や単層膜に限
る必要はない。同様にガラス基板や素子との接着剤につ
いても基本波及び第2高調波の透過率の高い材料であれ
ば本実施例に限らず用いることが可能である。
The core material used in this example is 3,
Not limited to 5-dimethyl-1- (4-nitrophenyl) pyrazole, MNA (dimethylnitroaniline), DAN
(4- (N, N-dimethylamino) -3-acetoamindoni
The same effect can be obtained by using other organic nonlinear substances such as trobenzene). Regarding the clad material,
Any material may be used as long as it has a lower refractive index than the core material, and is not limited to the material used in this embodiment. Also, the antireflection film for the fundamental wave and the second harmonic need not be limited to the dielectric multilayer film or the single layer film as long as the transmission characteristics at each wavelength are satisfied. Similarly, as the adhesive for the glass substrate and the element, any material having a high transmittance of the fundamental wave and the second harmonic can be used without being limited to this embodiment.

【0020】図4は、本発明におけるバルク結晶を用い
た共振器型SHG素子の構成図で、図中、9は有機非線
形光学結晶、10は半導体レーザチップ、11はヒート
シンク、12は半導体レーザ光反射防止膜(固体レーザ
媒質励起光全反射膜)、13は固体レーザ媒質、14
a,14bは接着剤、15a,15bはガラス基板、1
6は固体レーザ媒質励起光反射防止膜(第2高調波全反
射膜)、17は固体レーザ媒質励起全反射膜(第2高調
波反射防止膜)、18は半導体レーザ光、19は固体レ
ーザ媒質励起光、20は第2高調波である。
FIG. 4 is a block diagram of a resonator type SHG element using a bulk crystal according to the present invention. In the figure, 9 is an organic nonlinear optical crystal, 10 is a semiconductor laser chip, 11 is a heat sink, and 12 is a semiconductor laser beam. Antireflection film (solid laser medium pumping light total reflection film), 13 is solid laser medium, 14
a, 14b are adhesives, 15a, 15b are glass substrates, 1
Reference numeral 6 is a solid laser medium pumping light antireflection film (second harmonic total reflection film), 17 is a solid laser medium pumping total reflection film (second harmonic antireflection film), 18 is a semiconductor laser light, and 19 is a solid laser medium. Excitation light, 20 is the second harmonic.

【0021】基本構成としては、半導体レーザチップ1
0と固体レーザ媒質13並びに有機非線形光学結晶9か
らなる。用いる半導体レーザチップ10は、固体レーザ
媒質13の励起用で発振波長は809nmの半導体レー
ザ光18を出射する。固体レーザ媒質13は、本実施例
ではYVO4を用い、両面を光学研磨した後、入射側端
面に809nmのレーザ光に対して反射防止、吸収励起
により発生した励起光に対して全反射の作用を有する誘
電体多層膜(12)を真空蒸着法にて製膜して作製して
いる。
The semiconductor laser chip 1 has a basic structure.
0, a solid-state laser medium 13 and an organic nonlinear optical crystal 9. The semiconductor laser chip 10 used is for exciting the solid-state laser medium 13 and emits a semiconductor laser light 18 having an oscillation wavelength of 809 nm. In the present embodiment, YVO 4 is used as the solid-state laser medium 13, and after both surfaces are optically polished, the incident side end face is anti-reflective with respect to the laser beam of 809 nm, and the action of total reflection is performed with respect to the excitation light generated by absorption excitation. The dielectric multi-layered film (12) having is formed by a vacuum deposition method.

【0022】また、前述した図1及び図3の実施例1と
同様に有機非線形光学結晶(本実施例では実施例1と同
様、3,5−ジメチル−1−(4−ニトロフェニル)ピ
ラゾールのバルク結晶を用いている)の入出射両端面
に、入射端には基板ガラス15に固体レーザ媒質13に
より励起された励起光19波長に対する反射防止膜16
を真空蒸着法で製膜したものを紫外線硬化樹脂14で接
着し、また出射端には基板ガラス15に第2高調波の反
射防止膜17を真空蒸着法で製膜したものを紫外線硬化
樹脂14で接着して構成される。
Further, an organic nonlinear optical crystal (in this example, 3,5-dimethyl-1- (4-nitrophenyl) pyrazole was prepared similarly to Example 1 in FIGS. 1 and 3 described above. (A bulk crystal is used), and an antireflection film 16 for 19 wavelengths of excitation light excited by the solid-state laser medium 13 in the substrate glass 15
Which is formed by a vacuum vapor deposition method is adhered with an ultraviolet curable resin 14, and at the emitting end, a substrate glass 15 on which an antireflection film 17 for the second harmonic is formed by a vacuum vapor deposition method is used as an ultraviolet curable resin 14. It is composed by bonding with.

【0023】またこの場合、反射防止膜16は励起光に
対しては反射防止の作用を有するが、有機非線形結晶内
で発生した第2高調波に対しては全反射膜として作用す
るように設計されている。同様に、反射防止膜17は第
2高調波に対しては反射防止の作用を有するが、励起光
に対しては全反射膜として作用するように設計されてい
る。
Further, in this case, the antireflection film 16 has an antireflection function for the excitation light, but is designed so as to act as a total reflection film for the second harmonic generated in the organic nonlinear crystal. Has been done. Similarly, the antireflection film 17 has an antireflection effect on the second harmonic, but is designed to act as a total reflection film on the excitation light.

【0024】このようにして光波長変換素子を構成する
ことにより、固体レーザ媒質13で励起された励起光1
9は、固体レーザ媒質13の入射端面と有機非線形光学
結晶9の出射端面との間で共振構造となり、共振器内部
の励起光パワーが増幅され、そのため発生する第2高調
波の効率向上に大きく寄与することになる。なお、共振
器長の調整は、固体レーザ媒質13と有機非線形光学結
晶9の距離を調節することにより、容易に調整すること
が可能である。また、本発明による特徴である半導体レ
ーザ光、固体レーザ媒質による励起光及び第2高調波の
反射防止膜、全反射膜は本実施例では、Na3AiF6
ZnSの2層周期構造(光学膜厚λ/4)を有する誘電
体多層膜を用いた。
By constructing the optical wavelength conversion element in this way, the pumping light 1 excited by the solid-state laser medium 13
9 has a resonance structure between the incident end face of the solid-state laser medium 13 and the emitting end face of the organic nonlinear optical crystal 9, the pumping light power inside the resonator is amplified, and the efficiency of the second harmonic generated is greatly improved. Will contribute. The cavity length can be easily adjusted by adjusting the distance between the solid-state laser medium 13 and the organic nonlinear optical crystal 9. Further, the semiconductor laser light, the excitation light by the solid-state laser medium, the antireflection film for the second harmonic, and the total reflection film, which are the features of the present invention, are the two-layer periodic structure of Na 3 AiF 6 and ZnS (optical). A dielectric multilayer film having a film thickness λ / 4) was used.

【0025】図5(a)〜(c)は、本発明によるSH
G素子の製造方法の他の実施例を示す図で、図中の参照
番号は図4と同じである。実施例1と全く同様のプロセ
スにて製造することができる。まず、図(a)に示すよ
うに、両面を光学研磨し、洗浄により油分や水分を十分
に除去したガラス基板15aを用意し、該ガラス基板1
5a上に励起光の反射防止膜、かつ第2高調波の全反射
膜16を真空蒸着法にて製膜する。同様に、図(b)に
示すように、別のガラス基板15bを用意し、第2高調
波の反射防止膜、かつ励起光の全反射膜17を真空蒸着
法にて製膜をする。
FIGS. 5A to 5C show SH according to the present invention.
It is a figure which shows the other Example of the manufacturing method of G element, The reference number in a figure is the same as FIG. It can be manufactured by the same process as in the first embodiment. First, as shown in FIG. 1A, a glass substrate 15a is prepared by optically polishing both surfaces and sufficiently removing oil and water by washing.
An anti-reflection film for the excitation light and a total reflection film 16 for the second harmonic are formed on 5a by a vacuum evaporation method. Similarly, as shown in FIG. 6B, another glass substrate 15b is prepared, and the antireflection film for the second harmonic and the total reflection film 17 for the excitation light are formed by the vacuum evaporation method.

【0026】次に、図(c)に示すように、溶媒蒸発法
により予め結晶成長させておいて、3,5−ジメチル−
1−(4−ニトロフェニル)ピラゾールのバルク結晶9
を用意し、該バルク結晶9の両端面に、紫外線硬化樹脂
14a,14b、あるいはエポキシ樹脂等の接着剤を塗
布し、上述により作製しておいたガラス基板15a,1
5bを各々入射側と出射側とに接着し、その後、半導体
レーザ、固体レーザ媒質と組み合わせて製造が完了す
る。上述のように、本発明による製造方法では、有機非
線形光学結晶を真空中に暴露することなく作ることが可
能となる。
Next, as shown in FIG. 3C, crystals are grown in advance by a solvent evaporation method, and 3,5-dimethyl-
Bulk crystal of 1- (4-nitrophenyl) pyrazole 9
Of the glass substrate 15a, 1 prepared in the above manner by applying an adhesive such as an ultraviolet curable resin 14a, 14b or an epoxy resin to both end faces of the bulk crystal 9.
5b is adhered to each of the incident side and the emitting side, and then the semiconductor laser and the solid-state laser medium are combined to complete the manufacturing. As described above, the manufacturing method according to the present invention makes it possible to manufacture an organic nonlinear optical crystal without exposing it to vacuum.

【0027】なお、共振器型光波長変換素子の場合では
実施例1と異なり、有機非線形光学結晶全体を完全に大
気と遮断することはできず、ガラス基板で保護できるの
は少なくとも入出射の両端面のみであるため、本実施例
では素子の安定性確保のためには、ArやN2といった
不活性ガスで素子内部をパージしておく必要がある。
In the case of the resonator type optical wavelength conversion element, unlike the first embodiment, the entire organic nonlinear optical crystal cannot be completely shielded from the atmosphere, and the glass substrate can protect at least both ends of the input and output. In this embodiment, in order to secure the stability of the device, it is necessary to purge the inside of the device with an inert gas such as Ar or N 2 because it is only the surface.

【0028】また、本実施例で用いたバルク材料は、
3,5−ジメチル−1−(4−ニトロフェニル)ピラゾ
ールに限らず、カルコン、DANといった他の有機非線
形物質を用いても同様の効果が得られる。また、半導体
レーザ光、固体レーザ媒質による励起光及び第2高調波
用の反射防止膜、かつ全反射膜については、各々の波長
での透過あるいは反射特性を満足すれば、誘電体多層膜
に限る必要はない。同様にガラス基板や素子との接着剤
についても、固体レーザ媒質による励起光及び第2高調
波の透過率の高い材料であれば、本実施例に限らず用い
ることが可能である。
The bulk material used in this example is
The same effect can be obtained by using not only 3,5-dimethyl-1- (4-nitrophenyl) pyrazole but also other organic nonlinear substances such as chalcone and DAN. Further, the semiconductor laser light, the excitation light by the solid-state laser medium, the antireflection film for the second harmonic, and the total reflection film are limited to the dielectric multilayer film as long as the transmission or reflection characteristics at each wavelength are satisfied. No need. Similarly, the adhesive for the glass substrate and the element can be used as long as it is a material having a high transmittance for the excitation light and the second harmonic by the solid-state laser medium, without being limited to this embodiment.

【0029】[0029]

【発明の効果】以上の説明から明らかなように、本発明
による波長変換素子では、ファイバ型においては、コア
材料の保護ができ、従来に比べて長寿命で信頼性が高
く、かつ安定性に優れるという効果が期待できる。ま
た、基本波を効率よくファイバ内に結合させることがで
き、加えて発生する第2高調波も効率よく素子外部に取
り出すことができることから、光波長変換素子の波長変
換効率を高められる効果も期待できる。また、共振器型
においても、有機非線形光学結晶の直接的な保護は除い
て、上記ファイバ型と同様の効果が期待できる。さらに
製造方法においても、コーティングの際に直接有機非線
形光学結晶を真空中にさらすことなく製造することがで
き、波長変換素子の製造歩留りの向上とともに、従来の
電子デバイスや光デバイスのプロセスが応用できること
から、低コストで作ることができ、本発明のもたらす経
済効果は大きい。さらに、短波長レーザ光源として光シ
ステムへの応用が可能となる。
As is apparent from the above description, in the wavelength conversion element according to the present invention, in the fiber type, the core material can be protected, the life is longer, the reliability is higher than the conventional one, and the stability is stable. The effect of being excellent can be expected. In addition, since the fundamental wave can be efficiently coupled into the fiber and the generated second harmonic can be efficiently extracted to the outside of the element, it is expected that the wavelength conversion efficiency of the optical wavelength conversion element can be improved. it can. Further, also in the resonator type, the same effect as that of the fiber type can be expected except for the direct protection of the organic nonlinear optical crystal. Furthermore, in the manufacturing method as well, it is possible to manufacture the organic nonlinear optical crystal directly without exposing it to a vacuum at the time of coating, and it is possible to improve the manufacturing yield of the wavelength conversion element and to apply the processes of conventional electronic devices and optical devices. Therefore, it can be manufactured at low cost, and the economic effect of the present invention is great. Further, it can be applied to an optical system as a short wavelength laser light source.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による光波長変換素子(ファイバチェ
レンコフ型SHG素子)の一実施例を説明するための構
造図である。
FIG. 1 is a structural diagram for explaining an embodiment of an optical wavelength conversion device (fiber Cherenkov type SHG device) according to the present invention.

【図2】 本発明による単層反射防止膜の反射特性図で
ある。
FIG. 2 is a reflection characteristic diagram of a single-layer antireflection film according to the present invention.

【図3】 本発明によるファイバ型並びに共振器型SH
G素子の製造方法を説明するための図である。
FIG. 3 Fiber type and resonator type SH according to the present invention
It is a figure for demonstrating the manufacturing method of a G element.

【図4】 本発明による共振器型SHG素子の構造図で
ある。
FIG. 4 is a structural diagram of a resonator type SHG element according to the present invention.

【図5】 本発明による共振器型SHG素子の製造方法
を説明するための図である。
FIG. 5 is a drawing for explaining the manufacturing method of the resonator type SHG element according to the present invention.

【符号の説明】[Explanation of symbols]

1…コア、2…クラッド、3a,3b…接着剤、4a,
4b…ガラス基板、5…基本波反射防止膜、6…第2高
調波反射防止膜、7…基本波、8…第2高調波、9…有
機非線形光学結晶、10…半導体レーザチップ、11…
ヒートシンク、12…半導体レーザ光反射防止膜(固体
レーザ媒質励起光全反射膜)、13…固体レーザ媒質、
14a,14b…接着剤、15a,15b…ガラス基
板、16…固体レーザ媒質励起光反射防止膜(第2高調
波全反射膜)、17…固体レーザ媒質励起光全反射膜
(第2高調波反射防止膜)、18…半導体レーザ光、1
9…固体レーザ媒質励起光、20…第2高調波。
1 ... Core, 2 ... Clad, 3a, 3b ... Adhesive, 4a,
4b ... Glass substrate, 5 ... Fundamental wave antireflection film, 6 ... Second harmonic antireflection film, 7 ... Fundamental wave, 8 ... Second harmonic wave, 9 ... Organic nonlinear optical crystal, 10 ... Semiconductor laser chip, 11 ...
Heat sink, 12 ... Semiconductor laser light antireflection film (solid laser medium excitation light total reflection film), 13 ... Solid laser medium,
14a, 14b ... Adhesive, 15a, 15b ... Glass substrate, 16 ... Solid-state laser medium pumping light antireflection film (second harmonic total reflection film), 17 ... Solid-state laser medium pumping light total reflection film (second harmonic reflection) Prevention film), 18 ... Semiconductor laser light, 1
9 ... Solid-state laser medium excitation light, 20 ... Second harmonic wave.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 レーザ光の波長を半分にする第2高調波
発生素子を用いた光波長変換素子において、中心部に第
2高調波発生効率の高い有機非線形光学材料で形成され
たコアと、該コアの周辺に、コアより屈折率が低くかつ
第2高調波光の光透過性のよい物質で形成されたクラッ
ド層と、中心部の有機非線形光学材料を保護するため
に、基本波が入射する端面と第2高調波が出射する端面
に、それぞれ設けられた光透過性の高い板材とから成る
ことを特徴とする光波長変換素子。
1. A light wavelength conversion element using a second harmonic generation element that halves the wavelength of laser light, wherein a core formed of an organic nonlinear optical material having a high second harmonic generation efficiency is provided in the central portion, A fundamental wave is incident on the periphery of the core in order to protect the clad layer formed of a substance having a lower refractive index than that of the core and having a high light transmittance of the second harmonic light, and the organic nonlinear optical material in the central portion. An optical wavelength conversion element comprising: a plate material having high light transmittance, which is provided on each of the end surface and the end surface from which the second harmonic wave is emitted.
【請求項2】 前記基本波が入射する素子端面に貼り付
けられた光透過性の高い板材の表面に、基本波の反射を
防止する反射防止膜を設けたことを特徴とする請求項1
記載の光波長変換素子。
2. An antireflection film for preventing reflection of a fundamental wave is provided on a surface of a plate material having a high light transmittance attached to an end face of an element on which the fundamental wave is incident.
The optical wavelength conversion element described.
【請求項3】 前記第2高調波が出射する素子端面に貼
り付けられた光透過性の高い板材の表面に、第2高調波
の反射を防止する反射防止膜を設けたことを特徴とする
請求項1記載の光波長変換素子。
3. An antireflection film for preventing reflection of the second harmonic is provided on the surface of a plate material having a high light transmittance, which is attached to the end face of the element from which the second harmonic is emitted. The optical wavelength conversion element according to claim 1.
【請求項4】 有機非線形光学材料のバルク結晶を用い
た共振器構造を有する前記光波長変換素子の製造方法に
おいて、バルク結晶の励起光が入射する端面と第2高調
波が出射する端面に、それぞれ光透過性の高い板材を貼
り付けられて形成し、かつ貼り付けられた光透過性の高
い板材の、励起光が入射する板材端面に、励起光の反射
防止と第2高調波の全反射の作用を合わせ持つ膜を形成
し、かつ第2高調波が出射する板材端面に、励起光の全
反射と第2高調波の反射防止の作用を合わせ持つ膜を形
成することを特徴とする光波長変換素子の製造方法。
4. The method for manufacturing an optical wavelength conversion device having a resonator structure using a bulk crystal of an organic nonlinear optical material, wherein the end face of the bulk crystal on which the excitation light is incident and the end face on which the second harmonic wave is emitted, Each plate is formed by attaching a plate material with high light transparency, and the end faces of the plate materials with high light transparency that are attached and on which the excitation light is incident prevent the reflection of the excitation light and totally reflect the second harmonic. And a film having both functions of total reflection of excitation light and antireflection of second harmonics are formed on the end surface of the plate material from which the second harmonics are emitted. Method for manufacturing wavelength conversion element.
JP3442794A 1994-03-04 1994-03-04 Optical wavelength conversion element and its production Pending JPH07244308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3442794A JPH07244308A (en) 1994-03-04 1994-03-04 Optical wavelength conversion element and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3442794A JPH07244308A (en) 1994-03-04 1994-03-04 Optical wavelength conversion element and its production

Publications (1)

Publication Number Publication Date
JPH07244308A true JPH07244308A (en) 1995-09-19

Family

ID=12413922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3442794A Pending JPH07244308A (en) 1994-03-04 1994-03-04 Optical wavelength conversion element and its production

Country Status (1)

Country Link
JP (1) JPH07244308A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3620830A1 (en) 2018-09-04 2020-03-11 ARKRAY, Inc. Optical element and method of producing optical element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3620830A1 (en) 2018-09-04 2020-03-11 ARKRAY, Inc. Optical element and method of producing optical element
CN110927832A (en) * 2018-09-04 2020-03-27 爱科来株式会社 Optical element and method for manufacturing optical element
US11619765B2 (en) 2018-09-04 2023-04-04 Arkray, Inc. Optical element and method of producing optical element

Similar Documents

Publication Publication Date Title
US4951293A (en) Frequency doubled laser apparatus
KR20070085534A (en) Nonlinear crystal modifications for durable high-power laser wavelength conversion
US5197072A (en) Optical wavelength converting device, and laser diode pumped solid laser
KR0174775B1 (en) Lasing system with wavelength=conversion waveguide
JP2003270467A (en) Method of manufacturing optical waveguide device, optical waveguide device, and coherent light source and optical apparatus using the optical waveguide device
JPH07244308A (en) Optical wavelength conversion element and its production
JP2004349325A (en) Light wavelength converter and its manufacturing method
JPH03150509A (en) Method for connecting between waveguide substrate and optical fiber, and reflection preventive film with ultraviolet-ray cutting-off function used for the method
JP4352944B2 (en) Optical circuit manufacturing method
US5741595A (en) Ultraviolet optical part having coat of ultraviolet optical thin film, and wavelength-changing device and ultraviolet light source unit having coat of ultraviolet optical thin film
JPH07209680A (en) Optical wavelength conversion element and its production as well as laser unit
JPS61189686A (en) Laser device
JP2001264832A (en) Short wavelength laser light source
JP2002107778A (en) Up-conversion optical element
JP2003227931A (en) Polarizer incorporating optical component, method of manufacturing the same and method of combining linearly polarized wave using the same
JP3067313B2 (en) Solid-state laser device
JP2019518984A (en) Compact and effective beam absorber for frequency conversion lasers
JP2663197B2 (en) Laser diode pumped solid state laser
JP2734934B2 (en) Solid state laser
JPH02219032A (en) Optical wavelength converting element
JP2001021772A (en) Laser diode module
JPS62262835A (en) Optical waveguide type wavelength converting element
JPH05100268A (en) Light wavelength converting element
JPH07244307A (en) Short-wavelength light generator
JPH06265952A (en) Optical wavelength converting element