JPH07242937A - Production of non-heat treated high tensile strength steel plate small in dispersion of hardness in plate thickness direction - Google Patents

Production of non-heat treated high tensile strength steel plate small in dispersion of hardness in plate thickness direction

Info

Publication number
JPH07242937A
JPH07242937A JP3452594A JP3452594A JPH07242937A JP H07242937 A JPH07242937 A JP H07242937A JP 3452594 A JP3452594 A JP 3452594A JP 3452594 A JP3452594 A JP 3452594A JP H07242937 A JPH07242937 A JP H07242937A
Authority
JP
Japan
Prior art keywords
less
cooling
hardness
thickness direction
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3452594A
Other languages
Japanese (ja)
Inventor
Taneo Hatomura
太根生 波戸村
Yoshifumi Nakano
善文 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3452594A priority Critical patent/JPH07242937A/en
Publication of JPH07242937A publication Critical patent/JPH07242937A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce a non-heat created high tensile strength thick steel plate small in the dispersion of hardness in the plate thickness direction by subjecting a steel slab having a specified compsn. to slight rolling reduction and air cooling under specified conditions in an unrecrystallized gamma region and incorporating somewhat coarse polygonal ferrite therein. CONSTITUTION:A steel slab contg., by weight, 0.005 to 0.06% C, 0.05 to 1.0% Si, 0.8 to 2.5% Mn, 0.005 to 0.08% Al and 0.01 to 0.1% Nb, contg., at need, one or more kinds among 0.01 to 0.10% V, respectively <=1.0% Cu, Ni and Cr, <=0.5% Mo, 0.005 to 0.1% Ti and respectively 0.001 to 0.01% rare earth metals, and the balance iron is heated to 1050 to 1250 deg.C. This steel slab is applied with rolling reduction of >=30% the unrecrystallized gamma region of (the Ar3+150 deg.C) or above and is moreover applied with rolling reduction of >=50% including slight rolling reduction of at least <=5%/pass in the unrecrystallmzed region of less than (the Ar3+150 deg.C) to the Ar3 by l to 3 passes. Next, this steel sheet is air cooled to (the Ar3-10 deg.C) to (the Ar3 to 80 deg.C) and is thereafter subjected to accelerated cooling to <400 deg.C at the cooling rate of 20 to 50 deg.C/sec.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原油や天然ガス等を輸
送するパイプラインに使用される厚肉UOE鋼管に用い
られる板厚方向特性の優れた非調質高張力鋼板の製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a non-heat treated high-strength steel plate having excellent properties in the plate thickness direction, which is used for a thick UOE steel pipe used in a pipeline for transporting crude oil, natural gas and the like. Is.

【0002】[0002]

【従来の技術】最近、原油や天然ガスなどを輸送するパ
イプラインにおいては輸送の効率を上げるため高圧の操
業が指向され、強度が高くかつ板厚が厚いUOE鋼管用
鋼板が要求されている。厚肉で高強度化を図るため、例
えば特開昭54-68719号公報に開示されているように、制
御圧延後の冷却速度を15℃/s以上として強度上昇を図
ろうとしているが、表面と中心との冷却速度の差によ
り、板厚方向に硬度差が生じ、板内の歪及びSSCC
(硫化物応力腐食割れ)の原因となっている。
2. Description of the Related Art Recently, in pipelines for transporting crude oil, natural gas, etc., high-pressure operation is aimed at in order to improve transportation efficiency, and there is a demand for UOE steel pipe sheets having high strength and thick sheet thickness. In order to increase the strength with a thick wall, for example, as disclosed in JP-A-54-68719, an attempt is made to increase the strength by increasing the cooling rate after controlled rolling to 15 ° C / s or more. The difference in the cooling rate between the center and the center causes a difference in hardness in the plate thickness direction, which causes strain in the plate and SSCC.
(Sulfide stress corrosion cracking).

【0003】これは周知のように、冷却速度が速いと表
層部にベイナイトやマルテンサイトが生成するため、板
厚方向に硬度むらが生じるからである。そこで表層部に
フェライトを生成させることにより表層部の硬度を低下
させ、硬度むらを小さくする技術があるが、フェライト
が生成すると未変態γ(オーステナイト)にC等の合金
元素の濃縮が生じ、島状マルテンサイトが生成するの
で、ただ単にフェライトを出すだけでは硬度むらをなく
すことはできなかった。
This is because, as is well known, when the cooling rate is high, bainite and martensite are generated in the surface layer portion, so that hardness unevenness occurs in the plate thickness direction. Therefore, there is a technique to reduce the hardness of the surface layer portion by generating ferrite in the surface layer portion to reduce the unevenness in hardness. However, when ferrite is generated, the alloying elements such as C are concentrated in the untransformed γ (austenite) and the island Since martensite is formed, it is not possible to eliminate the hardness unevenness by simply producing ferrite.

【0004】そこで、本発明者らは、特開平3-223419
号公報において、厚肉材の板厚方向の硬度むらを小さく
するミクロ組織を検討したところ、ポリゴナル・フェラ
イトを生成させずにアシキュラー・フェライトを生成さ
せると板厚方向の硬度むらが小さくなることを見出し、
これに基づく発明を提案している。また、本発明者ら
は、さらに厚肉材の板厚方向の硬度むらを小さくするミ
クロ組織を検討したところ、前記特開平3-223419 号公
報において、見出したものとは異なる原理に基づく発明
に到達した。
Therefore, the inventors of the present invention have disclosed in Japanese Patent Laid-Open No. 3-223419.
In the publication, when a microstructure for reducing the thickness unevenness of the thick-walled material in the plate thickness direction was examined, it was found that the hardness unevenness in the plate thickness direction becomes smaller when acicular ferrite is generated without forming polygonal ferrite. Headline,
An invention based on this is proposed. Further, the present inventors examined a microstructure for further reducing the hardness unevenness in the plate thickness direction of the thick material, and found that the invention was based on a principle different from the one found in the above-mentioned JP-A-3-223419. Arrived

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、この
新しい原理に基づく発明、すなわち板厚方向の硬度むら
の少ない非調質高張力厚肉鋼板を製造する方法を提供す
ることである。
SUMMARY OF THE INVENTION An object of the present invention is to provide an invention based on this new principle, that is, a method for producing a non-heat treated high-strength thick steel plate with less hardness unevenness in the plate thickness direction.

【0006】[0006]

【課題を解決するための手段】本発明は、重量比にて、
C: 0.005〜0.06%、Si:0.05〜1.0 %、Mn: 0.8〜2.
5 %、Al:0.005 〜0.08%、Nb:0.01〜0.1 %を含み、
さらに必要に応じて、V:0.01〜0.10%、Cu: 1.0%以
下、Ni:1.0 %以下、Cr: 1.0%以下、Mo: 0.5%以
下、Ti: 0.005〜0.1 %、Ca: 0.001〜0.01%、RE
M: 0.001〜0.01%の1種又は2種以上を含有し、残部
が鉄及び不可避的不純物よりなる鋼スラブを1050〜1250
℃の温度範囲に加熱後、(Ar3+150 ℃)以上の再結晶γ
域で30%以上の圧下を与え、さらに(Ar3+150 ℃)未満
〜Ar3 の未再結晶γ域で、少なくとも5%/パス以下の
軽圧下を 1〜 3パス含む50%以上の圧下を与え、次いで
(Ar3−10℃)〜(Ar3−80℃)まで空冷し、その後20〜50
℃/sの冷却速度で 400℃未満まで加速冷却することを
特徴とする板厚方向の硬度むらの少ない非調質高張力鋼
板の製造方法である。
The present invention, in terms of weight ratio,
C: 0.005-0.06%, Si: 0.05-1.0%, Mn: 0.8-2.
5%, Al: 0.005-0.08%, Nb: 0.01-0.1%,
If necessary, V: 0.01 to 0.10%, Cu: 1.0% or less, Ni: 1.0% or less, Cr: 1.0% or less, Mo: 0.5% or less, Ti: 0.005 to 0.1%, Ca: 0.001 to 0.01%. , RE
M: 1050 to 1250 steel slabs containing 0.001 to 0.01% of 1 type or 2 or more types and the balance of iron and unavoidable impurities
After heating in the temperature range of ℃, recrystallization of (Ar 3 + 150 ℃) or more γ
Giving pressure of 30% or more by-pass, further (Ar 3 +150 ℃) than non-recrystallization γ zone to Ar 3, at least 5% / pass less reduction of 50% or more, including 1 to 3 passes the soft reduction Give, then
Air cool to (Ar 3 -10 ° C) to (Ar 3 -80 ° C), then 20 to 50
It is a method for producing a non-heat treated high-strength steel sheet with little hardness unevenness in the sheet thickness direction, which is characterized by accelerating cooling to less than 400 ° C at a cooling rate of ° C / s.

【0007】[0007]

【作 用】本発明者らは厚肉材の表面近傍の硬度を低下
させるミクロ組織を検討したところ、単にフェライト結
晶粒を微細化させるよりもある程度粗大なポリゴナル・
フェライトを混入させた方が、板厚方向の硬度むらが小
さくなることを見出した。すなわち組織中に10〜25μm
のポリゴナル・フェライトを 5〜40%含ませることによ
り、表面硬度と板厚中心部との硬度差(ΔHv)が著し
く小さくなることがわかった。
[Operation] The present inventors examined a microstructure that reduces the hardness in the vicinity of the surface of a thick-walled material, and found that a polygonal
It has been found that the mixing of ferrite reduces the hardness unevenness in the plate thickness direction. That is, 10-25 μm in the tissue
It was found that the difference in surface hardness and the hardness difference (ΔHv) between the center of the plate thickness and the surface hardness was significantly reduced by including 5 to 40% of the polygonal ferrite of (1).

【0008】本発明は上記の組織を工業的に実現するた
めの製造方法に係わる。まず本発明の基礎となった実験
について説明する。図1は0.04%C− 1.4%Mn−0.03%
Nb鋼を用い、1150℃に加熱後、(Ar3+150℃)以上の再
結晶γ域で50%の圧下を与え、(Ar3+150 ℃)未満〜 A
r3の未再結晶γ域で70%の圧下を与える際の圧下率/パ
スを変え、その後(Ar3−10℃)〜(Ar3−80℃)まで空冷
し、30℃/sの冷却速度で 300℃まで加速冷却したとき
の板厚方向の硬度分布(○、△印)を示す。このときの
仕上厚は25mmとした。また同図中には比較として1150℃
に加熱後、(Ar3+150 ℃)以上の再結晶γ域で50%の圧
下を与え、(Ar3+150 ℃)未満〜 Ar3の未再結晶γ域で
70%の圧下を与え、直ちに30℃/sの冷却速度で 300℃
まで加速冷却したときの板厚方向の硬度分布(□印)も
合わせて示す。□印は加速冷却前の冷却開始温度を Ar3
以上としたため、粗大ポリゴナル・フェライトが生成せ
ず、ΔHv(表面硬度と板厚中心部との硬度差)が約60
ポイント以上となる。△印は未再結晶γ域での軽圧下パ
スが15%/パス( 5パス超)のため、冷却開始温度を(A
r3−10℃)〜(Ar3−80℃)の範囲まで空冷すると微細フ
ェライトが生成するため、ΔHvは約30ポイントと高く
なる。これに対し、○印は未再結晶γ域での軽圧下パス
が 3%/パス( 5パス以下)のため、(Ar3−10℃)〜(A
r3−80℃)の範囲まで空冷すると、粗大ポリゴナル・フ
ェライトが生成するため、ΔHvは約10ポイント以下と
なる。
The present invention relates to a manufacturing method for industrially realizing the above structure. First, the experiment that was the basis of the present invention will be described. Figure 1 shows 0.04% C-1.4% Mn-0.03%
Using Nb steel, after heating to 1150 ° C., giving a 50% reduction in (Ar 3 + 150 ℃) or recrystallization γ region, (Ar 3 +150 ℃) less than ~ A
changing the rolling reduction / path in conferring 70% reduction in non-recrystallized γ region of r 3, air-cooled to thereafter (Ar 3 -10 ℃) ~ ( Ar 3 -80 ℃), cooling of 30 ° C. / s The hardness distribution (○, Δ marks) in the plate thickness direction when accelerated cooling to 300 ° C at a speed is shown. The finished thickness at this time was 25 mm. Also, in the figure, as a comparison, 1150 ℃
After heating, at (Ar 3 +150 ℃) or recrystallization γ region giving a 50% reduction in non-recrystallized γ region of (Ar 3 +150 ℃) less than ~ Ar 3
Immediately apply 70% reduction and 300 ℃ at a cooling rate of 30 ℃ / s.
Also shown is the hardness distribution in the plate thickness direction (□ mark) when accelerated cooling is performed. □ indicates the cooling start temperature before accelerated cooling is Ar 3
Because of the above, coarse polygonal ferrite was not generated, and ΔHv (difference between surface hardness and center of thickness) was about 60.
More than points. The △ mark indicates that the cooling start temperature is (A) because the light reduction pass in the unrecrystallized γ region is 15% / pass (more than 5 passes).
When air-cooled in the range of (r 3 −10 ° C.) to (Ar 3 −80 ° C.), fine ferrite is generated, so ΔHv becomes as high as about 30 points. On the other hand, the ○ mark indicates that the light reduction pass in the unrecrystallized γ region is 3% / pass (5 passes or less), so (Ar 3 −10 ° C) to (A
When air-cooled to the range of (r 3 −80 ° C.), coarse polygonal ferrite is generated, so ΔHv becomes about 10 points or less.

【0009】すなわち、ただ単にフェライトを生成させ
ても板厚方向の硬度むらは解消できないが、粗大ポリゴ
ナル・フェライトを混入させることにより、板厚方向の
硬度むらが小さくなることがわかる。未再結晶γ域で圧
下率が 5%/パス未満の低圧下を付加すると、γ粒界が
歪み誘起粒界移動が起こり、適度の混粒状態となる。こ
の混粒γを(Ar3−10℃)〜(Ar3−80℃)の範囲まで空冷
すると、歪みの少ない10〜25μm の粗大ポリゴナル・フ
ェライトが生成する。このような歪みの少ない粗大フェ
ライトが平均粒径が約 6μm の微細アシキュラーフェラ
イト中に生成すると硬度むらが小さくなる。またこのよ
うな粗大フェライトが生成すると、未変態γにC等が適
度に濃化する。この適度に濃化した未変態γを加速冷却
するとアシキュラーフェライトに変態するため、島状マ
ルテンサイトの生成が抑制され、硬度むらは小さくなる
と考えられる。
That is, it is found that even if ferrite is simply generated, the unevenness of hardness in the plate thickness direction cannot be eliminated, but by mixing coarse polygonal ferrite, the unevenness of hardness in the plate thickness direction is reduced. When a reduction pressure of less than 5% / pass is applied in the unrecrystallized γ region, strain-induced grain boundary migration occurs in the γ grain boundary, resulting in an appropriate mixed grain state. When this mixed grain γ is air-cooled in the range of (Ar 3 −10 ° C.) to (Ar 3 −80 ° C.), coarse polygonal ferrite with a small strain of 10 to 25 μm is generated. When such coarse ferrite with less strain is generated in fine acicular ferrite with an average grain size of about 6 μm, the unevenness of hardness is reduced. Further, when such coarse ferrite is generated, C or the like is appropriately concentrated in the untransformed γ. It is considered that the accelerated transformation of this moderately concentrated untransformed γ transforms it into acicular ferrite, which suppresses the formation of island martensite and reduces unevenness in hardness.

【0010】なお、従来から圧延後の冷却開始温度を A
r3以下とする例が、たとえば特開昭52-123921 号公報や
特開昭58-77529号公報に見られるが、いずれも本発明の
ように未再結晶γ域で軽圧下することによりフェライト
の適切な混粒化を図り、硬度むらを小さくすることにつ
いての開示は見られない。次に、本発明において用いる
材料の成分組成の限定理由について説明する。
Conventionally, the cooling start temperature after rolling is set to A
Examples of r 3 or less are found, for example, in JP-A-52-123921 and JP-A-58-77529, both of which use ferrite by lightly reducing in the unrecrystallized γ region as in the present invention. There is no disclosure about the appropriate grain mixing and the reduction of hardness unevenness. Next, the reasons for limiting the component composition of the material used in the present invention will be described.

【0011】C: 0.005〜0.06% Cは 0.005%未満では鋼板強度が不足し、また、溶接熱
影響部(以下、HAZと記す)の軟化を来す。一方0.06
%を超えると、表層部にマルテンサイトが生成し、板厚
方向の硬度むらが生じるため、Cは 0.005〜0.06%の範
囲内にする必要がある。
C: 0.005 to 0.06% If C is less than 0.005%, the steel sheet strength is insufficient, and the weld heat affected zone (hereinafter referred to as HAZ) is softened. While 0.06
If it exceeds 0.1%, martensite is generated in the surface layer portion and uneven hardness in the plate thickness direction occurs. Therefore, it is necessary to set C in the range of 0.005 to 0.06%.

【0012】Si:0.05〜1.0 % Siは鋼精錬時に脱酸上必然的に含有される元素である
が、0.05%未満では母材靭性が不足する。一方、 1.0%
を超えると鋼の清浄度が劣化して靭性低下の原因になる
ので、Siは0.05〜1.0 %の範囲内にする必要がある。 Mn: 0.8〜2.5 % Mnは 0.8%未満では鋼板の強度及び靭性が不足し、さら
にHAZの軟化がひどくなり、一方、 2.5%を超えると
HAZの靭性が劣化するので、Mnは 0.8〜2.5%の範囲
にする必要がある。
Si: 0.05 to 1.0% Si is an element which is inevitably contained in deoxidizing steel during steel refining, but if it is less than 0.05%, the base material toughness is insufficient. On the other hand, 1.0%
If it exceeds 1.0%, the cleanliness of the steel deteriorates and the toughness decreases, so Si must be in the range of 0.05 to 1.0%. Mn: 0.8-2.5% If Mn is less than 0.8%, the strength and toughness of the steel sheet will be insufficient, and further HAZ softening will be severe, while if it exceeds 2.5%, the HAZ toughness will deteriorate, so Mn is 0.8-2.5%. Must be in the range.

【0013】Al: 0.005〜0.08% 鋼の脱酸上最低 0.005%のAlを固溶するよう含有させる
ことが必要であり、一方、0.08%を超えるとHAZの靭
性のみならず溶接金属の靭性も著しく劣化するので、Al
は 0.005〜0.08%の範囲内にする必要がある。 Nb:0.01〜0.1 % Nbはフェライトの細粒化には効果があるが、0.01%未満
ではその効果は発現せず、一方、 0.1%を超えると溶接
時に溶接金属中に拡散し、溶接金属の靭性を低下させる
ので、Nbは0.01〜0.10%の範囲内に限定した。
Al: 0.005 to 0.08% It is necessary to contain at least 0.005% Al so as to form a solid solution in deoxidizing the steel. On the other hand, if it exceeds 0.08%, not only the toughness of the HAZ but also the toughness of the weld metal are required. As it deteriorates significantly, Al
Should be within the range of 0.005 to 0.08%. Nb: 0.01 to 0.1% Nb is effective in reducing the grain size of ferrite, but if it is less than 0.01%, it does not exhibit the effect.On the other hand, if it exceeds 0.1%, it diffuses into the weld metal during welding, and Nb is limited to the range of 0.01 to 0.10% because it lowers the toughness.

【0014】以上の成分組成において、本発明の方法に
よる所期した効果を奏するが、その他以下に掲げる成分
がそれらの添加目的の下で含有される場合にあっても、
この発明による効果の達成を妨げることはない。 Ni: 1.0%以下 NiはHAZの硬化性および靭性に悪い影響を与えること
なく、母材の強度、靭性を向上させるのに有用である
が、 1.0%を超えて含有させるのは製造コストの上昇を
招くので 1.0%以下にする。
In the above component composition, the intended effect by the method of the present invention is exhibited, but even when the following components are included for the purpose of adding them,
It does not prevent the achievement of the effects of the present invention. Ni: 1.0% or less Ni is useful for improving the strength and toughness of the base metal without adversely affecting the hardenability and toughness of the HAZ, but containing more than 1.0% increases the manufacturing cost. Cause 1.0% or less.

【0015】Cu: 1.0%以下 CuはNiとほぼ同様の効果があるだけでなく、耐食性の向
上にも寄与するが、 1.0%を超えると熱間圧延中にクラ
ックが発生しやすくなり、鋼板の表面性状が劣化するの
で、 1.0%以下にする必要がある。 Mo: 0.5%以下 Moは圧延時のγ粒を整粒となし、なおかつ微細なベイナ
イトを生成するので強度、靭性の向上に有効であるが、
0.5%を超える必要はなく、却って製造コストの上昇を
招く不利を来すのでMoは 0.5%以下に限定する。
Cu: 1.0% or less Cu not only has almost the same effect as Ni, but also contributes to the improvement of corrosion resistance, but if it exceeds 1.0%, cracks tend to occur during hot rolling, and Since the surface quality deteriorates, it should be 1.0% or less. Mo: 0.5% or less Mo is effective in improving strength and toughness because it forms γ grains during rolling and forms fine bainite.
It is not necessary to exceed 0.5%, but rather there is a disadvantage that the manufacturing cost rises, so Mo is limited to 0.5% or less.

【0016】V:0.01〜0.10% Vは鋼板の母材の強度と靭性向上、継手部強度確保のた
め、むしろ0.01%以上の含有を可とするが、0.10%を超
えると母材およびHAZの靭性を著しく劣化させるの
で、Vは0.01〜0.10%の範囲内に制限する。 Cr: 1.0%以下 Crは鋼板の母材強度と継手強度確保のために含有させ得
るが、 1.0%を超えると母材の靭性ばかりか溶接部靭性
にも悪影響が生じるので、 1.0%以下にする必要があ
る。
V: 0.01 to 0.10% V may be contained in an amount of 0.01% or more to improve the strength and toughness of the base material of the steel sheet and to secure the strength of the joint portion, but if it exceeds 0.10%, V of the base material and HAZ V is restricted to the range of 0.01 to 0.10% because it significantly deteriorates the toughness. Cr: 1.0% or less Cr can be contained in order to secure the base metal strength and joint strength of the steel sheet, but if it exceeds 1.0%, not only the toughness of the base metal but also the toughness of the welded part will be adversely affected, so it should be 1.0% or less. There is a need.

【0017】Ti: 0.005〜0.1 % Tiはγ粒の微細化効果による靭性向上とTi炭窒化物によ
る強度上昇を目的として添加する。しかし、Ti量が 0.0
05%未満ではその効果はなく、また、0.10%を超えると
靭性が劣化するのでTi量の範囲を 0.005〜0.1 %とす
る。 Ca: 0.001〜0.01% Caは 0.001%程度の微量にて MnSの形態制御に効果をも
たらし、鋼板の圧延と直角方向の靭性向上に有効である
が、0.01%を超えると鋼の清浄度が悪くなり内部欠陥の
原因となるので、 0.001〜0.01%の範囲に限定した。
Ti: 0.005 to 0.1% Ti is added for the purpose of improving toughness due to the effect of refining γ grains and increasing strength due to Ti carbonitride. However, the Ti content is 0.0
If it is less than 05%, it has no effect, and if it exceeds 0.10%, the toughness deteriorates, so the range of Ti content is made 0.005 to 0.1%. Ca: 0.001 to 0.01% With a trace amount of 0.001%, Ca has the effect of controlling the morphology of MnS and is effective in improving the toughness in the rolling and right-angle direction of the steel sheet, but if it exceeds 0.01%, the cleanliness of the steel is poor. Since it causes internal defects, it was limited to the range of 0.001 to 0.01%.

【0018】REM: 0.001〜0.01% REM(La, Ce, Pr, Nd, Il, Sm, Eu, Gd, Tb,Dy, Ho,
Er, Tu,Yb, Lu, Sc,Ytの希土類元素)は、 0.001%程
度の微量にてやはり MnSの形態制御効果をあらわし、鋼
板の圧延と直角方向の靭性向上に有効であるが、0.01%
を超えると鋼の清浄度が悪くなるほかにアーク溶接の面
でも不利があるので、 0.001〜0.01%の範囲に限定し
た。
REM: 0.001 to 0.01% REM (La, Ce, Pr, Nd, Il, Sm, Eu, Gd, Tb, Dy, Ho,
Er, Tu, Yb, Lu, Sc, and Yt (rare earth elements) show a morphological control effect of MnS even in a small amount of about 0.001%, and are effective for rolling steel sheets and improving toughness in the perpendicular direction, but 0.01%
If it exceeds 1.0, the cleanliness of the steel deteriorates and there is a disadvantage in terms of arc welding, so the range was limited to 0.001 to 0.01%.

【0019】次に本発明の第2の構成要件である加熱、
圧延、冷却条件の限定理由について説明する。はじめに
スラブを加熱するが、加熱温度が1050℃未満ではNbの固
溶量が0.01%未満となるため、高強度化が達成できな
い。また鋼を1250℃を超えて加熱すると、続く再結晶γ
域での圧延を行ってもオーステナイト粒の細粒化が不十
分となり靭性が劣化する。よって加熱温度は1050〜1250
℃の範囲にする必要がある。
Next, the heating which is the second constitutional requirement of the present invention,
The reasons for limiting the rolling and cooling conditions will be described. First, the slab is heated, but if the heating temperature is less than 1050 ° C, the solid solution amount of Nb will be less than 0.01%, so high strength cannot be achieved. When the steel is heated above 1250 ° C, the subsequent recrystallization γ
Even if rolled in the zone, the austenite grains are not sufficiently refined and the toughness deteriorates. Therefore, the heating temperature is 1050-1250
Must be in the range of ° C.

【0020】上記条件により加熱されたスラブを(Ar3
150 ℃)以上の再結晶γ域で圧延を施す。圧延−再結晶
の繰り返しによりγ粒の細粒化を行うが、再結晶γ域で
の圧下率が30%未満ではγ粒の細粒化が不十分となり、
続く未再結晶γ域での圧下を行っても靭性が劣化する。
よって再結晶γ域での圧下率は30%以上とする必要があ
る。
The slab heated under the above conditions is (Ar 3 +
Rolling is performed in the recrystallization γ region of 150 ° C or higher. The rolling-recrystallization is repeated to refine the γ grains, but if the rolling reduction in the recrystallization γ region is less than 30%, the γ grains will not be refined sufficiently.
The toughness deteriorates even if the rolling is continued in the unrecrystallized γ region.
Therefore, the rolling reduction in the recrystallization γ region must be 30% or more.

【0021】次に(Ar3+150 ℃)未満 Ar3以上の未再結
晶γ域での圧延は、歪誘起粒界移動によるγ粒の粗大化
と、γ粒の伸長化やγ粒内に変形帯を導入することによ
る結晶粒の細粒化の双方を同時に行う重要な工程であ
る。歪誘起粒界移動によるγ粒の粗大化と1パス当たり
の軽圧下が 5%/パス以下でないと起こらない。またこ
のパス回数も3回を超えるとγ粒が成長しすぎるため、
最終のα粒径が25μm 以上となり靭性が劣化する。よっ
て軽圧下率/パスの圧下率は 5%以下、またこのパス回
数は3回以下にする必要がある。またこの軽圧下率/パ
スを与える温度域は(Ar3+150 ℃)未満 Ar3以上の未再
結晶γ域の範囲であればよいが、好ましくは、未再結晶
γ域の圧延開始初期より圧延途上や圧延終了近傍で与え
た方がよい。
Next, rolling in an unrecrystallized γ region of less than (Ar 3 + 150 ° C.) and Ar 3 or more causes the γ grains to coarsen due to strain-induced grain boundary migration, and the γ grains to be elongated or transformed into γ grains. This is an important step in which both grain refinement by introducing the band is performed at the same time. It does not occur unless the γ grains are coarsened due to strain-induced grain boundary movement and the light reduction per pass is not more than 5% / pass. If the number of passes is more than 3, the γ grains grow too much.
The final α grain size becomes 25 μm or more and the toughness deteriorates. Therefore, the light rolling reduction / pass rolling reduction should be 5% or less, and the number of passes should be 3 times or less. The temperature range for giving this light reduction / pass may be within the range of the unrecrystallized γ region of less than (Ar 3 +150 ℃) and Ar 3 or more, but it is preferable to perform rolling from the initial stage of rolling in the unrecrystallized γ region. It is better to give it on the way or near the end of rolling.

【0022】さらに( Ar3+150 ℃)未満 Ar3以上の未
再結晶γ域ではγ粒の伸長化やγ粒内に変形帯を導入
し、結晶粒の細粒化を図るために行うが、( Ar3+150
℃)以上の温度域あるいは Ar3未満の温度域では前記目
的が達成されない。次にこの温度域での圧下率を50%以
上とする必要がある。圧下率が50%未満ではγ粒の伸長
化や変形帯の導入が不十分となり、靭性が著しく劣化す
る。よって圧下率の下限を50%とする。
Further, in the non-recrystallized γ region of less than (Ar 3 + 150 ° C.) and Ar 3 or more, elongation of γ grains and introduction of a deformation zone into γ grains are carried out in order to make the grains finer. (Ar 3 +150
The above-mentioned object cannot be achieved in a temperature range above (° C) or below a temperature range below Ar 3 . Next, the rolling reduction in this temperature range must be 50% or more. If the rolling reduction is less than 50%, the elongation of γ grains and the introduction of the deformation zone become insufficient and the toughness deteriorates significantly. Therefore, the lower limit of the rolling reduction is 50%.

【0023】続いて(Ar3−10℃)〜(Ar3−80℃)の温度
範囲まで空冷するが、これは本発明の主目的である硬度
の低い鋼板を製造するため、粗大ポリゴナル・フェライ
トを生成させるために行う。空冷の終了温度が(Ar3−10
℃)より高い場合、粗大ポリゴナル・フェライト粒径が
10μm 以上とならず、またその体積率も 5%以上となら
ない。一方空冷の終了温度が(Ar3−80℃)より低い場
合、粗大ポリゴナル・フェライト粒径が25μm 以上とな
り、またその体積率も40%以上となり、靭性が劣化す
る。よって空冷の温度範囲は(Ar3−10℃)〜(Ar3−80
℃)の範囲に限定した。
Subsequently, air cooling to a temperature range of (Ar 3 −10 ° C.) to (Ar 3 −80 ° C.) is carried out. This is because the main object of the present invention is to produce a steel plate of low hardness, so that coarse polygonal ferrite is used. To generate. The end temperature of air cooling is (Ar 3 −10
℃), the coarse polygonal ferrite grain size is
It does not exceed 10 μm and its volume ratio does not exceed 5%. On the other hand, when the end temperature of air cooling is lower than (Ar 3 -80 ° C), the coarse polygonal ferrite grain size is 25 μm or more, and the volume ratio thereof is 40% or more, and the toughness deteriorates. Therefore, the temperature range for air cooling is (Ar 3 −10 ° C) to (Ar 3 −80 ° C).
C) range.

【0024】上記範囲まで空冷後加速冷却を行うが、冷
却速度が20℃/sに満たないと加速冷却による高強度化
の効果がなく、一方50℃/sを超えて冷却しても高強度
化は飽和するので冷却速度は20〜50℃/sの範囲に限定
した。前記加速冷却は400 ℃未満まで加速冷却を続ける
が、 400℃以上で冷却を停止すると加速冷却の効果が不
十分となるため、冷却停止温度を 400℃未満に限定し
た。
Although accelerated cooling is performed after air cooling to the above range, if the cooling rate is less than 20 ° C./s, there is no effect of increasing the strength by accelerated cooling, while if the cooling rate exceeds 50 ° C./s, high strength is obtained. The cooling rate is limited to the range of 20 to 50 ° C./s because the chemical reaction is saturated. The accelerated cooling continues to be accelerated to less than 400 ° C, but if the cooling is stopped at 400 ° C or higher, the effect of accelerated cooling becomes insufficient, so the cooling stop temperature was limited to less than 400 ° C.

【0025】[0025]

【実施例】表1に成分組成を示した供試鋼について、表
2に示す加熱−圧延−冷却条件により処理した。鋼板の
機械的性質及びフェライト組織の変化について調査し、
その結果を表2にまとめて示す。表2において試験N
o.1〜13は本発明で限定した範囲内の成分組成にな
る表1のB鋼のスラブに種々の加熱−圧延−冷却条件を
施し、いずれも板厚24mmの製品としたものである。
EXAMPLES The sample steels whose composition is shown in Table 1 were treated under the heating-rolling-cooling conditions shown in Table 2. Investigating changes in mechanical properties of steel sheets and changes in ferrite structure,
The results are summarized in Table 2. Test N in Table 2
o. Nos. 1 to 13 are slabs of steel B shown in Table 1 having a composition within the range limited by the present invention, subjected to various heating-rolling-cooling conditions, and were all products having a plate thickness of 24 mm.

【0026】まず試験No.1はスラブ加熱温度が1000
℃と低いため(限定範囲1050〜1250℃、以下括弧内は限
定範囲を示す)、TSが低い。試験No.2はスラブ加
熱温度が1300℃と高いため、試験No. 3は再結晶γ域で
の圧下率が10%と低いため(30%以上)、試験No. 4、
5はそれぞれ未再結晶γ域での圧下率が40%と低いため
(50%以上)、あるいは未再結晶γ域での 5%/パス以
下の軽圧下のパス回数が 4パスと多いため( 1〜 3パ
ス)、シャルピー特性が悪い。試験No.6、7はそれ
ぞれ加速冷却条件での、冷却速度が10℃/sと遅いため
(20〜50℃)、あるいは冷却停止温度が 500℃と高いた
め(400 ℃未満)、TSが低い。
First, the test No. 1 has a slab heating temperature of 1000
Since it is as low as 0 ° C (limited range 1050 to 1250 ° C, the limited range is shown in parentheses below), TS is low. Test No. No. 2 has a high slab heating temperature of 1300 ° C, and Test No. 3 has a low rolling reduction in the recrystallization γ region of 10% (30% or more).
In No. 5, the rolling reduction in the unrecrystallized γ region was as low as 40% (50% or more), or the number of light rolling passes of 5% / pass or less in the unrecrystallized γ region was as many as 4 passes ( 1 ~ 3 pass), Charpy characteristics are poor. Test No. 6 and 7 have low TS due to the slow cooling rate of 10 ° C / s (20 to 50 ° C) or the high cooling stop temperature of 500 ° C (less than 400 ° C) under accelerated cooling conditions.

【0027】これらに対して、試験No.8〜12は本
発明の構成要件に従い製造したため、高い強度と十分な
低温靭性を有し、さらに表面硬度が低く、板厚方向の硬
度むらの少ない鋼板であることがわかる。試験No.1
3は製造条件においては本発明の限定条件を満足してい
るが、もう1つの重要な構成条件である成分組成のC量
が0.09%と高いため(0.005 〜0.06%)、表面硬度が高
く、板厚方向の硬度むらの大きい鋼板であることがわか
る。
For these, the test No. Since Nos. 8 to 12 were manufactured in accordance with the constitutional requirements of the present invention, it is understood that the steel sheets have high strength and sufficient low temperature toughness, have low surface hardness, and have little hardness unevenness in the sheet thickness direction. Test No. 1
3 satisfies the limiting condition of the present invention in the production conditions, but since the C content of the component composition which is another important constituent condition is as high as 0.09% (0.005 to 0.06%), the surface hardness is high, It can be seen that the steel plate has large hardness unevenness in the plate thickness direction.

【0028】試験No.14、15及び16は本発明に
従う成分組成よりなるC鋼、D鋼及びE鋼のスラブにつ
いて、しかも本発明の構成要件を満足して製造した30mm
及び15mm厚鋼板の特性を示す。十分な引張特性と低温靭
性を具備し、さらに表面硬度が低く、板厚方向の硬度む
らの少ない鋼板であることがわかる。
Test No. Nos. 14, 15 and 16 are slabs of C-steel, D-steel and E-steel having the composition according to the present invention, and 30 mm manufactured satisfying the constitutional requirements of the present invention.
And the characteristics of 15 mm thick steel plate are shown. It can be seen that the steel sheet has sufficient tensile properties and low temperature toughness, has low surface hardness, and has little unevenness in hardness in the plate thickness direction.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【発明の効果】本発明により、板厚方向の硬度むらが小
さく、低温靭性にも優れた非調質高張力厚肉鋼板が、従
来の製造方法とはまた別の方法で容易に製造できるよう
になり、ラインパイプの高級化要求を満足することがで
きるようになった意義は大きい。
EFFECTS OF THE INVENTION According to the present invention, a non-heat treated high-strength thick steel plate having small hardness unevenness in the plate thickness direction and excellent in low temperature toughness can be easily manufactured by a method different from the conventional manufacturing method. As a result, it has great significance to be able to satisfy the demand for higher quality line pipes.

【図面の簡単な説明】[Brief description of drawings]

【図1】板厚方向の硬さ分布を示すグラフである。FIG. 1 is a graph showing a hardness distribution in a plate thickness direction.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量比にて、C: 0.005〜0.06%、Si:
0.05〜1.0 %、Mn:0.8〜2.5 %、Al:0.005 〜0.08
%、Nb:0.01〜0.1 %を含有し、残部が鉄及び不可避的
不純物よりなる鋼スラブを1050〜1250℃の温度範囲に加
熱後、(Ar3+150 ℃)以上の再結晶γ域で30%以上の圧
下を与え、さらに(Ar3+150 ℃)未満〜Ar3 の未再結晶
γ域で、少なくとも 5%/パス以下の軽圧下を 1〜 3パ
ス含む50%以上の圧下を与え、次いで(Ar3−10℃)〜(A
r3−80℃)まで空冷し、その後20〜50℃/sの冷却速度
で 400℃未満まで加速冷却することを特徴とする板厚方
向の硬度むらの少ない非調質高張力鋼板の製造方法。
1. A weight ratio of C: 0.005 to 0.06%, Si:
0.05 to 1.0%, Mn: 0.8 to 2.5%, Al: 0.005 to 0.08
%, Nb: 0.01-0.1%, with the balance being steel and unavoidable impurities, the steel slab is heated to a temperature range of 1050 to 1250 ° C and then recrystallized in the γ region above (Ar 3 + 150 ° C) to 30%. giving more pressure, further non-recrystallized γ zone (Ar 3 +150 ° C.) below to Ar 3, giving the reduction of 50% or more, including 1 to 3 passes at least 5% / pass less soft reduction, then ( Ar 3 −10 ° C) ~ (A
r 3 −80 ° C.), and then accelerated cooling to less than 400 ° C. at a cooling rate of 20 to 50 ° C./s, and a method for producing a non-heat treated high strength steel plate with little hardness unevenness in the plate thickness direction. .
【請求項2】 重量比にて、C: 0.005〜0.06%、Si:
0.05〜1.0 %、Mn:0.8〜2.5 %、Al:0.005 〜0.08
%、Nb:0.01〜0.1 %を含み、さらにV:0.01〜0.10
%、Cu: 1.0%以下、Ni:1.0 %以下、Cr: 1.0%以
下、Mo: 0.5%以下、Ti: 0.005〜0.1 %、Ca: 0.001
〜0.01%、REM: 0.001〜0.01%の1種又は2種以上
を含有し、残部が鉄及び不可避的不純物よりなる鋼スラ
ブを1050〜1250℃の温度範囲に加熱後、(Ar3+150 ℃)
以上の再結晶γ域で30%以上の圧下を与え、さらに(Ar3
+150 ℃)未満〜Ar3 の未再結晶γ域で、少なくとも 5
%/パス以下の軽圧下を 1〜 3パス含む50%以上の圧下
を与え、次いで(Ar3−10℃)〜(Ar3−80℃)まで空冷
し、その後20〜50℃/sの冷却速度で 400℃未満まで加
速冷却することを特徴とする板厚方向の硬度むらの少な
い非調質高張力鋼板の製造方法。
2. A weight ratio of C: 0.005 to 0.06%, Si:
0.05 to 1.0%, Mn: 0.8 to 2.5%, Al: 0.005 to 0.08
%, Nb: 0.01 to 0.1%, V: 0.01 to 0.10.
%, Cu: 1.0% or less, Ni: 1.0% or less, Cr: 1.0% or less, Mo: 0.5% or less, Ti: 0.005 to 0.1%, Ca: 0.001
~ 0.01%, REM: 0.001 ~ 0.01% of one or more kinds of steel slabs containing iron and inevitable impurities in the balance, and after heating to a temperature range of 1050 to 1250 ℃, (Ar 3 + 150 ℃)
In the above recrystallization γ region, a reduction of 30% or more is applied, and (Ar 3
Below + 150 ° C) to the unrecrystallized γ region of Ar 3 of at least 5
% / Pass or less, 1 to 3 passes including 50% or more reduction, then air-cooling from (Ar 3 -10 ℃) to (Ar 3 -80 ℃), then cooling at 20-50 ℃ / s A method for producing a non-heat treated high-strength steel sheet with little hardness unevenness in the sheet thickness direction, which comprises accelerating cooling to less than 400 ° C at a speed.
JP3452594A 1994-03-04 1994-03-04 Production of non-heat treated high tensile strength steel plate small in dispersion of hardness in plate thickness direction Pending JPH07242937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3452594A JPH07242937A (en) 1994-03-04 1994-03-04 Production of non-heat treated high tensile strength steel plate small in dispersion of hardness in plate thickness direction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3452594A JPH07242937A (en) 1994-03-04 1994-03-04 Production of non-heat treated high tensile strength steel plate small in dispersion of hardness in plate thickness direction

Publications (1)

Publication Number Publication Date
JPH07242937A true JPH07242937A (en) 1995-09-19

Family

ID=12416696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3452594A Pending JPH07242937A (en) 1994-03-04 1994-03-04 Production of non-heat treated high tensile strength steel plate small in dispersion of hardness in plate thickness direction

Country Status (1)

Country Link
JP (1) JPH07242937A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236047A (en) * 2009-03-31 2010-10-21 Jfe Steel Corp Steel sheet having high toughness and high tensile strength and excellent strength-elongation balance, and method for manufacturing the same
JP2010236046A (en) * 2009-03-31 2010-10-21 Jfe Steel Corp Steel sheet having high toughness, high tensile strength and excellent strength-elongation balance, and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236047A (en) * 2009-03-31 2010-10-21 Jfe Steel Corp Steel sheet having high toughness and high tensile strength and excellent strength-elongation balance, and method for manufacturing the same
JP2010236046A (en) * 2009-03-31 2010-10-21 Jfe Steel Corp Steel sheet having high toughness, high tensile strength and excellent strength-elongation balance, and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US4521258A (en) Method of making wrought high tension steel having superior low temperature toughness
EP2484792B1 (en) Steel plate with low yield ratio, high strength, and high toughness and process for producing same
WO2013145770A1 (en) Low yield ratio high-strength steel plate having superior strain aging resistance, production method therefor, and high-strength welded steel pipe using same
WO2013145771A1 (en) Low yield ratio high-strength steel plate having superior strain aging resistance, production method therefor, and high-strength welded steel pipe using same
EP2105513A1 (en) Weld steel pipe with excellent low-temperature toughness for high-strength thick-walled line pipe and process for producing the same
EP2272994A1 (en) High-tensile strength steel and manufacturing method thereof
EP2484791A1 (en) Steel plate having low yield ratio, high strength and high uniform elongation and method for producing same
EP2853615A1 (en) Low yield ratio, high strength, high toughness, thick steel plate and welded steel pipe, and method for manufacturing the same
JP3711896B2 (en) Manufacturing method of steel sheets for high-strength line pipes
JP3344308B2 (en) Ultra-high-strength steel sheet for linepipe and its manufacturing method
JP2006291349A (en) Line pipe steel sheet having high deformation performance and its manufacturing method
JP3546726B2 (en) Method for producing high-strength steel plate with excellent HIC resistance
EP2093302A1 (en) Weld steel pipe with excellent low-temperature toughness for high-strength line pipe and process for producing the same
JP4205922B2 (en) High strength steel pipe excellent in deformation performance, low temperature toughness and HAZ toughness and method for producing the same
JPH0841536A (en) Production of high tensile strength steel plate small in nonuniformity of hardness in plate thickness direction and excellent in dwtt property
JP5151034B2 (en) Manufacturing method of steel plate for high tension line pipe and steel plate for high tension line pipe
JPH05271766A (en) Manufacture of high strength steel plate excellent in hydrogen induced cracking resistance
JP2004003015A (en) High-strength steel sheet for line pipe superior in hic resistance, and manufacturing method therefor
WO2011043287A1 (en) Steel for linepipe having good strength and malleability, and method for producing the same
JP3274013B2 (en) Method for producing sour resistant high strength steel sheet having excellent low temperature toughness
JPH05195057A (en) Production of high cr steel type uoe steel sheet and high cr type atmosphere corrosion resisting steel sheet both excellent in ys characteristic in l direction
JPH05148539A (en) Production of steel for uoe steel pipe which is less embrittled by heating in (gamma+alpha) two-phase region
JPH02217417A (en) Production of non-heattreated high tensile steel sheet excellent in dwtt characteristic
JP2598357B2 (en) Manufacturing method of high strength steel sheet with excellent low temperature toughness
JPH07242937A (en) Production of non-heat treated high tensile strength steel plate small in dispersion of hardness in plate thickness direction