JPH05100268A - Light wavelength converting element - Google Patents

Light wavelength converting element

Info

Publication number
JPH05100268A
JPH05100268A JP3260662A JP26066291A JPH05100268A JP H05100268 A JPH05100268 A JP H05100268A JP 3260662 A JP3260662 A JP 3260662A JP 26066291 A JP26066291 A JP 26066291A JP H05100268 A JPH05100268 A JP H05100268A
Authority
JP
Japan
Prior art keywords
light
clad
wavelength conversion
conversion element
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3260662A
Other languages
Japanese (ja)
Inventor
Naota Uenishi
直太 上西
Takafumi Uemiya
崇文 上宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3260662A priority Critical patent/JPH05100268A/en
Publication of JPH05100268A publication Critical patent/JPH05100268A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To minimize the absorption of harmful light and prevent deterioration by providing a light shield layer on the external surface of a light wavelength converting element except in the light incidence area on a light incidence end surface and the light projection area on a light projection end surface. CONSTITUTION:The light wavelength converting element 4 is constituted into an optical fiber type and has a core 41 and a clad 42, and the light shield layer 43 is formed at the outer periphery of the clad 42 except the light incidence and projection end surfaces 44 and 45. In this case, when laser light is made incident on the core 41 of the light wavelength converting element 4, Cherenkov radiation based upon the laser light as a fundamental wave is caused and a generated secondary higher harmonic is projected and emitted while diffused in a ring shape. The projection converted light is collimated, further converged, and used for reading operation. At this time, the outer periphery is covered with the light shield layer 43, so light having wavelength which causes harmful optical deterioration is prevented from entering the core 41 or clad 42 from outside.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、円柱状光導波部(コ
ア)をクラッドで取り囲んだ構造を有する光ファイバ
型、平面光導波部の上面、下面若しくは両面にクラッド
を接触させた構造を有する2次元光導波路型、又は立体
光導波部(チャンネル)にクラッドを接触させた構造を
有する3次元光導波路型などで構成され、レーザ光であ
る基本波を光導波部に入射し、その2次高調波を変換光
として端面から出射させるようにした光波長変換素子に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has an optical fiber type having a structure in which a cylindrical optical waveguide (core) is surrounded by a clad, and a structure in which a clad is in contact with the upper surface, the lower surface or both surfaces of a planar optical waveguide. It is configured by a two-dimensional optical waveguide type, a three-dimensional optical waveguide type having a structure in which a clad is in contact with a three-dimensional optical waveguide portion (channel), or the like, and a fundamental wave that is laser light is incident on the optical waveguide portion, and its secondary The present invention relates to a light wavelength conversion element in which harmonics are emitted as converted light from an end face.

【0002】[0002]

【従来の技術】非線形光学効果は、媒質に光が入射した
とき、その光の電場の2乗以上の高次項に比例する分極
が生じる現象であり、この現象により2次高調波、和周
波、差周波等が発生する。前記現象が現れる材料は非線
形光学材料といわれ、KH2 PO4 、LiNbO 3 等の
無機材料がよく知られているが、最近では、2−メチル
−4−ニトロアニリン(MNA)、4−ジメチルアミノ
−3−アセトアミドニトロベンゼン(DAN)、3,5
−ジメチル−1−(4−ニトロフェニル)ピラゾール
(DMNP)に代表される有機材料が大きな非線形光学
定数を有することから注目されている。
2. Description of the Related Art The nonlinear optical effect is that light enters a medium.
Then, the polarization proportional to the higher-order term of the square of the electric field of the light
Is a phenomenon that occurs, and this phenomenon causes the second harmonic and sum
Waves, difference frequencies, etc. are generated. The material in which the above phenomenon appears is non-linear
Shaped optical material, KH2POFour, LiNbO 3Etc.
Inorganic materials are well known, but recently, 2-methyl
-4-nitroaniline (MNA), 4-dimethylamino
-3-acetamidonitrobenzene (DAN), 3,5
-Dimethyl-1- (4-nitrophenyl) pyrazole
Nonlinear optics with large organic materials represented by (DMNP)
It is attracting attention because it has a constant.

【0003】最近では、前記のような有機非線形光学材
料を、半導体レーザ等の低出力レーザ光源の波長を半分
にする光波長変換素子に応用するための研究が盛んに行
われている。光波長変換素子では、基本波を高いエネル
ギー密度で閉じ込め、かつ基本波と高調波との相互作用
長を長くするように設計されていることが重要である。
Recently, much research has been conducted to apply the above-mentioned organic nonlinear optical material to an optical wavelength conversion element that halves the wavelength of a low-power laser light source such as a semiconductor laser. It is important for the optical wavelength conversion element to be designed so that the fundamental wave is confined at a high energy density and the interaction length between the fundamental wave and the higher harmonic wave is lengthened.

【0004】そのため、光波長変換素子の形態として
は、光ファイバ型や光導波路型のものが使用されてい
る。これらの形態の光波長変換素子では、光導波部又は
光導波部よりも低屈折率のクラッドの少なくとも一方が
有機非線形光学材料の単結晶又は多結晶で構成されてお
り、光導波部中を基本波が導波されることにより、高い
変換効率を得ている。
Therefore, as the form of the optical wavelength conversion element, an optical fiber type or an optical waveguide type is used. In the optical wavelength conversion element of these forms, at least one of the optical waveguide section and the cladding having a lower refractive index than the optical waveguide section is composed of a single crystal or a polycrystal of an organic nonlinear optical material. High conversion efficiency is obtained by guiding the waves.

【0005】[0005]

【発明が解決しようとする課題】ところが、前記の有機
非線形光学材料を用いた光波長変換素子は、有機非線形
光学材料への光、特に有機非線形光学材料の光吸収領域
の波長の光の入射によって光分解などが起こる。図5の
グラフは、DMNPとDANの単結晶における光透過率
の測定値を示し、DMNPは波長0.45μm以下、D
ANは波長0.48μm以下の光を吸収することが分か
る。なお、長波長の光の透過率が100%にならないの
は表面反射のためである。
However, the optical wavelength conversion element using the above-mentioned organic nonlinear optical material is disclosed by the incidence of light to the organic nonlinear optical material, particularly light having a wavelength in the light absorption region of the organic nonlinear optical material. Photolysis occurs. The graph of FIG. 5 shows the measured values of the light transmittance of a single crystal of DMNP and DAN, where DMNP has a wavelength of 0.45 μm or less, D
It can be seen that AN absorbs light having a wavelength of 0.48 μm or less. The reason why the transmittance of long wavelength light does not reach 100% is due to surface reflection.

【0006】この光吸収のため、光波長変換素子の劣化
につながり、当該光波長変換素子を用いた光源装置の寿
命が短くなるという問題があった。そこで、本発明の目
的は、上述の技術的課題を解決し、光の照射による光波
長変換素子の劣化が生じにくく、光源装置の寿命を長く
することができる光波長変換素子を提供することであ
る。
Due to this light absorption, there is a problem that the light wavelength conversion element is deteriorated and the life of the light source device using the light wavelength conversion element is shortened. Therefore, an object of the present invention is to provide an optical wavelength conversion element that solves the above-mentioned technical problems and is less likely to cause deterioration of the optical wavelength conversion element due to irradiation of light, and that can prolong the life of the light source device. is there.

【0007】[0007]

【課題を解決するための手段】前記の目的を達成するた
めの請求項1記載の光波長変換素子は、少なくとも光入
射端面の光入射領域及び光出射端面の光出射領域を除く
光波長変換素子の外面に遮光層を設けたものである。な
お、遮光層は、光入射端面の光入射領域及び光出射端面
の光出射領域を除く光波長変換素子の外面の全面に形成
されている必要はなく、外面の一部、例えば光入射端面
や光出射端面には、全く形成されていなくてもよい。
According to a first aspect of the present invention, there is provided an optical wavelength conversion element, which includes at least a light incident area of a light incident end surface and a light emitting area of a light emitting end surface. Is provided with a light shielding layer on the outer surface thereof. The light-shielding layer does not need to be formed on the entire outer surface of the light wavelength conversion element except for the light incident area on the light incident end surface and the light emitting area on the light emitting end surface. The light emitting end face may not be formed at all.

【0008】[0008]

【作用】前記の構成によれば、光の入出射領域を除く光
波長変換素子の外面に遮光層を設けたので、光導波部又
はクラッドの少なくとも一方を形成している有機非線形
光学材料への有害な光の入射を最小限に抑えることがで
きる。
According to the above construction, since the light shielding layer is provided on the outer surface of the optical wavelength conversion element excluding the light input / output area, it is possible to apply the organic nonlinear optical material forming at least one of the optical waveguide portion and the clad. It is possible to minimize the incidence of harmful light.

【0009】[0009]

【実施例】以下実施例を示す添付図面によって詳細に説
明する。図2は、本発明の一実施例である光波長変換素
子を用いた光源装置の基本的な構成を示す概念図であ
る。この光源装置は、半導体レーザ等のレーザ光源1か
ら発生されたレーザ光を球面レンズ2でコリメートし、
このコリメートされた光線を球面レンズ3で集光して、
光波長変換素子4に入射させるようにしたものである。
Embodiments will be described in detail below with reference to the accompanying drawings showing embodiments. FIG. 2 is a conceptual diagram showing a basic configuration of a light source device using a light wavelength conversion element which is an embodiment of the present invention. This light source device collimates laser light generated from a laser light source 1 such as a semiconductor laser with a spherical lens 2,
The collimated light beam is condensed by the spherical lens 3,
The light is incident on the light wavelength conversion element 4.

【0010】光波長変換素子4は、図1に拡大して示さ
れているように、光ファイバ型に構成されたものであ
り、コア41及びクラッド42を有しているとともに、
光の入出射端面44,45を除いてクラッド42の外周
に遮光層43を形成している。遮光層43は、例えばア
ルミニウム、銀等の金属の光反射膜、あるいは紫外線や
可視光線を透過しないカーボン膜、塗料膜などから構成
されている。コア41、クラッド42は、いずれか一方
又は双方にMNA,DAN等の公知の有機非線形光学材
料を適用したものである。
The optical wavelength conversion element 4 is of an optical fiber type, as shown enlarged in FIG. 1, and has a core 41 and a clad 42, and
A light shielding layer 43 is formed on the outer periphery of the clad 42 except for the light incident / exiting end faces 44 and 45. The light-shielding layer 43 is composed of, for example, a light-reflecting film made of a metal such as aluminum or silver, a carbon film that does not transmit ultraviolet rays or visible light, a paint film, or the like. Any one or both of the core 41 and the clad 42 is formed by applying a known organic nonlinear optical material such as MNA and DAN.

【0011】光波長変換素子4のコア41にレーザ光が
入射すると、入射したレーザ光を基本波としたチェレン
コフ放射が生じ、発生した2次高調波(変換光)が出射
されてリング状に拡散しつつ放射される。出射された変
換光は、コリメートされ、さらに集光されて光ディスク
の読取りなどのために用いられる。この場合、光波長変
換素子4の外周は遮光層43で覆われているので、有害
な光劣化をおこす波長の光(例えばDANならば波長
0.5μm以下の光)が外部からコア41やクラッド4
2に入射するのを防ぐことができる。なお、基本波や2
次高調波は有機非線形光学材料を透過するので、光吸収
による劣化などの問題は発生しないことはいうまでもな
い。
When laser light is incident on the core 41 of the optical wavelength conversion element 4, Cherenkov radiation is generated with the incident laser light as a fundamental wave, and the generated second harmonic (converted light) is emitted and diffused in a ring shape. It is emitted while doing. The emitted converted light is collimated and further condensed to be used for reading an optical disk. In this case, since the outer periphery of the light wavelength conversion element 4 is covered with the light shielding layer 43, light having a wavelength that causes harmful light deterioration (for example, light having a wavelength of 0.5 μm or less in the case of DAN) is externally applied to the core 41 or the clad. Four
2 can be prevented. The fundamental wave and 2
Needless to say, since the second harmonic wave passes through the organic nonlinear optical material, problems such as deterioration due to light absorption do not occur.

【0012】図3は光波長変換素子の他の実施例を示
す。この例では、光波長変換素子5は断面矩形状のチャ
ンネル51をクラッド52の上面に埋め込んだ構造を有
する3次元光導波路で構成されている。そして、光の入
出射端面54,55を除くクラッド52の外面およびチ
ャンネル51の上部露出面には遮光層53が形成されて
いる。
FIG. 3 shows another embodiment of the light wavelength conversion element. In this example, the optical wavelength conversion element 5 is composed of a three-dimensional optical waveguide having a structure in which a channel 51 having a rectangular cross section is embedded in the upper surface of a clad 52. A light-shielding layer 53 is formed on the outer surface of the clad 52 and the upper exposed surface of the channel 51 except the light input / output end surfaces 54 and 55.

【0013】この実施例においても、チャンネル51の
光入射端面54にレーザ光が入射すると、入射したレー
ザ光を基本波として2次高調波(変換光)が発生し、反
対側の光出射端面55から出射される。そして、遮光層
53のために光劣化をおこす波長の光が外部からチャン
ネル51やクラッド52に入射するのを防ぐことができ
る。
Also in this embodiment, when laser light is incident on the light incident end surface 54 of the channel 51, a second harmonic (converted light) is generated with the incident laser light as a fundamental wave, and the light emitting end surface 55 on the opposite side. Is emitted from. Then, it is possible to prevent light having a wavelength that causes optical deterioration due to the light shielding layer 53 from entering the channel 51 and the clad 52 from the outside.

【0014】次に光波長変換素子の作製例について説明
する。ここでは、図1に示す光ファイバ型波長変換素子
の作製例について説明する。内径2.5μm、外径1.
0mm、長さ50mmのSF4ガラス(保谷ガラス製)
の毛細管中にDANの融液を満たし、冷却により単結晶
をコアとして成長させ、光ファイバ型光波長変換素子を
作製した。コアの成長方法は、DANの溶融液を毛細管
現象を利用して吸い上げた後、ブリッジマン法によって
端から結晶を成長させる方法である(詳細な製法は特開
平3−111826号公報参照)。
Next, an example of manufacturing the light wavelength conversion element will be described. Here, a manufacturing example of the optical fiber type wavelength conversion element shown in FIG. 1 will be described. Inner diameter 2.5 μm, outer diameter 1.
SF4 glass with a length of 0 mm and a length of 50 mm (made by Hoya Glass)
The capillary was filled with the DAN melt, and the single crystal was grown as a core by cooling to prepare an optical fiber type optical wavelength conversion element. The core growth method is a method in which a molten liquid of DAN is sucked up by utilizing a capillary phenomenon, and then a crystal is grown from the end by the Bridgman method (for a detailed manufacturing method, refer to JP-A-3-111826).

【0015】この光ファイバ型光波長変換素子を5mmの
長さに2本切り出し、この後、1本のガラスクラッドの
側面に真空蒸着法によって遮光膜であるアルミニウム薄
膜を形成した。各光波長変換素子のコアにNd:YAG
(波長1.064 μm)のレーザ光を入射したところ、それ
ぞれ波長0.532 μmの変換光がファイバ出射端から空気
中に出射した。
Two pieces of this optical fiber type optical wavelength conversion element were cut out to a length of 5 mm, and thereafter, an aluminum thin film as a light shielding film was formed on the side surface of one glass clad by a vacuum deposition method. Nd: YAG is added to the core of each optical wavelength conversion element.
When laser light with a wavelength of 1.064 μm was incident, converted light with a wavelength of 0.532 μm was emitted from the fiber emission end into the air.

【0016】この遮光膜のある素子とない素子とをそれ
ぞれ100Wの白色ランプ下で長期間放置し性能劣化試
験を行ったところ、遮光膜のある素子では変換効率はほ
とんど劣化しないのに、遮光膜のない素子では変換効率
は日数とともに指数関数的に低下していった。この性能
劣化試験の結果を図4に示す。次に、コアの材料として
DANの代わりにDMNPを用いて、前記と同様の光波
長変換素子を作製し、同じ性能劣化試験を行ったとこ
ろ、遮光膜のある素子では変換効率はほとんど劣化しな
いのに、遮光膜のない素子では変換効率は日数とともに
指数関数的に低下していった。この性能低下試験の結果
を図4に示す。
A performance deterioration test was conducted by leaving the element with and without the light-shielding film under a white lamp of 100 W for a long period of time, and a performance deterioration test was performed. The conversion efficiency decreased exponentially with the number of days. The results of this performance deterioration test are shown in FIG. Next, using DMNP instead of DAN as the material of the core, an optical wavelength conversion device similar to the above was manufactured, and the same performance deterioration test was conducted. As a result, the conversion efficiency of the device with the light-shielding film was hardly deteriorated. In addition, the conversion efficiency of the device without the light-shielding film decreased exponentially with the number of days. The results of this performance degradation test are shown in FIG.

【0017】なお、本発明は前記の実施例に限られるも
のではなく、例えば、図1の光入射端面44のうち、光
入射領域であるコア41の端面41aを除く部分すなわ
ちクラッド42の端面42aは遮光層で覆われていても
よく、図3の光入射端面54のうち、光入射領域である
チャンネル51の端面51aを除く部分すなわちクラッ
ド52の端面52aは遮光層で覆われていてもよい。い
ずれも、クラッドの端面には光が入射する訳ではないか
らである。さらに、光波長変換素子の基板への取付け面
など外部の光が入射するおそれのない部分には、遮光層
を設ける必要はないことは勿論である。
The present invention is not limited to the above-described embodiment. For example, of the light incident end face 44 of FIG. 1, a portion other than the end face 41a of the core 41, which is the light incident region, that is, the end face 42a of the clad 42 is formed. May be covered with a light-shielding layer, and a part of the light-incident end surface 54 of FIG. 3 excluding the end surface 51a of the channel 51, which is a light-incident region, that is, the end surface 52a of the clad 52 may be covered with the light-shielding layer. .. This is because in any case, light does not enter the end surface of the clad. Furthermore, it goes without saying that it is not necessary to provide a light-shielding layer on a portion where external light is not likely to enter, such as a mounting surface of the light wavelength conversion element on the substrate.

【0018】[0018]

【発明の効果】以上のように本発明の光波長変換素子に
よれば、光導波部又はクラッドの少なくとも一方を形成
している有機非線形光学材料への有害な光の吸収を最小
限に抑えることができ、有機非線形光学材料の光分解な
どによる光波長変換素子の劣化を防ぐことができ、光波
長変換素子の寿命を延ばすことができる。
As described above, according to the optical wavelength conversion element of the present invention, the absorption of harmful light into the organic nonlinear optical material forming at least one of the optical waveguide portion and the clad can be minimized. It is possible to prevent deterioration of the light wavelength conversion element due to photolysis of the organic nonlinear optical material, and it is possible to extend the life of the light wavelength conversion element.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の光波長変換素子の基本的な
構成を示す斜視図である。
FIG. 1 is a perspective view showing a basic configuration of a light wavelength conversion element according to an embodiment of the present invention.

【図2】前記光波長変換素子が適用された光源装置の基
本的な構成を示す概念図である。
FIG. 2 is a conceptual diagram showing a basic configuration of a light source device to which the light wavelength conversion element is applied.

【図3】本発明の他の実施例の光波長変換素子の基本的
な構成を示す斜視図である。
FIG. 3 is a perspective view showing a basic configuration of a light wavelength conversion device according to another embodiment of the present invention.

【図4】光波長変換素子の性能劣化試験の結果を示すグ
ラフである。
FIG. 4 is a graph showing a result of a performance deterioration test of the light wavelength conversion element.

【図5】有機非線形光学材料の光透過率を実測したグラ
フである。
FIG. 5 is a graph in which the light transmittance of an organic nonlinear optical material is measured.

【符号の説明】[Explanation of symbols]

4,5 光波長変換素子 41 コア 42,52 クラッド 43,53 遮光層 51 チャンネル 4,5 Optical wavelength conversion element 41 Core 42,52 Clad 43,53 Light-shielding layer 51 Channel

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】光導波部と、光導波部よりも低屈折率のク
ラッドとを具備し、光導波部又はクラッドの少なくとも
一方が有機非線形光学材料で形成されており、光導波部
に入射した光から波長変換された光を発生する光波長変
換素子において、 光波長変換素子の,光入射端面の光入射領域及び光出射
端面の光出射領域を除く外面又はその外面の一部に遮光
層を設けたことを特徴とする光波長変換素子。
1. An optical waveguide section and a clad having a refractive index lower than that of the optical waveguide section. At least one of the optical waveguide section and the clad is made of an organic nonlinear optical material, and is incident on the optical waveguide section. In a light wavelength conversion element that generates light whose wavelength has been converted from light, a light-shielding layer is provided on the outer surface of the light wavelength conversion element excluding the light incidence area of the light incidence end surface and the light emission area of the light emission end surface or a part of the outer surface. An optical wavelength conversion element characterized by being provided.
JP3260662A 1991-10-08 1991-10-08 Light wavelength converting element Pending JPH05100268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3260662A JPH05100268A (en) 1991-10-08 1991-10-08 Light wavelength converting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3260662A JPH05100268A (en) 1991-10-08 1991-10-08 Light wavelength converting element

Publications (1)

Publication Number Publication Date
JPH05100268A true JPH05100268A (en) 1993-04-23

Family

ID=17351028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3260662A Pending JPH05100268A (en) 1991-10-08 1991-10-08 Light wavelength converting element

Country Status (1)

Country Link
JP (1) JPH05100268A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07209680A (en) * 1994-01-20 1995-08-11 Sharp Corp Optical wavelength conversion element and its production as well as laser unit
JP2013195915A (en) * 2012-03-22 2013-09-30 Nippon Telegr & Teleph Corp <Ntt> Shielding mechanism of ktn optical scanner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07209680A (en) * 1994-01-20 1995-08-11 Sharp Corp Optical wavelength conversion element and its production as well as laser unit
JP2013195915A (en) * 2012-03-22 2013-09-30 Nippon Telegr & Teleph Corp <Ntt> Shielding mechanism of ktn optical scanner

Similar Documents

Publication Publication Date Title
US5033812A (en) Grating coupler
JPS60115277A (en) Fiber optical amplifier
US4896933A (en) Higher harmonic generator
US5515471A (en) Frequency doubler and short wave laser source using the same and optical data processing apparatus using the short wave laser source
US5101297A (en) Method for producing a diffraction grating in optical elements
JP2525879B2 (en) Fiber-type optical wavelength conversion element
JPS6450481A (en) Super light emitting diode and single mode laser
US5224195A (en) Light wavelength converter for a wavelength of laser beams into a short wavelength
JPH05100268A (en) Light wavelength converting element
JPH0680443B2 (en) Protected Luneburg lenses
US5355428A (en) Optical wavelength conversion module
JPH05173212A (en) Optical wavelength converting module
JPH04204720A (en) Wavelength conversion element
JPH0235423A (en) Light wavelength converting element
JPH05100269A (en) Light wavelength conversion module
JP2843196B2 (en) Second harmonic generator
JPS63137492A (en) Optical fiber
JP2001332788A (en) Optical fiber for amplification
JP2004170484A (en) Beam homogenizer
JP3448350B2 (en) Harmonic generator
JP2001021772A (en) Laser diode module
JP2005352129A (en) Higher harmonics laser device, method for manufacturing the same, and picture display device using the same
JPH05110134A (en) Optical element substrate
JP2000147291A (en) Method and device for manufacturing optical waveguide element
JPH02219032A (en) Optical wavelength converting element