JPH07242709A - Preparation of water-absorbent resin - Google Patents

Preparation of water-absorbent resin

Info

Publication number
JPH07242709A
JPH07242709A JP5684894A JP5684894A JPH07242709A JP H07242709 A JPH07242709 A JP H07242709A JP 5684894 A JP5684894 A JP 5684894A JP 5684894 A JP5684894 A JP 5684894A JP H07242709 A JPH07242709 A JP H07242709A
Authority
JP
Japan
Prior art keywords
water
absorbent resin
linking agent
aqueous solution
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5684894A
Other languages
Japanese (ja)
Inventor
Juichi Goto
寿一 後藤
Hidenori Sakakibara
秀紀 榊原
Takashi Aoyama
青山  隆
Minoru Okada
岡田  稔
Yasutaro Yasuda
保太郎 安田
Yoshikazu Mori
義和 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP5684894A priority Critical patent/JPH07242709A/en
Publication of JPH07242709A publication Critical patent/JPH07242709A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To easily and inexpensively prepare a water-absorbent resin having a high water absorption ratio and a high water absorption capacity even under an applied pressure. CONSTITUTION:A water-absorbent carboxylated resin powder in a heated state is reacted with a cross-linking agent by using a gas stream to prepare a water- absorbent resin with improved properties. During the reaction of the surfaces of the resin particles, formation of agglomerates which inhibit the reaction and are present among the particles is suppressed to enable the resin having a high water absorption ratio even under an applied pressure to be prepared while keeping the high water absorption capacity thereof.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は特定の方法で表面処理を
施すことにより優れた特性を有する吸水性樹脂を製造す
る方法に関するものである。さらに詳しく述べれば、本
発明は、吸水倍率が高く、加圧下でも高い吸水能力を有
する吸水性樹脂を、容易に且つ安価に製造できる方法に
関するものであり、本発明方法により得られる特性の改
良された吸水性樹脂はサニタリー用品、土木薬剤さらに
は農業用薬剤として幅広く利用されるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a water absorbent resin having excellent properties by subjecting it to a surface treatment by a specific method. More specifically, the present invention relates to a method capable of easily and inexpensively producing a water absorbent resin having a high water absorption capacity and having a high water absorbing capacity even under pressure, and the characteristics obtained by the method of the present invention are improved. The water-absorbent resin is widely used as sanitary products, civil engineering chemicals, and agricultural chemicals.

【0002】[0002]

【従来の技術】近年、吸水性樹脂は、生理用ナプキン、
紙オムツ、母乳パッドなどのサニタリー用薬剤や農園芸
用保水剤などの農業用薬剤さらには、汚泥固化剤、掘削
泥水用などの土木薬剤として使用されている。このよう
な吸水性樹脂の具体的なものとしては、例えばデンプン
−アクリロニトリルグラフト共重合体の加水分解物、デ
ンプン−アクリル酸グラフト共重合体の中和物、ポリビ
ニルアルコール架橋重合体、酢ビ−アクリル酸エステル
共重合体の加水分解物、またはそれらの架橋体、ポリア
クリル酸塩系の架橋体、無水マレイン酸系共重合体の架
橋物などが知られている。
2. Description of the Related Art In recent years, water absorbent resins have been used for sanitary napkins,
It is used as a sanitary agent such as paper diapers and breast milk pads, an agricultural agent such as a water retention agent for agricultural and horticultural purposes, and a civil engineering agent such as a sludge solidifying agent and drilling mud. Specific examples of such a water absorbent resin include, for example, a hydrolyzate of a starch-acrylonitrile graft copolymer, a neutralized product of a starch-acrylic acid graft copolymer, a polyvinyl alcohol cross-linked polymer, and a vinyl acetate-acryl. Hydrolyzates of acid ester copolymers, crosslinked products thereof, polyacrylic acid salt-based crosslinked products, maleic anhydride-based copolymer crosslinked products, and the like are known.

【0003】吸水性樹脂の用途の中で、現在、特に幅広
く該樹脂が使用されているのは紙オムツ等のサニタリ−
用品であり、この用途で、吸水性樹脂に特に期待される
性能としては、加圧下でも体液を吸いあげる吸水能力と
その体液を大量に吸う高い吸水倍率、そして吸水した体
液を逆戻りさせない保水能力等が挙げられる。しかしな
がら、吸水倍率と加圧下での吸水能力は、相反する関係
にあり、加圧下での吸水能力を良くすると吸水倍率が低
くなり、逆に、吸水倍率を高くすると加圧下での吸水能
力が低下するという状況にある。また、保水能力は、吸
水倍率と加圧下での吸水能力の両物性が高くなければ、
充分に性能を発揮し得ないというのが一般的な傾向であ
る。
Among the applications of the water-absorbent resin, the one that is widely used at present is the sanitary paper diapers and the like.
In this application, the water-absorbent resin is expected to have a water absorption capacity to absorb body fluid even under pressure, a high water absorption capacity to absorb a large amount of the body fluid, and a water retention capacity to prevent the absorbed body fluid from reversing. Is mentioned. However, the water absorption capacity and the water absorption capacity under pressure have a contradictory relationship.If the water absorption capacity under pressure is improved, the water absorption capacity decreases, and conversely, if the water absorption capacity is increased, the water absorption capacity under pressure decreases. It is in the situation of doing. Also, the water retention capacity, unless both physical properties of water absorption capacity and water absorption capacity under pressure are high,
It is a general tendency that the performance cannot be sufficiently exhibited.

【0004】吸水倍率を維持して加圧下での吸水能力を
改良する方法としては、吸水倍率の高い吸水性樹脂の表
面近傍のみを均一に架橋し、表面と内部に架橋勾配差を
つける方法が知られている。例えば、吸水性樹脂を親水
性有機溶媒中または水と親水性有機溶媒中に分散させ、
架橋剤で架橋させる方法(特開昭57−44627、特
開昭58−42602)や、吸水性樹脂粉末に架橋剤ま
たは架橋剤水溶液を直接、混合させ、必要に応じ加熱処
理して表面を架橋させる方法(特開昭58−18023
3、特開昭59−62665、特開昭61−4624
1)等が知られている。
As a method for maintaining the water absorption capacity and improving the water absorption capacity under pressure, there is a method in which only the vicinity of the surface of the water absorbent resin having a high water absorption capacity is uniformly crosslinked, and a difference in the crosslinking gradient between the surface and the inside is provided. Are known. For example, a water-absorbent resin is dispersed in a hydrophilic organic solvent or in water and a hydrophilic organic solvent,
A method of crosslinking with a crosslinking agent (JP-A-57-44627, JP-A-58-42602) or a method of directly mixing a water-absorbing resin powder with a crosslinking agent or an aqueous solution of the crosslinking agent, and subjecting the surface to heat treatment to crosslink the surface. Method (JP-A-58-18023)
3, JP-A-59-62665, JP-A-61-4624
1) etc. are known.

【0005】しかしながら、親水性有機溶媒またはこれ
と水の混合物を分散媒として使用した前記方法では、確
かに架橋剤が分散媒に溶解して、吸水性樹脂表面を均一
に架橋できる可能性は高いが、架橋剤が吸水性樹脂の内
部まで浸透して吸水倍率が低下し過ぎる場合があって保
水能力を低下させる恐れがあり必ずしも満足できるもの
ではない。また反応工程および有機溶剤または水を除去
する乾燥工程で加熱する場合に、爆発、火災を招く危険
性が高い点や廃ガスによる環境衛生等の安全性に関する
問題点も存在している。さらには高価な有機溶媒を使用
するという経済性の点からも好ましいものではない。ま
た、直接、吸水性樹脂に架橋剤を混合する、後者の方法
は、安価に工業的に実施できるが、架橋剤だけでは吸水
性樹脂に対する添加量の増大という問題と、効果的な架
橋剤には粘性な液体が多く均一に混合することが困難
で、十分に樹脂表面近傍を架橋することが出来ないとい
う問題点を有している。さらに、架橋剤水溶液として樹
脂表面に散布する方法においては、多少は、架橋剤が水
とともに吸水性樹脂表面全体を覆いやすくなるが、一方
で架橋剤水溶液が吸水性樹脂の内部まで浸透し易くな
り、吸水性樹脂表面と内部の架橋勾配差を損なう恐れが
あり、十分な吸水性能を発揮させるための最良の方法と
は言い難いものである。また、同時に水により吸水膨潤
した樹脂粒子相互間に凝集が生じ、この凝集塊が均一な
混合を阻害する場合が多く、樹脂表面を均一に架橋する
ことが容易であるとはいいがたいものである。そのう
え、この架橋反応中に生成した凝集塊状の吸水性樹脂
は、架橋剤水溶液が樹脂間に取り込まれているため、粒
子表面に架橋剤の濃度勾配が生じて、極度に架橋した吸
水倍率の低位の部分と逆に架橋不十分で加圧下での吸水
能力の低位の部分が混在した不均一なものに成りやす
く、吸水能力に十分と言えるものを得るのが困難であ
る。さらに、これらの凝集塊は、粒径が1000μmを
越えている場合がほとんどで、その様なものは吸水速度
が十分なものとは言い難いものであり、このような凝集
塊が製品中に残留することは、吸水能力、吸水速度の点
から好ましくない。この問題点を解消するために、これ
らの凝集塊を分級除去したり、分級除去したものを再解
砕して製品中に戻すということが行われるが、それらの
操作は経済性、作業性の点で大きな問題になるものであ
る。
However, in the above method using a hydrophilic organic solvent or a mixture thereof with water as a dispersion medium, there is a high possibility that the cross-linking agent is certainly dissolved in the dispersion medium to uniformly cross-link the surface of the water-absorbent resin. However, the cross-linking agent may penetrate into the water-absorbent resin and the water absorption capacity may be excessively reduced, which may reduce the water-retaining ability, which is not always satisfactory. In addition, there is a problem that there is a high risk of causing an explosion or a fire when heating in the reaction step and a drying step for removing the organic solvent or water, and there is a problem regarding safety such as environmental hygiene due to waste gas. Furthermore, it is not preferable from the economical point of view that an expensive organic solvent is used. Further, the latter method of directly mixing a cross-linking agent with the water-absorbent resin can be industrially carried out inexpensively, but the problem of increasing the amount of addition to the water-absorbent resin with the cross-linking agent alone, and an effective cross-linking agent Has a problem in that it is difficult to uniformly mix a large amount of viscous liquid and it is impossible to sufficiently crosslink the vicinity of the resin surface. Furthermore, in the method of spraying on the resin surface as an aqueous solution of the crosslinking agent, the crosslinking agent easily covers the entire surface of the water absorbent resin together with water, while the aqueous solution of the crosslinking agent easily penetrates to the inside of the water absorbent resin. However, there is a risk that the difference in crosslinking gradient between the surface of the water-absorbent resin and the inside may be impaired, and it is hard to say that this is the best method for exhibiting sufficient water-absorbing performance. Further, at the same time, agglomeration occurs between resin particles that have been swollen by water absorption, and this aggregate often impedes uniform mixing, and it is difficult to say that it is easy to uniformly crosslink the resin surface. is there. In addition, the water-absorbent resin in the form of agglomerates formed during this crosslinking reaction has an aqueous solution of the crosslinking agent incorporated between the resins, so that a concentration gradient of the crosslinking agent occurs on the surface of the particles, and the extremely low water absorption capacity due to crosslinking is obtained. Contrary to the part (1), cross-linking is insufficient, and a part having a low water absorption capacity under pressure is likely to be mixed, and it is difficult to obtain a material having sufficient water absorption capacity. Furthermore, these agglomerates almost always have a particle size of more than 1000 μm, and it is difficult to say that such particles have a sufficient water absorption rate, and such agglomerates remain in the product. Doing so is not preferable in terms of water absorption capacity and water absorption speed. In order to solve this problem, these agglomerates are classified and removed, or the classified and removed ones are re-crushed and returned to the product, but those operations are economical and workable. That is a big problem.

【0006】これに対し、不活性な無機質粉末やショ糖
脂肪酸エステル存在下で吸水性樹脂粉末に架橋剤水溶液
を混合して反応させる方法(特開昭60−16395
6、特開昭60−255814、特開平3−2820
3)が知られているが、この方法では、確かに無機質粉
末やショ糖脂肪酸エステルの効果により樹脂粒子間の凝
集は抑制されて架橋剤水溶液が均一に混合される可能性
は高いが、この場合は、逆に表面処理以前に存在してい
る無機質粉末にも架橋剤水溶液が吸収されるため、架橋
剤水溶液の吸水性樹脂内部への浸透が十分にコントロー
ルされず、やはり、吸水性樹脂表面と内部の架橋勾配差
が得らないため十分な吸水性能を発揮させることは困難
である。また、樹脂粒子間の凝集を抑制するのに必要量
の無機質粉末を使用すると得られる吸水性樹脂から粉塵
が発生しやすくなるという欠点を生じ、環境衛生上好ま
しくない。また、ショ糖脂肪酸エステルを用いることは
粉塵の発生の面ではよくても、それ自身が高価であり経
済性の点から工業的に実施するには好ましくない。
On the other hand, a method in which an aqueous solution of a cross-linking agent is mixed with a water-absorbent resin powder in the presence of an inert inorganic powder or sucrose fatty acid ester to carry out a reaction (JP-A-60-16395).
6, JP-A-60-255814, JP-A-3-2820
Although 3) is known, this method certainly suppresses agglomeration between resin particles due to the effect of the inorganic powder and the sucrose fatty acid ester, and it is highly possible that the aqueous solution of the crosslinking agent is uniformly mixed. In this case, on the contrary, since the aqueous solution of the cross-linking agent is absorbed by the inorganic powder existing before the surface treatment, the permeation of the aqueous solution of the cross-linking agent into the water-absorbent resin is not sufficiently controlled. Since it is not possible to obtain the difference in cross-linking gradient between the inside and the inside, it is difficult to exert sufficient water absorption performance. In addition, the use of an amount of inorganic powder required to suppress aggregation between resin particles causes a drawback that dust is likely to be generated from the water absorbent resin obtained, which is not preferable in terms of environmental hygiene. Further, although the use of sucrose fatty acid ester is good in terms of dust generation, it is expensive in itself and is not preferable for industrial implementation from the economical point of view.

【0007】さらに、無機質粉末を使用せず、吸水性樹
脂を連続的に気中に分散させ、架橋剤水溶液を500μ
m以下の液滴にして混合する方法(特開平3−8400
4)が知られているが、液滴を200μm未満の細かい
粒子径にすると、吸水性樹脂を連続的に気中に分散させ
る際に発生する風力で樹脂との接触が不十分となる恐れ
があり、特に工業的なスケールで実施する場合、樹脂粉
末を分散させるには、大量の気体と動力を必要とする
が、その様な状態では微細な液滴を吸水性樹脂に均一に
接触させるのは不可能に近い。また、加熱下で実施する
場合、微細液滴では、樹脂表面に到達する以前に水分が
蒸発してしまい十分な架橋を行うことが困難になる。ま
た、液滴の粒子径が200〜500μmの範囲の場合で
は、吸水性樹脂の形状や架橋剤水溶液の添加の際の状態
によっては樹脂粒子間に凝集が生じてしまい、十分に目
的を達成することが困難な方法である。
Further, the water absorbent resin is continuously dispersed in the air without using the inorganic powder, and the cross-linking agent aqueous solution is 500 μm.
A method of forming droplets of m or less and mixing them (Japanese Patent Laid-Open No. 3-8400
4) is known, but if the droplets have a fine particle size of less than 200 μm, there is a risk that the wind power generated when continuously dispersing the water-absorbent resin in the air may cause insufficient contact with the resin. Yes, especially when it is carried out on an industrial scale, a large amount of gas and power are required to disperse the resin powder, but in such a state, it is necessary to bring fine droplets into uniform contact with the water absorbent resin. Is almost impossible. Further, when the heating is performed under heating, the fine droplets evaporate water before reaching the resin surface, which makes it difficult to perform sufficient crosslinking. Further, in the case where the particle diameter of the droplet is in the range of 200 to 500 μm, agglomeration occurs between the resin particles depending on the shape of the water absorbent resin and the state at the time of adding the aqueous solution of the cross-linking agent, so that the object is sufficiently achieved. Is a difficult method.

【0008】[0008]

【発明が解決しようとする課題】このように、吸水性樹
脂の表面近傍を架橋して相反する関係をバランス良く改
良する方法が種々こころみられているが、いずれも上記
したような問題点を有しており、十分な改良効果を示す
吸水性樹脂を得るに最適な方法とはいいがたいものであ
る。
As described above, various methods for cross-linking the vicinity of the surface of the water-absorbent resin to improve the balanced relationship in a well-balanced manner have been tried, but all of them have the above-mentioned problems. Therefore, it is hard to say that this is the most suitable method for obtaining a water-absorbent resin exhibiting a sufficient improvement effect.

【0009】本発明の目的は、上記の問題点を改良し
て、高い吸水倍率を維持しつつ、加圧下でも高い吸水能
力を有する吸水性樹脂を得るための有効な方法を提供す
ることにある。さらに、本発明は、吸水性樹脂表面処理
時に副生成していた粒子間の凝集物を低減して、前記凝
集物の処理工程を省略し得る、工業的に経済性の優れた
吸水性樹脂の製造方法を提供することにある。本発明の
さらなる目的は、表面処理工程において親水性有機溶媒
や粉塵の原因となる流動助剤の微粒子を使用しない場合
でも効果的に実施し得る、工業的に安全性の優れた、ま
た環境衛生的にも問題ない特性の改良された吸水性樹脂
の製造方法を提供することにある。
An object of the present invention is to improve the above problems and provide an effective method for obtaining a water-absorbent resin having a high water-absorption capacity even under pressure while maintaining a high water-absorption capacity. . Furthermore, the present invention reduces the aggregates between particles that were by-produced during the surface treatment of the water-absorbent resin, and can omit the treatment step of the aggregates, which is an industrially highly economical water-absorbent resin. It is to provide a manufacturing method. A further object of the present invention is that it can be effectively carried out even in the case where a hydrophilic organic solvent or a flow aid fine particle that causes dust is not used in the surface treatment step, has excellent industrial safety, and is environmentally friendly. Another object of the present invention is to provide a method for producing a water-absorbent resin having improved properties which is not problematic.

【0010】[0010]

【課題を解決する為の手段】前記課題を解決する為、本
発明者等は鋭意研究を重ね、加熱された吸水性樹脂粉末
に気体流とともに架橋剤を混合させて反応することで、
前記問題点が解決され、目的とする吸水性樹脂が得られ
ることを見いだして本発明を完成した。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the inventors of the present invention have conducted extensive studies, and by reacting a heated water-absorbent resin powder with a gas flow mixed with a cross-linking agent,
The present invention has been completed by finding that the above-mentioned problems can be solved and a desired water-absorbent resin can be obtained.

【0011】すなわち、本発明は、加熱状態にあるカル
ボキシル基を有する吸水性樹脂粉末に気体流を用いて架
橋剤を混合し反応させることを特徴とする特性の改良さ
れた吸水性樹脂の製造方法に関するものである。
That is, the present invention is a method for producing a water-absorbent resin having improved properties, which is characterized in that a water-absorbent resin powder having a carboxyl group in a heated state is mixed with a cross-linking agent using a gas flow to react. It is about.

【0012】以下、本発明をさらに詳細に説明する。本
発明で使用される吸水性樹脂とは、カルボキシル基を有
するもので、例えば、デンプン−アクリロニトリルグラ
フト共重合体の加水分解物、デンプン−アクリル酸グラ
フト共重合体の中和物、アクリロニトリル共重合体もし
くはアクリルアミド共重合体の加水分解物、酢酸ビニル
−アクリル酸エステル共重合体の加水分解物、またはこ
れらの架橋体、ポリアクリル酸塩系の架橋体、無水マレ
イン酸系共重合体の架橋物などが挙げられる。
The present invention will be described in more detail below. The water-absorbent resin used in the present invention has a carboxyl group, for example, a hydrolyzate of starch-acrylonitrile graft copolymer, a neutralized product of starch-acrylic acid graft copolymer, acrylonitrile copolymer. Alternatively, a hydrolyzate of an acrylamide copolymer, a hydrolyzate of a vinyl acetate-acrylic acid ester copolymer, or a crosslinked product thereof, a polyacrylic acid salt-based crosslinked product, a maleic anhydride-based copolymer crosslinked product, etc. Is mentioned.

【0013】この様な吸水性樹脂のうち本発明にとり好
ましいものは、一般に不飽和カルボン酸またはその塩の
モノマー単独または2種以上あるいは他の不飽和モノマ
−と(共)重合することにより得られるものであり、不飽
和カルボン酸塩系のモノマーとしては、アクリル酸、メ
タクリル酸、イタコン酸、マレイン酸またはそれらのナ
トリウム、カリウム等の金属塩が挙げられる。他の不飽
和モノマ−としては、2-アクリルアミド-2-メチルプロ
パンスルホン酸またはそのナトリウム、カリウム等の金
属塩;(メタ)アクリルアミド、アクリルニトリル、(メ
タ)アクリル酸メチル等の(メタ)アクリル酸エステル
類;酢酸ビニル;ジエチルアミノエチル(メタ)アクリレ
ート等のアルキルアミノアルキル(メタ)アクリレート類
およびそれらを塩化メチル等のハロゲン化アルキルによ
り4級化した第4級アンモニウム塩、または塩酸、硫酸
等で処理した第3級アミン塩等を挙げることができる
が、吸水能力の点から不飽和カルボン酸塩系モノマーど
うしを(共)重合したものがより好ましく、特に好ましく
は、アクリル酸とアクリル酸塩の割合が0〜80:10
0〜20モル%からなるアクリル酸塩系モノマ−を共重
合したものである。もちろん、アクリル酸を重合して得
られるポリアクリル酸を部分中和して、前記モル比とな
るようにしたものでもよい。
Among such water-absorbent resins, those which are preferable in the present invention are generally obtained by homopolymerizing monomers of unsaturated carboxylic acids or salts thereof, or two or more kinds thereof, or (co) polymerizing with other unsaturated monomers. Examples of the unsaturated carboxylic acid salt-based monomer include acrylic acid, methacrylic acid, itaconic acid, maleic acid or their metal salts such as sodium and potassium. Other unsaturated monomers include 2-acrylamido-2-methylpropanesulfonic acid or its metal salts such as sodium and potassium; (meth) acrylamide, acrylonitrile, (meth) acrylic acid such as methyl (meth) acrylate. Esters; Vinyl acetate; Alkylaminoalkyl (meth) acrylates such as diethylaminoethyl (meth) acrylate and quaternary ammonium salts obtained by quaternizing them with alkyl halides such as methyl chloride, or treated with hydrochloric acid, sulfuric acid, etc. Examples thereof include tertiary amine salts, etc., but from the viewpoint of water absorption capacity, those obtained by (co) polymerizing unsaturated carboxylic acid salt-based monomers are more preferable, and particularly preferably, the ratio of acrylic acid and acrylic acid salt. Is 0 to 80:10
It is a copolymer of 0 to 20 mol% of an acrylate monomer. Of course, polyacrylic acid obtained by polymerizing acrylic acid may be partially neutralized so that the above molar ratio is obtained.

【0014】また、本発明に適用される吸水性樹脂とし
て、架橋構造を持たない重合体でも効果的に使用できる
が、例えば前記のモノマーを重合する際に2個以上の不
飽和基や反応性官能基を有する架橋剤を少量反応させて
架橋構造を有している架橋体としたもの等がより好まし
い。この重合時に用いられる架橋剤としては、例えば、
N,N'-メチレンビス(メタ)アクリルアミド、N-メチロー
ル(メタ)アクリルアミド、(ポリ)エチレングリコールジ
(メタ)アクリレート、(ポリ)プロピレングリコールジ
(メタ)アクリレート、グリセリントリ(メタ)アクリレー
ト、グリセリンジ(メタ)アクリレート、(メタ)アクリル
酸多価金属塩、トリメチロールプロパントリ(メタ)アク
リレート、トリアリルアミン、トリアリルホスフェ−
ト、グリシジル(メタ)アクリレート、(ポリ)エチレング
リコールジグリシジルエーテル、グリセリントリ(ジ)グ
リシジルエーテル等を挙げることができる。また、これ
ら架橋剤は2種以上混合して使用してもよい。これらの
架橋剤の使用量は、一般に全モノマー量を基準として
0.001重量%〜0.5重量%であり、好ましくは0.
01〜0.3重量%程度である。
Further, as the water absorbent resin applied to the present invention, a polymer having no cross-linking structure can be effectively used. For example, when polymerizing the above-mentioned monomer, two or more unsaturated groups or a reactive group are used. It is more preferable that a small amount of a crosslinking agent having a functional group is reacted to form a crosslinked product having a crosslinked structure. Examples of the cross-linking agent used during this polymerization include:
N, N'-methylenebis (meth) acrylamide, N-methylol (meth) acrylamide, (poly) ethylene glycol di
(Meth) acrylate, (poly) propylene glycol di
(Meth) acrylate, glycerin tri (meth) acrylate, glycerin di (meth) acrylate, (meth) acrylic acid polyvalent metal salt, trimethylolpropane tri (meth) acrylate, triallylamine, triallyl phosphate
And glycidyl (meth) acrylate, (poly) ethylene glycol diglycidyl ether, glycerin tri (di) glycidyl ether and the like. Moreover, you may use these crosslinking agents in mixture of 2 or more types. The amount of these cross-linking agents used is generally 0.001% by weight to 0.5% by weight, preferably 0.001% by weight, based on the total amount of monomers.
It is about 01 to 0.3% by weight.

【0015】重合の際に用いられる重合開始剤として
は、一般に使用される水溶性ラジカル開始剤、例えば過
硫酸ナトリウム、過硫酸アンモニウム等の過酸化物、過
酸化水素、t-ブチルハイドロパーオキサイド等のハイド
ロパーオキサイド、2,2'-アゾビス-2-アミジノプロパン
塩酸塩等のアゾ化合物が挙げられる。これらの重合開始
剤は、2種以上混合して使用することも可能であり、さ
らには、亜硫酸ナトリウム等の亜硫酸塩、L-アスコルビ
ン酸、エリソルビン酸およびその塩の還元剤とを併用す
るレドックス開始剤系も用いることができる。重合開始
剤の使用量は、一般にモノマーに対して、0.005〜
0.5重量%である。
The polymerization initiator used in the polymerization includes water-soluble radical initiators generally used, such as peroxides such as sodium persulfate and ammonium persulfate, hydrogen peroxide, t-butyl hydroperoxide and the like. Examples thereof include azo compounds such as hydroperoxide and 2,2′-azobis-2-amidinopropane hydrochloride. These polymerization initiators can be used as a mixture of two or more kinds, and further, redox initiation using a sulfite such as sodium sulfite, L-ascorbic acid, erythorbic acid and a reducing agent for the salt in combination. Agent systems can also be used. The amount of the polymerization initiator used is generally 0.005 to the monomer.
It is 0.5% by weight.

【0016】本発明で使用される吸水性樹脂は、水溶液
重合、逆相懸濁重合、沈澱重合、塊状重合等の各種重合
方法で調製されたもののいずれでも良く、また得られる
吸水性樹脂の粒子形状も、例えば、逆相懸濁重合によっ
て得られるビーズ状、高含水の吸水性ゲルをドラム乾燥
により得られるフレーク状、また塊状の吸水性樹脂を粉
砕して得られる不定形状等と、特に制限はないが、作業
性も良く製造しやすい水溶液重合、逆相懸濁重合で調製
されたもののが好ましく、安全性や経済性を考えると水
溶液重合によるものが特に好ましい。
The water-absorbent resin used in the present invention may be any one prepared by various polymerization methods such as aqueous solution polymerization, reverse phase suspension polymerization, precipitation polymerization and bulk polymerization, and particles of the water-absorbent resin obtained. The shape is also particularly limited, for example, a bead shape obtained by reverse phase suspension polymerization, a flake shape obtained by drum-drying a highly water-containing water-absorbent gel, or an indefinite shape obtained by pulverizing a massive water-absorbent resin. However, those prepared by an aqueous solution polymerization or reverse phase suspension polymerization, which has good workability and is easy to manufacture, are preferable, and those obtained by an aqueous solution polymerization are particularly preferable in view of safety and economy.

【0017】吸水性樹脂を、水溶液重合、逆相懸濁重合
等で重合し製造する際のモノマー濃度は、モノマーの飽
和濃度までの範囲で任意に可能であり、モノマー濃度が
高い方が重合後の含水ゲル(含水状態の架橋重合体)の
細断や脱水操作が容易になるので経済的に有利であるた
め、一般的には20重量%以上、好ましくは25重量%
以上であり、より好ましくは30重量%以上である。な
お、35重量%以上のモノマー濃度において常圧で重合
すると突発重合が生じやすく危険であるうえ、水溶液重
合の場合、得られた含水ゲルも蒸気圧で自己破壊を起こ
し、理由は不明であるが、得られた吸水性樹脂の性能が
不均一になるため、35重量%以上のモノマー濃度で重
合を実施する場合は、耐圧の容器でモノマー中の水の沸
騰を防止可能な圧力をかけて行うのが好ましい。
When the water-absorbent resin is polymerized by aqueous solution polymerization, reverse-phase suspension polymerization, etc., the monomer concentration can be arbitrarily set within a range up to the saturated concentration of the monomer. Since it is economically advantageous because the water-containing gel (crosslinked polymer in a water-containing state) can be easily shredded and dehydrated, it is generally 20% by weight or more, preferably 25% by weight.
It is above, and more preferably 30% by weight or more. It should be noted that, when polymerization is carried out at normal pressure at a monomer concentration of 35% by weight or more, sudden polymerization is likely to occur, which is dangerous, and in the case of aqueous solution polymerization, the resulting hydrous gel also self-destructs due to vapor pressure, but the reason is unknown. When the polymerization is carried out at a monomer concentration of 35% by weight or more, the pressure of a pressure-resistant container is applied so as to prevent boiling of water in the monomer, because the performance of the obtained water-absorbent resin becomes uneven. Is preferred.

【0018】水溶液重合、逆相懸濁重合で得られた吸水
性樹脂の含水ゲルは、必要により細断した後、通常の方
法で乾燥される。細断方法としては、ゴム状弾性体の押
出しが可能な切断装置を用いることができ、たとえば、
カッター型細断機、チョッパー型細断機、ニーダー型細
断機が例示できる。乾燥方法としては、通常の乾燥器や
加熱炉を用いることができ、たとえば、熱風乾燥器、流
動乾燥器、気流乾燥器、赤外線乾燥器、誘電加熱乾燥器
等が用いられる。
The water-containing gel of the water-absorbent resin obtained by the aqueous solution polymerization or the reverse phase suspension polymerization is optionally shredded and then dried by a usual method. As the shredding method, a cutting device capable of extruding a rubber-like elastic body can be used, for example,
A cutter type shredder, a chopper type shredder, and a kneader type shredder can be illustrated. As a drying method, an ordinary dryer or a heating furnace can be used, and for example, a hot air dryer, a fluidized dryer, a gas stream dryer, an infrared dryer, a dielectric heating dryer or the like is used.

【0019】このように乾燥された吸水性樹脂を必要に
より粉砕、分級して、本発明に適用される吸水性樹脂粉
末を得る。粉砕方法としては、通常の鉱石等の粗砕粒を
粉砕する装置を用いることができ、たとえば、ジョーク
ラッシャー、コーンクラッシャー等の直圧式粉砕機、ロ
ータリークラッシャー、アトリッションミル等の円板型
粉砕機、ハンマーミル、パルベライザー等の衝撃型粉砕
機、リングローラーミル、リングロールミル、ボールロ
ーラーミル等のローラー型粉砕機、ボールミル、ロッド
ミル等のシリンダー型粉砕機を挙げることができる。こ
れらの粉砕機は、単独で使用しても良いが、製造ロスを
低減したり、吸水性樹脂粉末をシャープな粒度分布で得
るために2台以上組み合わせて使用する方が、経済性や
作業性の点から好ましい。
The water-absorbent resin thus dried is pulverized and classified if necessary to obtain a water-absorbent resin powder applicable to the present invention. As the crushing method, a device for crushing coarsely crushed particles such as ordinary ores can be used, and for example, a direct pressure crusher such as a jaw crusher or a cone crusher, a disk crusher such as a rotary crusher or an attrition mill. Examples thereof include impact crushers such as hammer mills and pulverizers, roller type crushers such as ring roller mills, ring roll mills and ball roller mills, and cylinder type crushers such as ball mills and rod mills. These crushers may be used alone, but it is more economical and workable to use them in combination in order to reduce production loss and obtain a water-absorbent resin powder with a sharp particle size distribution. From the point of, it is preferable.

【0020】本発明において架橋される吸水性樹脂粉末
は、その粒子径についてとくに制限はないが、通常、粒
子径100〜1000μmの粒子を90重量%以上含有
する粒度分布を有するものが好ましく、150〜850
μmの粒子を90重量%以上含有する粒度分布を有する
ものが特に好ましい。粒子径100μm未満の粒子が1
0重量%より多く存在すると、気体流が存在しても吸水
性樹脂表面に架橋剤の分散のために使用される水分等が
すばやく吸収されてしまい、吸水性樹脂粒子間の凝集を
促進したり、吸水性樹脂への表面架橋剤の浸透も進行し
てしまい十分な効果を示さなくなることがある。反対に
粒子径1000μm以上の粒子が10重量%より多く存
在すると、得られた吸水性樹脂の吸水速度が遅くなるこ
とがあり、吸水倍率と加圧下での吸水能力は問題なくて
も、サニタリ−用品として使用する場合は、好ましくな
い。
The water-absorbent resin powder to be crosslinked in the present invention is not particularly limited in its particle size, but it is usually preferable to have a particle size distribution containing 90% by weight or more of particles having a particle size of 100 to 1000 μm. ~ 850
Those having a particle size distribution containing 90% by weight or more of particles of μm are particularly preferable. 1 particle with a particle size less than 100 μm
When it is present in an amount of more than 0% by weight, the water used for dispersing the cross-linking agent is quickly absorbed on the surface of the water absorbent resin even if a gas flow is present, which promotes aggregation between the water absorbent resin particles. In some cases, the penetration of the surface cross-linking agent into the water absorbent resin also progresses and the sufficient effect may not be obtained. On the other hand, when particles having a particle diameter of 1000 μm or more are present in an amount of more than 10% by weight, the water absorption rate of the resulting water absorbent resin may be slowed down. Even if the water absorption capacity and the water absorption capacity under pressure are not a problem, the hygienic It is not preferable when used as a product.

【0021】本発明で吸水性樹脂と反応させる架橋剤
(前記重合時の架橋剤と区別して以下表面架橋剤とい
う)としては、吸水性樹脂の官能基と反応し親水性であ
るものが好ましく、より好ましくは水溶性の化合物であ
り、水溶性の化合物であれば特にその種類に制限はな
く、例えば、(ポリ)エチレングリコールジグリシジルエ
ーテル、(ポリ)グリセロールポリグリシジルエーテル、
ジグリセロールポリグリシジルエーテル、(ポリ)プロピ
レングリコールジグリシジルエーテル、ペンタエリスリ
トールポリグリシジルエーテル等の多価グリシジルエー
テル類;(ポリ)エチレングリコール、ジエチレングリコ
ール、(ポリ)グリセリン、ジエタノールアミン、ポリオ
キシプロピレン、ペンタエリスリトール、ソルビトール
等の多価アルコール類;エピクロルヒドリン、α−メチ
ルクロルヒドリン等のハロエポキシ化合物類;エチレン
ジアミン、ジエチレントリアミン、ポリエチレンイミ
ン、トリエチレンテトラミン等の多価アミン類;塩化ア
ルミニウム、塩化マグネシウム、硫酸アルミニウム、硫
酸マグネシウム等の多価金属塩類;2,4-トルイレンジイ
ソシアネート、ヘキサメチレンジイソシアネート等の多
価イソシアネート類;グルタルアルデヒド、グリオキサ
ール等の多価アルデヒド類などを例示することができ、
なかでも特に好ましいのは、多価グリシジルエーテル
類、多価アルコール類である。
The cross-linking agent to be reacted with the water-absorbent resin in the present invention (hereinafter referred to as a surface cross-linking agent in distinction from the cross-linking agent at the time of polymerization) is preferably one which reacts with the functional group of the water-absorbent resin and is hydrophilic. More preferably a water-soluble compound, the type is not particularly limited as long as it is a water-soluble compound, for example, (poly) ethylene glycol diglycidyl ether, (poly) glycerol polyglycidyl ether,
Polyglycerol glycidyl ethers such as diglycerol polyglycidyl ether, (poly) propylene glycol diglycidyl ether, pentaerythritol polyglycidyl ether; (poly) ethylene glycol, diethylene glycol, (poly) glycerin, diethanolamine, polyoxypropylene, pentaerythritol, Polyhydric alcohols such as sorbitol; haloepoxy compounds such as epichlorohydrin and α-methylchlorohydrin; polyvalent amines such as ethylenediamine, diethylenetriamine, polyethyleneimine, triethylenetetramine; aluminum chloride, magnesium chloride, aluminum sulfate, magnesium sulfate Polyvalent metal salts such as; polyvalent isocyanates such as 2,4-toluylene diisocyanate and hexamethylene diisocyanate; Glutaraldehyde can be exemplified by polyhydric aldehydes such as glyoxal,
Among them, polyhydric glycidyl ethers and polyhydric alcohols are particularly preferable.

【0022】これらの表面架橋剤の使用量は、種類によ
り変化するが、通常、吸水性樹脂に対して0.01〜2
0重量%が適当であり、好ましくは0.05〜10重量
%である。この量が0.01重量%未満の場合には、本
発明の効果が十分に発揮できず、また20重量%を越え
て使用すると吸水倍率が著しく低下することがある。
The amount of these surface-crosslinking agents used varies depending on the type, but is usually 0.01 to 2 with respect to the water-absorbent resin.
0% by weight is suitable, preferably 0.05 to 10% by weight. If this amount is less than 0.01% by weight, the effect of the present invention cannot be sufficiently exhibited, and if it is used in excess of 20% by weight, the water absorption capacity may be significantly reduced.

【0023】本発明で使用される表面架橋剤と吸水性樹
脂との混合方法については、本発明の効果をより良く発
揮させるために、吸水性樹脂に直接表面架橋剤を添加す
る混合方法か、逆に表面架橋剤に吸水性樹脂を直接添加
する混合方法を採用するのが好ましい。たとえば、 (A)表面架橋剤が定量的に噴霧された気体流中に吸水
性樹脂粉末を並流または向流状態で定量的に流下させて
接触させる方法 (B)気体流が存在する容器中で攪拌流動あるいは振動
流動している一定量の吸水性樹脂粉末に一定量の表面架
橋剤を噴霧等で接触させる方法 (C)ベルト上に敷き積められ、気体流中で振動してい
る一定量の吸水性樹脂粉末に一定量の表面架橋剤を上か
らシャワリングする方法 などが挙げられる。これらの方法で架橋剤は気体流とと
もに吸水性樹脂粉末に混合されるが、混合される吸水性
樹脂粉末が加熱状態にあるため、親水性有機溶剤等を使
用しなくても表面処理反応が均一に実施される。吸水性
樹脂粉末は、粉末自身の温度で80℃以上に加熱されて
いるのが好ましく、より好ましくは100〜200℃の
範囲に加熱されていることである。吸水性樹脂粉末の温
度が80℃未満であると、表面架橋剤あるいは表面架橋
剤水溶液を液滴として吸水性樹脂粉末と混合する場合、
気体流が存在したとしても吸水性樹脂粒子間の凝集が進
行し、円滑な表面架橋反応が阻害されることがある。本
発明においては、上記した様に、親水性有機溶剤を使用
しなくても表面処理反応が均一に実施されるのである
が、もちろん不活性な親水性有機溶剤中に分散している
該吸水性樹脂に対して該表面架橋剤を気体流とともに混
合する方法等を採用することも可能である。
Regarding the method for mixing the surface-crosslinking agent and the water-absorbent resin used in the present invention, in order to exert the effect of the present invention better, a mixing method in which the surface-crosslinking agent is directly added to the water-absorbent resin, On the contrary, it is preferable to adopt a mixing method in which the water absorbent resin is directly added to the surface crosslinking agent. For example, (A) a method in which a water-absorbing resin powder is quantitatively flowed down in a cocurrent or countercurrent state and brought into contact with a gas flow in which a surface crosslinking agent is quantitatively sprayed (B) In a container in which a gas flow exists Method of contacting a certain amount of surface-crosslinking agent with a certain amount of water-absorbent resin powder that is agitated or vibrated by a spray (C) A certain amount that is laid on a belt and vibrates in a gas flow Examples of the method include showering a certain amount of the surface-crosslinking agent on the water-absorbent resin powder from above. By these methods, the cross-linking agent is mixed with the water-absorbent resin powder together with the gas flow, but since the water-absorbent resin powder to be mixed is in a heated state, the surface treatment reaction is uniform even without using a hydrophilic organic solvent or the like. Will be carried out. The water-absorbent resin powder is preferably heated to 80 ° C. or higher at the temperature of the powder itself, and more preferably heated to 100 to 200 ° C. When the temperature of the water-absorbent resin powder is less than 80 ° C., when the surface-crosslinking agent or the surface-crosslinking agent aqueous solution is mixed as droplets with the water-absorbent resin powder,
Even if a gas flow exists, aggregation between the water-absorbent resin particles may proceed, and a smooth surface cross-linking reaction may be hindered. In the present invention, as described above, the surface treatment reaction is carried out uniformly without using a hydrophilic organic solvent, but of course the water-absorbing property dispersed in an inert hydrophilic organic solvent. It is also possible to employ a method of mixing the surface cross-linking agent with the resin together with the gas flow.

【0024】このような(A)、(B)、(C)等の方法にお
いて、表面架橋剤と吸水性樹脂の混合および表面架橋反
応をより均一に実施するために、表面架橋剤を液滴状態
で吸水性樹脂粉末に添加するのが好ましい。また、混合
と表面架橋反応をさらに効果的に実施するため表面架橋
剤は希釈な溶液として用いるのが好ましく、希釈するの
に使用される溶媒としては、表面架橋剤を溶解するもの
であって、吸水性樹脂の性能に影響を及ぼさないもので
あれば制限なく用いることができる。例えば、水、メチ
ルアルコール、エチルアルコール等の低級アルコール
類;アセトン、メチルエチルケトン等のケトン類;ジオ
キサン、テトラヒドロフラン等のエーテル類等を挙げる
ことができる。これらは単独または2種以上混合して使
用しても良いが、この場合も前節同様、経済性、安全性
を考えると、高価で引火、爆発しやすい有機溶剤を使用
するよりは、水を単独で使用するのが特に好ましい。
In the methods (A), (B), (C), etc., in order to carry out the mixing of the surface cross-linking agent and the water-absorbent resin and the surface cross-linking reaction more uniformly, the surface cross-linking agent is dropped. It is preferable to add it to the water-absorbent resin powder in the state. Further, in order to more effectively carry out the mixing and surface cross-linking reaction, the surface cross-linking agent is preferably used as a dilute solution, and the solvent used for diluting is one that dissolves the surface cross-linking agent, Any material can be used without limitation as long as it does not affect the performance of the water absorbent resin. Examples thereof include water, lower alcohols such as methyl alcohol and ethyl alcohol; ketones such as acetone and methyl ethyl ketone; ethers such as dioxane and tetrahydrofuran. These may be used alone or in combination of two or more, but in this case as well, considering the economical efficiency and safety, water alone should be used rather than using an expensive organic solvent that is easy to catch fire or explode. Is particularly preferably used.

【0025】表面架橋剤を水溶液として使用する場合の
水の使用量は、表面架橋剤の使用量により変化するが、
通常,吸水性樹脂に対して1〜30重量%が適当であ
り、好ましくは5〜30重量%である。この量が1重量
%未満の場合には、希釈の効果があらわれず、また30
重量%を越えて使用すると表面架橋剤と吸水性樹脂粉末
の混合時に気体流が存在したとしても表面処理反応の際
に樹脂粒子間の凝集が進行したり、表面架橋剤が吸水性
樹脂に深く浸透してしまい、発明の効果があらわれなく
なるおそれがある。
The amount of water used when the surface-crosslinking agent is used as an aqueous solution varies depending on the amount of the surface-crosslinking agent used.
Usually, 1 to 30% by weight is suitable for the water absorbent resin, and preferably 5 to 30% by weight. If this amount is less than 1% by weight, the effect of dilution does not appear and
If it is used in an amount of more than 1% by weight, even if a gas flow is present when the surface cross-linking agent and the water-absorbent resin powder are mixed, the resin particles may agglomerate during the surface treatment reaction, or the surface cross-linking agent may become deep in the water-absorbent resin. There is a risk that the effect of the invention will not be exhibited due to penetration.

【0026】表面架橋剤水溶液を液滴とする時は、その
平均径が200〜600μmの範囲のものにするのが好
ましく、さらに好ましくは平均径300〜500μmの
範囲のものにすることである。液滴の平均径が200μ
m未満になると、吸水性樹脂粉末に分散、混合する際に
発生する風力や反応系内に存在している気体流により混
合装置壁や系外に飛ばされたり、あるいは、加熱状態に
ある反応系内吸水性樹脂に到達する以前に溶媒の水が蒸
発してしまい、逆に表面架橋を阻害することがあり好ま
しくない。この液滴の平均径が600μm以上になると
吸水性樹脂粉末の粒度分布によっては、樹脂粒子間の凝
集が進行することがあり好ましくない。平均径200〜
600μmの範囲の液滴を生成させる方法としては、液
体を霧状にできるものなら特に制限はないが、通常は、
スプレータイプやシャワーリングタイプのものが好まし
い。
When the surface-crosslinking agent aqueous solution is formed into droplets, the average diameter thereof is preferably in the range of 200 to 600 μm, more preferably 300 to 500 μm. Average diameter of droplets is 200μ
When it is less than m, it is blown out to the wall of the mixer or the outside of the system due to the wind force generated when dispersed and mixed in the water-absorbent resin powder or the gas flow existing in the reaction system, or the reaction system is in a heated state. The solvent water evaporates before reaching the internal water-absorbent resin, which may adversely affect surface cross-linking, which is not preferable. If the average diameter of the droplets is 600 μm or more, depending on the particle size distribution of the water-absorbent resin powder, aggregation between resin particles may proceed, which is not preferable. Average diameter 200 ~
There are no particular restrictions on the method for generating droplets in the range of 600 μm as long as the liquid can be atomized, but normally,
A spray type or shower ring type is preferable.

【0027】本発明で、表面架橋剤の吸水性樹脂粉末へ
の混合は前記した様に気体流により行われるが、その方
法を更に具体的に説明すれば以下のとおりであるが、架
橋剤あるいは表面架橋剤溶液と吸水性樹脂の混合を妨げ
ずに吸水性樹脂と均一に混合できる方法ならとくにこれ
らに制限されるものではない。 (1)流動乾燥機型の表面反応装置に吸水性樹脂を仕込
み、装置下部より気体流を導入し、任意の箇所からスプ
レーされる表面架橋剤と吸水性樹脂を混合する方法 (2)ミキサー型の表面反応装置に吸水性樹脂を仕込み
吸水性樹脂の攪拌に合わせ直接吸水性樹脂内にノズルな
どを使用して気体流と表面架橋剤を吹込み吸水性樹脂と
混合する方法 (3)表面架橋剤あるいは表面架橋剤水溶液を2流体ノ
ズル(混合または双頭型ノズル)を使用して、表面架橋
剤と気体流を同一方向から同時に吸水性樹脂に吹き付け
混合する方法などが挙げられる。
In the present invention, the surface cross-linking agent is mixed with the water-absorbent resin powder by a gas flow as described above. The method will be described in more detail below. The method is not particularly limited as long as it can uniformly mix the surface-crosslinking agent solution and the water-absorbent resin without disturbing the mixing. (1) A method in which a water absorbent resin is charged into a fluidized dryer type surface reaction device, a gas flow is introduced from the lower part of the device, and a surface cross-linking agent sprayed from an arbitrary position is mixed with the water absorbent resin (2) mixer type A method of charging a water-absorbent resin into the surface reaction apparatus of and mixing the water-absorbent resin with agitation of the water-absorbent resin by directly blowing a gas flow and a surface-crosslinking agent into the water-absorbent resin by using a nozzle or the like (3) Surface-crosslinking Examples include a method in which the surface-crosslinking agent and the gas flow are simultaneously sprayed and mixed from the same direction onto the water-absorbent resin by using a two-fluid nozzle (mixing or double-headed nozzle) with the agent or the surface-crosslinking agent aqueous solution.

【0028】本発明では、表面架橋剤を溶液として用
い、その溶液に対して0.1〜10Nm3/kgの範囲にある
気体流を用いるのが好ましい。表面架橋剤溶液に対して
0.1Nm3/kg未満の気体流量になると吸水性樹脂を表面
処理する際に存在する反応系内の溶剤、特には水分をす
ばやく蒸発させることが困難となり、樹脂粒子間の凝集
が進行してしまうので好ましくない。また、樹脂粒子間
の凝集が進行しない場合でも、反応系内の溶剤蒸発速度
が遅いと吸水性樹脂表面と内部の架橋勾配差が小さくな
り、吸水倍率の低下を招き好ましいものではない。表面
架橋剤溶液に対して10Nm3/kg以上の気体流量になる
と、表面架橋剤と吸水性樹脂の混合を阻害し、さらに
は、吸水性樹脂を表面処理する際に存在する反応系内の
溶剤を吸水性樹脂と接触する以前に蒸発させてしまい、
逆に表面反応を阻害するので好ましくない。
In the present invention, it is preferable to use the surface cross-linking agent as a solution, and to use a gas flow in the range of 0.1 to 10 Nm 3 / kg with respect to the solution. When the gas flow rate is less than 0.1 Nm 3 / kg with respect to the surface cross-linking agent solution, it becomes difficult to quickly evaporate the solvent in the reaction system, especially the water present in the surface treatment of the water-absorbent resin. It is not preferable because the agglomeration between the two will progress. Even if the agglomeration between the resin particles does not proceed, if the solvent evaporation rate in the reaction system is slow, the difference in the crosslinking gradient between the surface of the water-absorbent resin and the inside of the water-absorbent resin becomes small, which leads to a reduction in the water absorption capacity, which is not preferable. At a gas flow rate of 10 Nm 3 / kg or more with respect to the surface cross-linking agent solution, the mixture of the surface cross-linking agent and the water-absorbent resin is hindered, and further, the solvent in the reaction system existing when the surface treatment of the water-absorbent resin is performed. Evaporate before contacting the water-absorbent resin,
On the contrary, it inhibits the surface reaction, which is not preferable.

【0029】本発明で使用される気体流は、表面架橋剤
と吸水性樹脂との反応を阻害しない不活性な気体ならと
くに制限はなく、例えば、窒素、二酸化炭素、ヘリウ
ム、酸素、空気等が挙げられる。なかでも、取扱いや経
済性を考えれば、空気がとくに好ましい。
The gas flow used in the present invention is not particularly limited as long as it is an inert gas which does not inhibit the reaction between the surface cross-linking agent and the water absorbent resin, and examples thereof include nitrogen, carbon dioxide, helium, oxygen and air. Can be mentioned. Of these, air is particularly preferable in consideration of handling and economy.

【0030】本発明で得られた吸水性樹脂は、このまま
でも粉体として取扱いが容易であるが、さらに粉体流動
性を調整するために、流動助剤として働く微粒子を本発
明における表面処理終了後に混合することも適宜行われ
る。使用される微粒子としては、添加後に吸湿してべと
つかないような物質なら、特に制限はなく、例えば、ポ
リメチルメタクリレート、ポリ塩化ビニル、ポリスチレ
ン、ポリエチレン、ABS樹脂、ポリカーボネート、ポ
リプロピレン等の有機化合物系の微粒子、あるいは、二
酸化ケイ素(シリカ)、アルミナ、酸化チタン、酸化マ
グネシウム、珪酸アルミニウム、珪酸マグネシウム等の
無機物系の微粒子が挙げられる。さらには、吸水性樹脂
の粉体流動性だけでなく、樹脂中の残留モノマーの溶出
を抑制するハイドロタルサイトのような層状構造を有す
る結晶の微粒子も挙げられる。
The water-absorbent resin obtained in the present invention is easy to handle as a powder as it is, but in order to further adjust the powder fluidity, fine particles acting as a flow aid are treated with the fine particles to finish the surface treatment in the present invention. Mixing afterwards is also appropriately performed. The fine particles to be used are not particularly limited as long as they are substances that absorb moisture after addition and are not sticky, for example, polymethylmethacrylate, polyvinyl chloride, polystyrene, polyethylene, ABS resin, polycarbonate, polypropylene, and other organic compound-based substances. Examples thereof include fine particles, or inorganic fine particles such as silicon dioxide (silica), alumina, titanium oxide, magnesium oxide, aluminum silicate, and magnesium silicate. Furthermore, not only the powder fluidity of the water-absorbent resin, but also crystalline fine particles having a layered structure such as hydrotalcite that suppresses the elution of residual monomers in the resin can be mentioned.

【0031】これらの微粒子の粒子径は、100μm以
下が好ましく、さらに好ましくは50μm以下である。
また、これらの微粒子の添加量は、微粒子の粒径、比表
面積により変化するが、通常、得られた吸水性樹脂に対
して0.01〜10重量%、好ましくは、0.1〜5重量
%の範囲である。使用される微粒子がその範囲内にあれ
ば、本発明で得られた吸水性樹脂の加圧下での吸水能力
や吸水倍率を減少させることなく、粉体流動性や添加す
る微粒子によっては吸水性樹脂中の残留モノマーの溶出
を抑制する安全性の優れた吸水性樹脂を得ることができ
る。この量が10重量%を越えて使用されると、従来技
術に見られると同様に、加圧下での吸水能力や吸水倍率
が減少するばかりか、これらの微粒子が粉体の取扱中に
粉塵として、飛散するようになり環境衛生上好ましくな
い。
The particle size of these fine particles is preferably 100 μm or less, more preferably 50 μm or less.
Further, the addition amount of these fine particles varies depending on the particle diameter and the specific surface area of the fine particles, but it is usually 0.01 to 10% by weight, preferably 0.1 to 5% by weight based on the obtained water absorbent resin. % Range. If the fine particles used are within the range, without decreasing the water absorption capacity and the water absorption capacity under pressure of the water absorbent resin obtained in the present invention, depending on the powder fluidity and the added fine particles, the water absorbent resin It is possible to obtain a water-absorbent resin having excellent safety that suppresses elution of residual monomers therein. If this amount exceeds 10% by weight, not only the water absorption capacity under pressure and the water absorption capacity are reduced, but also these fine particles become dust during the handling of the powder, as in the prior art. However, it becomes scattered, which is not preferable in terms of environmental hygiene.

【0032】[0032]

【作用】本発明の反応メカニズムしては、推定の範囲で
あるが、加熱された吸水性樹脂粉末に気体流とともに表
面架橋剤を混合させることにより、従来の反応では樹脂
粒子間の凝集塊生成に寄与していた反応系内の溶剤、特
には水分が吸水性樹脂との接触後、速やかに凝集塊の生
成に関与しないレベルまで蒸発してしまい、凝集塊の生
成を抑制すると同時に吸水性樹脂表面に表面架橋剤が接
触したときに、表面架橋剤の浸透が吸水性樹脂表面近傍
のみに限定され、この結果、凝集塊による弊害を受けず
に表面と内部の架橋勾配が大きく、均一な表面架橋が行
われると考えられる。
Although the reaction mechanism of the present invention is within the estimated range, by mixing the surface cross-linking agent with the heated water-absorbent resin powder together with the gas flow, in the conventional reaction, aggregates between resin particles are formed. After contact with the water-absorbent resin, the solvent in the reaction system that had contributed to the water vaporized quickly evaporated to a level at which it did not participate in the formation of the agglomerate, and at the same time suppressed the formation of the agglomerate. When the surface cross-linking agent comes into contact with the surface, the penetration of the surface cross-linking agent is limited only to the vicinity of the surface of the water-absorbent resin, and as a result, the cross-linking gradient between the surface and the inside is large without being adversely affected by the agglomerate, and a uniform surface is obtained. It is believed that crosslinking occurs.

【0033】[0033]

【実施例】以下、実施例により本発明を詳細に説明する
が、本発明の範囲がこれらの実施例のみに限定されるも
のではない。なお、下記実施例においてことわりがない
かぎり、重量%は「%」と記す。
The present invention will be described in detail below with reference to examples, but the scope of the present invention is not limited to these examples. In the following examples, weight% will be referred to as "%" unless otherwise specified.

【0034】実施例1 内容量が10リットルの温度調整可能な耐圧容器に36
%のアクリル酸ナトリウム水溶液4574g、98%の
アクリル酸425gからなるアクリル酸塩系モノマー水
溶液とN,N'-メチレンビスアクリルアミド2.1gを入
れ、窒素ガスを吹き込みながら、モノマー温度を20℃
に調節した。窒素置換が終了したところで、重合開始剤
として過硫酸アンモニウム1.0g、L-アスコルビン酸
0.2gを添加し、それと同時に容器内を5kg/cm2に加
圧した。重合開始剤添加後、3分で重合が開始し、30
分で反応系の温度が最高に達した。得られた含水ゲル状
重合体を容器から取り出し、はじめにカッターにて約5
cm角に粗断して、それらをさらにミートチョッパーにて
約5mmの径に細断した。この細断した含水ゲルを熱風乾
燥機(温度130℃)で60分乾燥して、約2mm角の吸
水性樹脂粉末(A−1)を得、更に、ロール型粉砕機で粉
砕して粒子径が150μm〜1000μmの範囲である
吸水性樹脂粉末(B−1)を得た。図1に示される原料投
入口3と熱風吹込口4を有した、すべてステンレス製の
内径20cm、長さ40cmの円柱状容器1であって、円柱
まわりには加熱できるようにジャケット2が取り付けら
れ、内部には表面架橋剤水溶液を噴霧する加圧スプレー
ノズル5と吸水性樹脂を通さないステンレス製の網6が
取り付けられた流動乾燥型の装置1を表面反応に用い
た。この装置内に先で得られた吸水性樹脂粉末(B−1)
1000gを投入し、ジャケットを120℃に加熱し、
さらに装置下部の熱風吹込口4から120℃の微量の熱
風を吹込み、振動する程度に流動させながら吸水性樹脂
粉末(B−1)を加熱した。吸水性樹脂粉末(B−1)の温
度が90℃に達したところで、120℃の微量の熱風を
表面架橋剤水溶液に対して0.5Nm3/kgと成るように調
整(流量で0.92Nm3/Hr)して、ポリエチリングリコ
ールジグリシジルエーテル(n=9)3gと水150gか
らなる水溶液を加圧スプレーノズル5で5分間かけて噴
霧し、該吸水性樹脂粉末(B−1)と混合した。表面架橋
剤と吸水性樹脂粉末(B−1)は、噴霧によって瞬時に反
応し、噴霧終了後3分以内に反応は終了した。その後、
残存した水分を完全に除去するために、装置下部の熱風
吹込口4から120℃の熱風を5Nm3/Hrの風量に調整
して、表面架橋剤水溶液が噴霧された吸水性樹脂粉末
(B−1)を10分間程度乾燥した。これを表面反応装置
1から取り出し、常温まで冷却して表面処理された吸水
性樹脂(1)を得た。前記の吸水性樹脂粉末(B−1)と表
面処理された吸水性樹脂(1)は、以下に示される(a)
粒度分布、(b)塩水吸水倍率、(c)30分の加圧下
吸水量について評価した。その結果を表1に示した。
Example 1 A temperature-controllable pressure-resistant container having an internal capacity of 10 liters was used.
% Aqueous sodium acrylate solution 4574 g, 98% acrylic acid 425 g acrylate monomer aqueous solution and N, N'-methylenebisacrylamide 2.1 g are charged, and while blowing nitrogen gas, the monomer temperature is 20 ° C.
Adjusted to. When nitrogen substitution was completed, 1.0 g of ammonium persulfate and 0.2 g of L-ascorbic acid were added as polymerization initiators, and at the same time, the pressure in the container was increased to 5 kg / cm 2 . Polymerization starts in 3 minutes after the addition of the polymerization initiator,
The temperature of the reaction system reached the maximum in minutes. Take out the obtained hydrogel polymer from the container, and first use a cutter to
The pieces were roughly cut into cm squares and further cut into about 5 mm diameter with a meat chopper. The shredded hydrogel is dried for 60 minutes with a hot air dryer (temperature 130 ° C.) to obtain a water-absorbent resin powder (A-1) of about 2 mm square, which is further crushed with a roll crusher to obtain a particle diameter. To obtain a water absorbent resin powder (B-1) having a particle size of 150 μm to 1000 μm. A cylindrical container 1 having an inner diameter of 20 cm and a length of 40 cm, which has a raw material inlet 3 and a hot air inlet 4 shown in FIG. 1, and a jacket 2 is attached around the cylinder so as to be heated. A fluidized-drying type apparatus 1 equipped with a pressure spray nozzle 5 for spraying a surface crosslinking agent aqueous solution and a stainless net 6 impervious to a water absorbent resin was used for the surface reaction. The water-absorbent resin powder (B-1) previously obtained in this device
Add 1000g, heat the jacket to 120 ℃,
Further, a small amount of hot air of 120 ° C. was blown from the hot air blowing port 4 in the lower part of the apparatus to heat the water-absorbent resin powder (B-1) while flowing it so as to vibrate. When the temperature of the water absorbent resin powder (B-1) reached 90 ° C, a small amount of hot air at 120 ° C was adjusted to 0.5 Nm 3 / kg with respect to the surface crosslinking agent aqueous solution (0.92 Nm at the flow rate). 3 / Hr), an aqueous solution consisting of 3 g of polyethylene glycol diglycidyl ether (n = 9) and 150 g of water was sprayed with the pressure spray nozzle 5 for 5 minutes to give the water-absorbent resin powder (B-1). Mixed. The surface cross-linking agent and the water absorbent resin powder (B-1) reacted instantly by spraying, and the reaction was completed within 3 minutes after the spraying was completed. afterwards,
In order to completely remove the residual water, the hot-air blowing port 4 at the bottom of the device was adjusted to a hot air of 120 ° C to an air volume of 5 Nm 3 / Hr, and the surface-crosslinking agent aqueous solution was sprayed onto the water-absorbent resin powder.
(B-1) was dried for about 10 minutes. This was taken out from the surface reaction apparatus 1 and cooled to room temperature to obtain a surface-treated water absorbent resin (1). The water absorbent resin powder (B-1) and the surface-treated water absorbent resin (1) are shown below (a).
The particle size distribution, (b) water absorption capacity of salt water, and (c) water absorption under pressure for 30 minutes were evaluated. The results are shown in Table 1.

【0035】(a)粒度分布:目開き1000μm(1
6メッシュ)、850μm(18メッシュ)、500μm(30
メッシュ)、250μm(60メッシュ)、および100μm
(149メッシュ)の大きさの直径20cmのJIS標準ふる
いおよび受け皿を重ね、最上段のふるいに100gの吸
水性樹脂粉末を置き、10分間分級機で振動し、各ふる
いに集められた重量を計量して、重量%により示した。
(b)塩水吸収倍率:吸水性樹脂粉末0.5gを精秤
し、200メッシュシュのナイロン製のろ布で作成した10
cm×10cmのティーバック型の袋に入れ、200mlの
0.9%の塩化ナトリウム水溶液(生理食塩水)に60分
間浸漬した。その後、ティーバック袋を引き上げ、10
分間水切りした後、ティーバック袋のブランク補正をし
て、膨潤ゲルの重量を測定し、数1により算出した。
(A) Particle size distribution: Opening 1000 μm (1
6 mesh), 850 μm (18 mesh), 500 μm (30
Mesh), 250 μm (60 mesh), and 100 μm
(149 mesh) 20 cm diameter JIS standard sieve and pan are piled up, 100 g of water-absorbent resin powder is placed on the uppermost sieve, vibrated with a classifier for 10 minutes, and the weight collected in each sieve is measured. And indicated by weight%.
(B) Absorption capacity of salt water: 0.5 g of water-absorbent resin powder was precisely weighed and prepared with a 200-mesh nylon filter cloth 10
It was placed in a tea bag of cm × 10 cm and immersed in 200 ml of 0.9% sodium chloride aqueous solution (physiological saline) for 60 minutes. After that, pull up the teabag bag, 10
After draining for 10 minutes, the tea bag bag was blank-corrected, and the weight of the swollen gel was measured and calculated by the formula 1.

【0036】[0036]

【数1】 [Equation 1]

【0037】(c)加圧下吸水量:加圧下吸水量は、図
4に示す装置を用いて測定した。測管付きビュレット3
0において、測管31には、図のように内径2mmの細管
32をビュレット中心まで空気を小さい気泡として取入
れるために挿入し、ビュレットの先端34にはテフロン
チューブ35を接続して、直径60mmのガラスフィルタ
ー36を取り付けた。ビュレット中に人工尿(2%尿
素、0.9%塩化ナトリウム、500ppm 塩化カルシウ
ムおよび1000ppm 硫酸マグネシウム)を満たし、ビ
ュレット上部37に栓をしてガラスフィルターのフィル
ター板39上面と空気取入用細管32を同一平面に固定
した。フィルター板39上面に、ろ紙、0.2gの吸水
性樹脂粉末、さらにその上にろ紙を置き、底面の直径が
60mmで圧力が20g/cm2となる重り41を同時に置
き、これらを置いてから30分後に吸水性樹脂が吸水し
た容量を計量し、下記の数2により算出した。
(C) Water absorption under pressure: The water absorption under pressure was measured using the apparatus shown in FIG. Burette with measuring tube 3
At 0, a small tube 32 with an inner diameter of 2 mm was inserted to the center of the buret to take in air as small bubbles as shown in the figure, and a Teflon tube 35 was connected to the tip 34 of the buret to obtain a diameter of 60 mm. The glass filter 36 of 1 was attached. The burette is filled with artificial urine (2% urea, 0.9% sodium chloride, 500 ppm calcium chloride and 1000 ppm magnesium sulfate), the burette upper part 37 is plugged, and the upper surface of the filter plate 39 of the glass filter and the air intake thin tube 32 are filled. Were fixed on the same plane. On the upper surface of the filter plate 39, filter paper, 0.2 g of water-absorbent resin powder, and further filter paper are placed, and a weight 41 having a bottom diameter of 60 mm and a pressure of 20 g / cm 2 is placed at the same time, and after placing these The amount of water absorbed by the water-absorbent resin after 30 minutes was measured and calculated by the following formula 2.

【0038】[0038]

【数2】 [Equation 2]

【0039】実施例2 実施例1において、表面架橋剤水溶液噴霧時の120℃
の熱風を表面架橋剤水溶液に対して5Nm3/kgと成るよ
うに調整(流量で9.18Nm3/Hr)した以外は、実施例
1と同様の操作を繰り返し吸水性樹脂(2)を得た。これ
を実施例1と同様の評価を行い、その結果を表1に示し
た。
Example 2 In Example 1, 120 ° C. at the time of spraying the surface crosslinking agent aqueous solution
Water absorbent resin (2) was obtained by repeating the same operation as in Example 1 except that the hot air of was adjusted to 5 Nm 3 / kg with respect to the aqueous surface-crosslinking agent solution (flow rate was 9.18 Nm 3 / Hr). It was This was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

【0040】実施例3 実施例1において、表面架橋剤水溶液噴霧時の吸水性樹
脂粉末(B−1)の温度を110℃にした以外は、実施例
1と同様の操作を繰り返し吸水性樹脂(3)を得た。これ
を実施例1と同様の評価を行い、その結果を表1に示し
た。
Example 3 The same procedure as in Example 1 was repeated except that the temperature of the water-absorbent resin powder (B-1) at the time of spraying the aqueous surface-crosslinking agent solution was 110 ° C. 3) was obtained. This was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

【0041】実施例4 実施例1において、表面架橋剤水溶液噴霧時の120℃
の熱風を表面架橋剤水溶液に対して0.05Nm3/kgと成
るように調整(流量で0.092Nm3/Hr)した以外は、
実施例1と同様の操作を繰り返し吸水性樹脂(4)を得
た。これを実施例1と同様の評価を行い、その結果を表
1に示した。
Example 4 In Example 1, 120 ° C. at the time of spraying the surface crosslinking agent aqueous solution
Except that the hot air of was adjusted to 0.05 Nm 3 / kg with respect to the surface cross-linking agent aqueous solution (flow rate was 0.092 Nm 3 / Hr).
The same operation as in Example 1 was repeated to obtain a water absorbent resin (4). This was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

【0042】実施例5 実施例1において、表面架橋剤水溶液噴霧時の120℃
の熱風を表面架橋剤水溶液に対して15Nm3/kgと成る
ように調整(流量で27.5Nm3/Hr)した以外は、実施
例1と同様の操作を繰り返し吸水性樹脂(5)を得た。こ
れを実施例1と同様の評価を行い、その結果を表1に示
した。
Example 5 In Example 1, 120 ° C. at the time of spraying the surface crosslinking agent aqueous solution
Water absorbent resin (5) was obtained by repeating the same procedure as in Example 1 except that the hot air of was adjusted to 15 Nm 3 / kg (27.5 Nm 3 / Hr at the flow rate) with respect to the surface crosslinking agent aqueous solution. It was This was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

【0043】実施例6 実施例1において、表面架橋剤水溶液噴霧時の吸水性樹
脂粉末(B−1)の温度を70℃にした以外は、実施例1
と同様の操作を繰り返し吸水性樹脂(6)を得た。これを
実施例1と同様の評価を行い、その結果を表1に示し
た。
Example 6 Example 1 was repeated except that the temperature of the water absorbent resin powder (B-1) at the time of spraying the aqueous solution of the surface cross-linking agent was changed to 70 ° C.
The same operation was repeated to obtain a water absorbent resin (6). This was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

【0044】比較例1 実施例1において、表面架橋剤水溶液噴霧時の吸水性樹
脂粉末(B−1)を常温のままにした以外は、実施例1と
同様の操作を繰り返し吸水性樹脂(比較1)を得た。これ
を実施例1と同様の評価を行い、その結果を表1に示し
た。
Comparative Example 1 The same operation as in Example 1 was repeated except that the water absorbent resin powder (B-1) at the time of spraying the aqueous solution of the surface cross-linking agent was kept at room temperature. 1) was obtained. This was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

【0045】[0045]

【表1】 [Table 1]

【0046】実施例7 図2に示される原料投入口9と熱風吹込口10を有し
た、すべてステンレス製の内径20cm、長さ40cmの円
柱状容器であって、円柱まわりには加熱できるようにジ
ャケット8が取り付けられ、内部には表面架橋剤水溶液
を噴霧する加圧スプレーノズル11とその上部に気体吹
込管12、さらに吸水性樹脂を通さないステンレス製の
網13が取り付けられた流動乾燥型の装置7を表面処理
に用いた。この装置内に実施例1で得られた吸水性樹脂
粉末(B−1)1000gを投入し、ジャケットを120
℃に加熱し、さらに装置下部の熱風吹込口10より12
0℃の微量の熱風を吹込み、吸水性樹脂粉末(B−1)を
振動する程度に流動させながら加熱した。吸水性樹脂粉
末(B−1)の温度が100℃に達したら、スプレーノズ
ル上部の気体吹込管12より表面架橋剤水溶液に対して
0.5Nm3/kgと成るように常温の空気(流量で0.46N
m3/Hr)を流して、ポリエチリングリコールジグリシジ
ルエーテル(n=9)3gと水150gからなる水溶液を
1流体の加圧スプレーノズル5で10分間かけて噴霧
し、該吸水性樹脂粉末(B−1)と混合した。噴霧後、表
面架橋剤と吸水性樹脂粉末(B−1)は、瞬時に反応し、
噴霧終了後3分以内に反応は終了した。その後、上部の
気体吹込管12から吹き込んでいた空気を停止し、残存
した水分を完全に除去するために、装置下部の熱風吹込
口10より120℃で吹込んでいた熱風を5Nm3/Hrに
調整して表面架橋剤水溶液が噴霧された吸水性樹脂粉末
(B−1)を10分間程度乾燥した。この吸水性樹脂粉末
(B−1)を表面処理装置7から取り出し、常温まで冷却
して表面処理された吸水性樹脂(7)を得た。これを実施
例1と同様の評価を行い、その結果を表2に示した。
Example 7 A cylindrical container having an inner diameter of 20 cm and a length of 40 cm, which was made of stainless steel and had a raw material inlet 9 and a hot air inlet 10 shown in FIG. A jacket 8 is attached, and a pressure spray nozzle 11 for spraying the surface cross-linking agent aqueous solution, a gas blow-in pipe 12 above it, and a stainless net 13 that does not allow water-absorbent resin to pass through are attached to the fluid-drying type. Device 7 was used for surface treatment. 1000 g of the water-absorbent resin powder (B-1) obtained in Example 1 was put into this apparatus, and the jacket was set to 120.
It is heated to ℃, and further 12 from the hot air blowing port 10 at the bottom of the device.
A small amount of hot air at 0 ° C. was blown in to heat the water-absorbent resin powder (B-1) while flowing it so as to vibrate. When the temperature of the water absorbent resin powder (B-1) reaches 100 ° C., air at room temperature (at a flow rate of 0.5 Nm 3 / kg with respect to the surface cross-linking agent aqueous solution is supplied from the gas injection pipe 12 above the spray nozzle. 0.46N
m 3 / Hr), and an aqueous solution consisting of 3 g of polyethylene glycol diglycidyl ether (n = 9) and 150 g of water was sprayed with the pressure spray nozzle 5 of one fluid for 10 minutes, and the water-absorbent resin powder ( B-1). After spraying, the surface cross-linking agent and the water absorbent resin powder (B-1) react instantly,
The reaction was completed within 3 minutes after the end of spraying. After that, the air blown from the upper gas blowing pipe 12 was stopped, and in order to completely remove the residual moisture, the hot air blown at 120 ° C from the hot air blowing port 10 at the lower part of the device was adjusted to 5 Nm 3 / Hr. Absorbent resin powder sprayed with the surface cross-linking agent aqueous solution
(B-1) was dried for about 10 minutes. This water absorbent resin powder
(B-1) was taken out from the surface treatment apparatus 7 and cooled to room temperature to obtain a surface-treated water absorbent resin (7). This was evaluated in the same manner as in Example 1, and the results are shown in Table 2.

【0047】実施例8 実施例7において、表面架橋剤水溶液噴霧時にスプレー
ノズル11上部の空気吹込管12より吹込んでいた空気
を表面架橋剤水溶液に対して5Nm3/kgと成るように調
整(流量で4.6Nm3/Hr)した以外は、実施例4と同様
の操作を繰り返し吸水性樹脂(8)を得た。これを実施例
1と同様の評価を行い、その結果を表2に示した。
Example 8 In Example 7, the air blown from the air blowing pipe 12 above the spray nozzle 11 at the time of spraying the surface cross-linking agent aqueous solution was adjusted to be 5 Nm 3 / kg with respect to the surface cross-linking agent aqueous solution (flow rate). in 4.6 nm 3 / Hr) and except were got repeated water-absorbent resin (8) the same procedure as in example 4. This was evaluated in the same manner as in Example 1, and the results are shown in Table 2.

【0048】実施例9 実施例7において、表面架橋剤水溶液噴霧時の吸水性樹
脂粉末(B−1)の温度を120℃にした以外は、実施例
4と同様の操作を繰り返し吸水性樹脂(9)を得た。これ
を実施例1と同様の評価を行い、その結果を表2に示し
た。
Example 9 The procedure of Example 7 was repeated except that the temperature of the water-absorbent resin powder (B-1) at the time of spraying the aqueous surface-crosslinking agent solution was changed to 120 ° C. 9) was obtained. This was evaluated in the same manner as in Example 1, and the results are shown in Table 2.

【0049】実施例10 実施例7において得られた吸水性樹脂粉末(7)に粉体流
動性調整のためにシリカ(トクシール 徳山曹達株式会
社製)を0.5%添加混合して、吸水性樹脂(10)を得
た。これを実施例1と同様の試験を行い、その結果を表
2に示した。
Example 10 To the water-absorbent resin powder (7) obtained in Example 7, 0.5% of silica (Tokusil Tokuyama Soda Co., Ltd.) was added and mixed to adjust the fluidity of the powder, and the water-absorbent property was obtained. Resin (10) was obtained. This was subjected to the same test as in Example 1, and the results are shown in Table 2.

【0050】実施例11 実施例7において、表面架橋剤水溶液噴霧時のスプレー
ノズル11上部の空気吹込管12より吹込んでいた空気
を表面架橋剤水溶液に対して0.05Nm3/kgと成るよう
に調整(流量で0.046Nm3/Hr)した以外は、実施例
4と同様の操作を繰り返し吸水性樹脂(11)を得た。こ
れを実施例1と同様の評価を行い、その結果を表2に示
した。
Example 11 In Example 7, the air blown from the air blowing pipe 12 above the spray nozzle 11 at the time of spraying the surface cross-linking agent aqueous solution was adjusted to 0.05 Nm 3 / kg with respect to the surface cross-linking agent aqueous solution. A water absorbent resin (11) was obtained by repeating the same operation as in Example 4 except that the adjustment (flow rate of 0.046 Nm 3 / Hr) was performed. This was evaluated in the same manner as in Example 1, and the results are shown in Table 2.

【0051】実施例12 実施例7において、表面架橋剤水溶液噴霧時のスプレー
ノズル11上部の空気吹込管12より吹込んでいた空気
を表面架橋剤水溶液に対して15Nm3/kgと成るように
調整(流量で13.8Nm3/Hr)した以外は、実施例4と
同様の操作を繰り返し吸水性樹脂(12)を得た。これを
実施例1と同様の評価を行い、その結果を表2に示し
た。
Example 12 In Example 7, the air blown from the air blowing pipe 12 above the spray nozzle 11 at the time of spraying the aqueous solution of the surface cross-linking agent was adjusted to be 15 Nm 3 / kg with respect to the aqueous solution of the surface cross-linking agent ( The same operation as in Example 4 was repeated except that the flow rate was 13.8 Nm 3 / Hr) to obtain a water absorbent resin (12). This was evaluated in the same manner as in Example 1, and the results are shown in Table 2.

【0052】実施例13 実施例7において、表面架橋剤水溶液噴霧時の吸水性樹
脂粉末(B−1)の温度を60℃にした以外は、実施例4
と同様の操作を繰り返し吸水性樹脂(13)を得た。これ
を実施例1と同様の評価を行い、その結果を表2に示し
た。
Example 13 Example 4 was repeated except that the temperature of the water absorbent resin powder (B-1) at the time of spraying the aqueous solution of the surface cross-linking agent was changed to 60 ° C.
The same operation as above was repeated to obtain a water absorbent resin (13). This was evaluated in the same manner as in Example 1, and the results are shown in Table 2.

【0053】実施例14 実施例7において表面架橋剤水溶液を噴霧混合する以前
に吸水性樹脂粉末(B−1)にシリカ(トクシール 徳山
曹達株式会社製)を0.5%添加混合した以外は、実施
例7と同様の操作を繰り返し吸水性樹脂(14)を得た。
これを実施例1と同様の評価を行い、その結果を表2に
示した。
Example 14 In Example 7, except that 0.5% of silica (Tokushiru Tokuyama Soda Co., Ltd.) was added and mixed to the water absorbent resin powder (B-1) before spray-mixing the surface crosslinking agent aqueous solution. The same operation as in Example 7 was repeated to obtain a water absorbent resin (14).
This was evaluated in the same manner as in Example 1, and the results are shown in Table 2.

【0054】[0054]

【表2】 [Table 2]

【0055】実施例15 図3に示される原料投入口16と熱風吹込口17を有し
た、すべてステンレス製の内径20cm、長さ40cmの円
柱状容器であって、円柱まわりには加熱できるようにジ
ャケット15が取り付けられ、内部には表面架橋剤水溶
液を噴霧する2流体混合スプレーノズル18(液体配管
19と気体配管20)吸水性樹脂を通さないステンレス
製の網21が取り付けられた流動乾燥型の装置14を表
面処理に用いた。この装置14内に実施例1で得られた
吸水性樹脂粉末(B−1)1000gを投入し、ジャケッ
トを120℃に加熱し、装置下部の熱風吹込口17から
は120℃の微量の熱風を吹込み、吸水性樹脂粉末(B
−1)を振動する程度に流動させながら加熱した。吸水
性樹脂粉末(B−1)の温度が100℃に達したら、窒素
量と表面架橋剤水溶液の比が0.5Nm3/kgと成るように
100℃に加熱した窒素を2流体混合スプレーノズル1
8の気体配管20から、またポリエチリングリコールジ
グリシジルエーテル(n=9)3gと水150gからなる
表面架橋剤水溶液をポンプにて2流体混合スプレーノズ
ル18の液体配管19から注入し、10分間で吸水性樹
脂粉末(B−1)に噴霧した(流量で0.92Nm3/Hr)。
噴霧後、表面架橋剤と吸水性樹脂粉末(B−1)は、瞬時
に反応し、噴霧終了後3分以内に反応は終了した。その
後、2流体混合スプレーノズル18から吹き込んでいた
加熱窒素を停止し、残存した水分を完全に除去するため
に、装置下部の熱風吹込口17より120℃で吹込んで
いた熱風を5Nm3/Hrに調整して表面架橋剤水溶液が噴
霧された吸水性樹脂粉末(B−1)を10分間程度乾燥し
た。この吸水性樹脂粉末(B−1)を表面反応装置14か
ら取り出し、常温まで冷却して表面処理された吸水性樹
脂(15)を得た。これを実施例1と同様の評価を行い、
その結果を表3に示した。
Example 15 A cylindrical container having an inside diameter of 20 cm and a length of 40 cm, which was made of stainless steel and had a raw material inlet 16 and a hot air inlet 17 shown in FIG. A jacket 15 is attached, and a two-fluid mixing spray nozzle 18 (liquid pipe 19 and gas pipe 20) for spraying the surface cross-linking agent aqueous solution is attached inside, and a net 21 made of stainless steel that does not allow water-absorbing resin to pass is attached to the fluid-drying type. Device 14 was used for surface treatment. 1000 g of the water-absorbent resin powder (B-1) obtained in Example 1 was put into the device 14, the jacket was heated to 120 ° C., and a slight amount of hot air of 120 ° C. was blown from the hot air blowing port 17 at the bottom of the device. Blow, water-absorbent resin powder (B
-1) was heated while flowing so as to vibrate. When the temperature of the water-absorbent resin powder (B-1) reaches 100 ° C., the nitrogen is heated to 100 ° C. so that the ratio of the amount of nitrogen to the aqueous solution of the surface cross-linking agent becomes 0.5 Nm 3 / kg. 1
8 from the gas pipe 20, and the surface cross-linking agent aqueous solution consisting of 3 g of polyethylene glycol diglycidyl ether (n = 9) and 150 g of water was pumped from the liquid pipe 19 of the two-fluid mixing spray nozzle 18 in 10 minutes. The water-absorbent resin powder (B-1) was sprayed (at a flow rate of 0.92 Nm 3 / Hr).
After spraying, the surface cross-linking agent and the water-absorbent resin powder (B-1) reacted instantly, and the reaction was completed within 3 minutes after the spraying was completed. After that, the heating nitrogen blown from the two-fluid mixing spray nozzle 18 was stopped, and the hot air blown at 120 ° C. from the hot air blow-in port 17 at the bottom of the device was changed to 5 Nm 3 / Hr in order to completely remove the residual moisture. The water absorbent resin powder (B-1) prepared and sprayed with the surface crosslinking agent aqueous solution was dried for about 10 minutes. The water absorbent resin powder (B-1) was taken out from the surface reaction device 14 and cooled to room temperature to obtain a surface treated water absorbent resin (15). This is evaluated in the same manner as in Example 1,
The results are shown in Table 3.

【0056】実施例16 実施例15において、表面架橋剤水溶液噴霧時の2流体
混合スプレーノズル18の窒素量と表面架橋剤水溶液の
比が5Nm3/kgと成るように窒素量を調整(流量で4.6N
m3/Hr)した以外は、実施例15と同様の操作を繰り返
し吸水性樹脂(16)を得、実施例1と同様の評価を行
い、その結果を表3に示した。
Example 16 In Example 15, the amount of nitrogen was adjusted so that the ratio of the amount of nitrogen in the two-fluid mixing spray nozzle 18 at the time of spraying the aqueous solution of the surface cross-linking agent to the aqueous solution of the surface cross-linking agent was 5 Nm 3 / kg. 4.6N
The same operation as in Example 15 was repeated except that m 3 / Hr) was obtained to obtain a water absorbent resin (16), the same evaluation as in Example 1 was performed, and the results are shown in Table 3.

【0057】実施例17 実施例15において、表面架橋剤水溶液噴霧時の吸水性
樹脂粉末(B−1)の温度を90℃にした以外は、実施例
15と同様の操作を繰り返し吸水性樹脂(17)を得た。
これを実施例1と同様の評価を行い、その結果を表3に
示した。
Example 17 The procedure of Example 15 was repeated except that the temperature of the water-absorbent resin powder (B-1) at the time of spraying the aqueous surface-crosslinking agent solution was changed to 90 ° C. 17) was obtained.
This was evaluated in the same manner as in Example 1, and the results are shown in Table 3.

【0058】実施例18 実施例15において、表面架橋剤水溶液噴霧時の2流体
混合スプレーノズル18の窒素量と表面架橋剤水溶液の
比が0.05Nm3/kgと成るように窒素量を調整(流量で
0.046Nm3/Hr)した以外は、実施例15と同様の操
作を繰り返し吸水性樹脂(18)を得た。これを実施例1
と同様の評価を行い、その結果を表3に示した。
Example 18 In Example 15, the nitrogen content was adjusted so that the ratio of the nitrogen content of the two-fluid mixing spray nozzle 18 at the time of spraying the surface cross-linking agent aqueous solution and the surface cross-linking agent aqueous solution was 0.05 Nm 3 / kg ( A water absorbent resin (18) was obtained by repeating the same operation as in Example 15 except that the flow rate was 0.046 Nm 3 / Hr). This is Example 1
The same evaluations as above were performed, and the results are shown in Table 3.

【0059】実施例19 実施例15において、表面架橋剤水溶液噴霧時の2流体
混合スプレーノズル18の窒素量と表面架橋剤水溶液の
比が20Nm3/kgと成るように窒素量を調整(流量で1
8.6Nm3/Hr)した以外は、実施例15と同様の操作を
繰り返し吸水性樹脂(19)を得、実施例1と同様の評価
を行い、その結果を表3に示した。
Example 19 In Example 15, the amount of nitrogen was adjusted so that the ratio of the amount of nitrogen in the two-fluid mixing spray nozzle 18 at the time of spraying the aqueous solution of the surface cross-linking agent to the aqueous solution of the surface cross-linking agent was 20 Nm 3 / kg. 1
8.6 nm 3 / Hr) and except were the obtained repetitive absorbent resin (19) in the same manner as in Example 15, the same evaluation as in Example 1. The results are shown in Table 3.

【0060】実施例20 実施例15において、表面架橋剤水溶液噴霧時の吸水性
樹脂粉末(B−1)の温度を60℃にした以外は、実施例
15と同様の操作を繰り返し吸水性樹脂(19)を得た。
これを実施例1と同様の評価を行い、その結果を表3に
示した。
Example 20 The procedure of Example 15 was repeated except that the temperature of the water-absorbent resin powder (B-1) at the time of spraying the aqueous solution of the surface-crosslinking agent was changed to 60 ° C. 19) was obtained.
This was evaluated in the same manner as in Example 1, and the results are shown in Table 3.

【0061】[0061]

【表3】 [Table 3]

【0062】[0062]

【発明の効果】本発明によれば、表面反応する以前の吸
水性樹脂粉末を高温にして反応させるので、吸水性樹脂
表面反応時に反応を阻害する樹脂粒子間の凝集物の生成
を低減し、高い吸水倍率を維持しつつ、加圧下でも高い
吸水能力を有する吸水性樹脂を得ることができる。さら
に粒径100μm未満の粒子がほとんど存在しないよう
に粒度調整して行うことによりさらに優れた吸水性樹脂
を得ることができる。また本発明法は、親水性有機溶媒
や粉塵の原因となる流動助剤の微粒子を使用しない場合
でも実施できるため、工業的に安全かつ経済性の優れ
た、また環境衛生的にも問題ない製造方法を提供するも
のである。したがって、本発明により得られた吸水性樹
脂は、高性能で安全性の高い紙オムツや生理用ナプキン
等のサニタリ−用品の原料ばかりでなく、農業用分野、
土木分野、医療分野等にも広く使用できるものである。
EFFECTS OF THE INVENTION According to the present invention, the water-absorbent resin powder before the surface reaction is reacted at a high temperature, so that the formation of aggregates between the resin particles which inhibit the reaction during the surface reaction of the water-absorbent resin is reduced, It is possible to obtain a water absorbent resin having a high water absorbing capacity even under pressure while maintaining a high water absorption capacity. By further adjusting the particle size so that particles having a particle size of less than 100 μm do not exist, a more excellent water absorbent resin can be obtained. Further, the method of the present invention can be carried out without using fine particles of a flow aid which causes a hydrophilic organic solvent or dust, so that it is industrially safe and has excellent economical efficiency, and there is no problem in terms of environmental hygiene. It provides a method. Therefore, the water-absorbent resin obtained by the present invention is not only a raw material for sanitary products such as high-performance and highly safe paper diapers and sanitary napkins, but also in the field of agriculture,
It can be widely used in the field of civil engineering, medical field, etc.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1〜6において使用した表面架
橋反応装置1の断面図である。
FIG. 1 is a cross-sectional view of a surface crosslinking reaction apparatus 1 used in Examples 1 to 6 of the present invention.

【図2】本発明の実施例7〜14において使用した表面
架橋反応装置7の断面図である。
FIG. 2 is a cross-sectional view of a surface cross-linking reaction device 7 used in Examples 7 to 14 of the present invention.

【図3】本発明の実施例15〜20において使用した表
面架橋反応装置14の断面図である。
FIG. 3 is a sectional view of a surface cross-linking reaction device 14 used in Examples 15 to 20 of the present invention.

【図4】本発明において使用した加圧下吸水量測定装置
の断面図である。
FIG. 4 is a cross-sectional view of a water absorption measuring device under pressure used in the present invention.

【番号の説明】[Explanation of numbers]

1・・・表面反応装置 2・・・ジャケット 3・・・原料投入口 4・・・熱風吹込口 5・・・加圧スプレ−ノズル 6・・・ステンレス網 7・・・表面反応装置 8・・・ジャケット 9・・・原料投入口 10・・・熱風吹込口 11・・・加圧スプレ−ノズル 12・・・気体吹込口 13・・・ステンレス網 14・・・表面反応装置 15・・・ジャケット 16・・・原料投入口 17・・・熱風吹込口 18・・・2流体混合スプレ−ノズル 19・・・2流体混合スプレ−ノズル用液体配管 20・・・2流体混合スプレ−ノズル用気体配管 21・・・ステンレス網 30・・・測管付きビュレット 31・・・ビュレット測管 32・・・空気取入用細管 33・・・空気取入口 34・・・ビュレット先端 35・・・テフロンチューブ 36・・・ガラスフィルター 37・・・ビュレット上部 38・・・栓 39・・・ガラスフィルター板 40・・・ろ紙、サンプル、ろ紙からなる層 41・・・おもり DESCRIPTION OF SYMBOLS 1 ... Surface reaction device 2 ... Jacket 3 ... Raw material input port 4 ... Hot air blowing port 5 ... Pressurizing spray nozzle 6 ... Stainless steel mesh 7 ... Surface reaction device 8 ... ..Jacket 9 ... Raw material inlet 10 ... Hot air inlet 11 ... Pressurized spray nozzle 12 ... Gas inlet 13 ... Stainless mesh 14 ... Surface reaction device 15 ... Jacket 16 ... Raw material injection port 17 ... Hot air blowing port 18 ... Two-fluid mixing spray nozzle 19 ... Two-fluid mixing spray-nozzle liquid pipe 20 ... Two-fluid mixing spray-nozzle gas Piping 21 ... Stainless steel net 30 ... Burette with measuring pipe 31 ... Burette measuring pipe 32 ... Air inlet thin tube 33 ... Air inlet 34 ... Burette tip 35 ... Teflon tube 36 ... Las filter 37 ... buret top 38 ... stopper 39 ... glass filter plate 40 ... filter paper, sample, the layer 41 ... weight consisting filter paper

───────────────────────────────────────────────────── フロントページの続き (72)発明者 青山 隆 愛知県名古屋市港区船見町1番地の1 東 亞合成化学工業株式会社名古屋総合研究所 内 (72)発明者 岡田 稔 愛知県名古屋市港区船見町1番地の1 東 亞合成化学工業株式会社名古屋総合研究所 内 (72)発明者 安田 保太郎 愛知県名古屋市港区昭和町17番地の23 東 亞合成化学工業株式会社名古屋工場内 (72)発明者 森 義和 愛知県名古屋市港区昭和町17番地の23 東 亞合成化学工業株式会社名古屋工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Aoyama 1-1 Funami-cho, Minato-ku, Nagoya-shi, Aichi Toagosei Chemical Industry Co., Ltd. Nagoya Research Institute (72) Inventor Minoru Okada Minato-shi, Aichi Prefecture 1 of Funami-cho, Ward-ward Toagosei Chemical Industry Co., Ltd. Nagoya Research Institute (72) Inventor, Hotaro Yasuda 23, 23, Showa-cho, Minato-ku, Nagoya, Aichi Prefecture Toagosei Chemical Industry Co., Ltd. Nagoya Plant (72 ) Inventor Yoshikazu Mori 23 Toagosei Synthetic Chemical Industry Co., Ltd.Nagoya factory at 17 Showa-cho, Minato-ku, Nagoya city, Aichi prefecture

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】加熱状態にあるカルボキシル基を有する吸
水性樹脂粉末に気体流を用いて架橋剤を混合し反応させ
ることを特徴とする特性の改良された吸水性樹脂の製造
方法。
1. A method for producing a water-absorbent resin having improved properties, which comprises mixing a water-absorbent resin powder having a carboxyl group in a heated state with a cross-linking agent using a gas flow to cause a reaction.
【請求項2】請求項1において吸水性樹脂粉末が80℃
以上に加熱されていることを特徴とする吸水性樹脂の製
造方法。
2. The water absorbent resin powder according to claim 1, wherein the water absorbent resin powder is 80.degree.
A method for producing a water-absorbent resin, which is characterized by being heated as described above.
【請求項3】請求項1において架橋剤が溶液として用い
られ且つ気体流の流量が架橋剤溶液に対して0.1〜1
0Nm3/kgの範囲にあることを特徴とする吸水性樹脂の
製造方法。
3. The crosslinker according to claim 1 is used as a solution, and the flow rate of the gas stream is 0.1 to 1 with respect to the crosslinker solution.
A method for producing a water-absorbent resin, which is in the range of 0 Nm 3 / kg.
JP5684894A 1994-03-03 1994-03-03 Preparation of water-absorbent resin Pending JPH07242709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5684894A JPH07242709A (en) 1994-03-03 1994-03-03 Preparation of water-absorbent resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5684894A JPH07242709A (en) 1994-03-03 1994-03-03 Preparation of water-absorbent resin

Publications (1)

Publication Number Publication Date
JPH07242709A true JPH07242709A (en) 1995-09-19

Family

ID=13038844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5684894A Pending JPH07242709A (en) 1994-03-03 1994-03-03 Preparation of water-absorbent resin

Country Status (1)

Country Link
JP (1) JPH07242709A (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002045395A (en) * 2000-05-09 2002-02-12 Nippon Shokubai Co Ltd Absorber and absorptive goods using the same, and water absorptive resin
JP2002201290A (en) * 2000-09-20 2002-07-19 Nippon Shokubai Co Ltd Water-absorbing resin and its preparation process
US6576713B2 (en) 2000-02-29 2003-06-10 Nippon Shokubai Co., Ltd. Water-absorbent resin powder and production process therefor
WO2004069936A1 (en) 2003-02-10 2004-08-19 Nippon Shokubai Co., Ltd. Particulate water absorbent containing water absorbent resin as a main component
JP2004359943A (en) * 2003-05-09 2004-12-24 Nippon Shokubai Co Ltd Water absorption resin and its producing method
JP2005154758A (en) * 2003-11-07 2005-06-16 Nippon Shokubai Co Ltd Granular water-absorbent resin composition and method of producing the same
US7009010B2 (en) 2001-12-19 2006-03-07 Nippon Shokubai Co., Ltd. Water-absorbent resin and production process therefor
WO2008090961A1 (en) 2007-01-24 2008-07-31 Nippon Shokubai Co., Ltd. Particulate water-absorbent polymer and process for production thereof
WO2008096713A1 (en) 2007-02-05 2008-08-14 Nippon Shokubai Co., Ltd. Granular water absorber and method of producing the same
US7473739B2 (en) 2004-02-05 2009-01-06 Nippon Shokubai Co., Ltd. Particulate water absorbent agent and production method thereof, and water absorbent article
WO2009005114A1 (en) 2007-07-04 2009-01-08 Nippon Shokubai Co., Ltd. Particulate water-absorbing agent and method for producing the same
WO2009028568A1 (en) 2007-08-28 2009-03-05 Nippon Shokubai Co., Ltd. Process for producing water-absorbing resin
EP2042521A1 (en) 2006-03-29 2009-04-01 Nippon Shokubai Co., Ltd. Method of producing polyacrylic acid (salt) water-absorbent resin
JP2010521578A (en) * 2007-03-19 2010-06-24 ビーエーエスエフ ソシエタス・ヨーロピア Method for coating water-absorbing polymer particles
WO2010100936A1 (en) 2009-03-04 2010-09-10 株式会社日本触媒 Process for producing water-absorbing resin
WO2010131603A1 (en) 2009-05-15 2010-11-18 株式会社日本触媒 Method for producing (meth)acrylic acid and crystallization system
WO2010131589A1 (en) 2009-05-15 2010-11-18 株式会社日本触媒 Method for producing (meth)acrylic acid
WO2010131604A1 (en) 2009-05-15 2010-11-18 株式会社日本触媒 Method for producing (meth)acrylic acid
WO2011025013A1 (en) 2009-08-28 2011-03-03 株式会社日本触媒 Process for production of water-absorbable resin
WO2011040575A1 (en) 2009-09-30 2011-04-07 株式会社日本触媒 Polyacrylic acid salt-based water absorbent resin and method for producing same
WO2011090129A1 (en) 2010-01-20 2011-07-28 株式会社日本触媒 Method for producing water absorbent resin
WO2011090130A1 (en) 2010-01-20 2011-07-28 株式会社日本触媒 Method for producing water absorbent resin
WO2011111657A1 (en) 2010-03-08 2011-09-15 株式会社日本触媒 Drying method for granular water-containing gel-like cross-linked polymer
WO2011111857A1 (en) 2010-03-12 2011-09-15 株式会社日本触媒 Method for manufacturing a water-absorbing resin
WO2011115221A1 (en) 2010-03-17 2011-09-22 株式会社日本触媒 Method of producing absorbent resin
WO2011136237A1 (en) 2010-04-26 2011-11-03 株式会社日本触媒 Polyacrylic acid (salt), polyacrylic acid (salt)-based water-absorbing resin, and process for producing same
WO2011136238A1 (en) 2010-04-26 2011-11-03 株式会社日本触媒 Polyacrylate (salt), polyacrylate (salt) water-absorbent resin, and manufacturing method for same
US8481664B2 (en) 2005-04-12 2013-07-09 Nippon Shokubai Co., Ltd. Particulate water absorbing agent including polyacrylic acid (polyacrylate) based water absorbing resin as a principal component, method for production thereof, water-absorbent core and absorbing article in which the particulate water absorbing agent is used
US8487048B2 (en) 2003-05-09 2013-07-16 Nippon Shokubai Co., Ltd. Water-absorbent resin and its production process
US8598254B2 (en) 2007-09-07 2013-12-03 Nippon Shokubai Co., Ltd. Binding method of water absorbent resin
WO2014054656A1 (en) * 2012-10-01 2014-04-10 株式会社日本触媒 Dust-reducing agent comprising multiple metal compound, water absorbent containing multiple metal compound and method for manufacturing same
US8952116B2 (en) 2009-09-29 2015-02-10 Nippon Shokubai Co., Ltd. Particulate water absorbent and process for production thereof
EP2673011B1 (en) 2011-02-07 2015-04-08 Basf Se Procedure for preparing water absorbing polymer particles having high free swell rate
US9062140B2 (en) 2005-04-07 2015-06-23 Nippon Shokubai Co., Ltd. Polyacrylic acid (salt) water-absorbent resin, production process thereof, and acrylic acid used in polymerization for production of water-absorbent resin
US9090718B2 (en) 2006-03-24 2015-07-28 Nippon Shokubai Co., Ltd. Water-absorbing resin and method for manufacturing the same
WO2017169246A1 (en) * 2016-03-31 2017-10-05 住友精化株式会社 Water-absorbing resin particle production device
US9926449B2 (en) 2005-12-22 2018-03-27 Nippon Shokubai Co., Ltd. Water-absorbent resin composition, method of manufacturing the same, and absorbent article
US9976001B2 (en) 2010-02-10 2018-05-22 Nippon Shokubai Co., Ltd. Process for producing water-absorbing resin powder
CN108084619A (en) * 2018-02-07 2018-05-29 山东诺尔生物科技有限公司 A kind of antibacterial is dispelled the water-absorbing resin and its preparation method and application of taste
WO2019241986A1 (en) 2018-06-22 2019-12-26 山东昊月新材料股份有限公司 High-absorbability resin and preparation method therefor
WO2020067563A1 (en) * 2018-09-28 2020-04-02 株式会社日本触媒 Method for producing water-absorbing resin powder and water-absorbing resin powder
WO2021187325A1 (en) * 2020-03-18 2021-09-23 住友精化株式会社 Method for producing absorbent resin particles

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6576713B2 (en) 2000-02-29 2003-06-10 Nippon Shokubai Co., Ltd. Water-absorbent resin powder and production process therefor
JP2002045395A (en) * 2000-05-09 2002-02-12 Nippon Shokubai Co Ltd Absorber and absorptive goods using the same, and water absorptive resin
JP2002201290A (en) * 2000-09-20 2002-07-19 Nippon Shokubai Co Ltd Water-absorbing resin and its preparation process
US7009010B2 (en) 2001-12-19 2006-03-07 Nippon Shokubai Co., Ltd. Water-absorbent resin and production process therefor
WO2004069936A1 (en) 2003-02-10 2004-08-19 Nippon Shokubai Co., Ltd. Particulate water absorbent containing water absorbent resin as a main component
US7282262B2 (en) 2003-02-10 2007-10-16 Nippon Shokubai Co., Ltd. Particulate water absorbent containing water absorbent resin as a main component
EP2650025A1 (en) 2003-02-10 2013-10-16 Nippon Shokubai Co., Ltd. Particulate water absorbent containing water absorbent resin as a main component
JP2004359943A (en) * 2003-05-09 2004-12-24 Nippon Shokubai Co Ltd Water absorption resin and its producing method
US8487048B2 (en) 2003-05-09 2013-07-16 Nippon Shokubai Co., Ltd. Water-absorbent resin and its production process
JP2005154758A (en) * 2003-11-07 2005-06-16 Nippon Shokubai Co Ltd Granular water-absorbent resin composition and method of producing the same
US7473739B2 (en) 2004-02-05 2009-01-06 Nippon Shokubai Co., Ltd. Particulate water absorbent agent and production method thereof, and water absorbent article
US7582705B2 (en) 2004-02-05 2009-09-01 Nippon Shokubai Co., Ltd. Particulate water absorbent agent and production method thereof, and water absorbent article
US9062140B2 (en) 2005-04-07 2015-06-23 Nippon Shokubai Co., Ltd. Polyacrylic acid (salt) water-absorbent resin, production process thereof, and acrylic acid used in polymerization for production of water-absorbent resin
US8481664B2 (en) 2005-04-12 2013-07-09 Nippon Shokubai Co., Ltd. Particulate water absorbing agent including polyacrylic acid (polyacrylate) based water absorbing resin as a principal component, method for production thereof, water-absorbent core and absorbing article in which the particulate water absorbing agent is used
US9926449B2 (en) 2005-12-22 2018-03-27 Nippon Shokubai Co., Ltd. Water-absorbent resin composition, method of manufacturing the same, and absorbent article
US10358558B2 (en) 2005-12-22 2019-07-23 Nippon Shokubai Co., Ltd. Water-absorbent resin composition, method of manufacturing the same, and absorbent article
US9090718B2 (en) 2006-03-24 2015-07-28 Nippon Shokubai Co., Ltd. Water-absorbing resin and method for manufacturing the same
EP2042521A1 (en) 2006-03-29 2009-04-01 Nippon Shokubai Co., Ltd. Method of producing polyacrylic acid (salt) water-absorbent resin
WO2008090961A1 (en) 2007-01-24 2008-07-31 Nippon Shokubai Co., Ltd. Particulate water-absorbent polymer and process for production thereof
WO2008096713A1 (en) 2007-02-05 2008-08-14 Nippon Shokubai Co., Ltd. Granular water absorber and method of producing the same
JP2010521578A (en) * 2007-03-19 2010-06-24 ビーエーエスエフ ソシエタス・ヨーロピア Method for coating water-absorbing polymer particles
WO2009005114A1 (en) 2007-07-04 2009-01-08 Nippon Shokubai Co., Ltd. Particulate water-absorbing agent and method for producing the same
US8188163B2 (en) 2007-08-28 2012-05-29 Nippon Shokubai Co., Ltd. Process for producing water-absorbing resin
WO2009028568A1 (en) 2007-08-28 2009-03-05 Nippon Shokubai Co., Ltd. Process for producing water-absorbing resin
EP2690114A1 (en) 2007-08-28 2014-01-29 Nippon Shokubai Co., Ltd. Process for producing water-absorbing resin
US8598254B2 (en) 2007-09-07 2013-12-03 Nippon Shokubai Co., Ltd. Binding method of water absorbent resin
WO2010100936A1 (en) 2009-03-04 2010-09-10 株式会社日本触媒 Process for producing water-absorbing resin
US9796820B2 (en) 2009-03-04 2017-10-24 Nippon Shokubai Co., Ltd. Method for producing water absorbent resin
US8648150B2 (en) 2009-03-04 2014-02-11 Nippon Shokubai Co., Ltd. Method for producing water absorbent resin
US8637701B2 (en) 2009-05-15 2014-01-28 Nippon Shokubai Co., Ltd. Method for producing (meth) acrylic acid
US8586787B2 (en) 2009-05-15 2013-11-19 Nippon Shokubai Co., Ltd. Process for producing (meth)acrylic acid
WO2010131589A1 (en) 2009-05-15 2010-11-18 株式会社日本触媒 Method for producing (meth)acrylic acid
WO2010131604A1 (en) 2009-05-15 2010-11-18 株式会社日本触媒 Method for producing (meth)acrylic acid
WO2010131603A1 (en) 2009-05-15 2010-11-18 株式会社日本触媒 Method for producing (meth)acrylic acid and crystallization system
US8592627B2 (en) 2009-05-15 2013-11-26 Nippon Shokubai Co., Ltd. Process for producing (meth)acrylic acid and crystallization system
WO2011025013A1 (en) 2009-08-28 2011-03-03 株式会社日本触媒 Process for production of water-absorbable resin
WO2011025012A1 (en) 2009-08-28 2011-03-03 株式会社日本触媒 Process for production of water-absorbable resin
US9775927B2 (en) 2009-09-29 2017-10-03 Nippon Shokubai Co., Ltd. Particulate water absorbent and process for production thereof
US8952116B2 (en) 2009-09-29 2015-02-10 Nippon Shokubai Co., Ltd. Particulate water absorbent and process for production thereof
WO2011040575A1 (en) 2009-09-30 2011-04-07 株式会社日本触媒 Polyacrylic acid salt-based water absorbent resin and method for producing same
US10294315B2 (en) 2009-09-30 2019-05-21 Nippon Shokubai Co., Ltd. Polyacrylic acid (salt)-based water absorbent resin and method for producing same
WO2011090129A1 (en) 2010-01-20 2011-07-28 株式会社日本触媒 Method for producing water absorbent resin
WO2011090130A1 (en) 2010-01-20 2011-07-28 株式会社日本触媒 Method for producing water absorbent resin
US9976001B2 (en) 2010-02-10 2018-05-22 Nippon Shokubai Co., Ltd. Process for producing water-absorbing resin powder
WO2011111657A1 (en) 2010-03-08 2011-09-15 株式会社日本触媒 Drying method for granular water-containing gel-like cross-linked polymer
US9233186B2 (en) 2010-03-12 2016-01-12 Nippon Shokubai Co., Ltd. Process for producing water-absorbing resin
WO2011111857A1 (en) 2010-03-12 2011-09-15 株式会社日本触媒 Method for manufacturing a water-absorbing resin
WO2011111855A1 (en) 2010-03-12 2011-09-15 株式会社日本触媒 Method for manufacturing a water-absorbing resin
US9272068B2 (en) 2010-03-12 2016-03-01 Nippon Shokubai Co., Ltd. Process for producing water-absorbing resin
US10307506B2 (en) 2010-03-12 2019-06-04 Nippon Shokubai Co., Ltd. Process for producing water-absorbing resin
WO2011115216A1 (en) 2010-03-17 2011-09-22 株式会社日本触媒 Method of producing absorbent resin
WO2011115221A1 (en) 2010-03-17 2011-09-22 株式会社日本触媒 Method of producing absorbent resin
WO2011136238A1 (en) 2010-04-26 2011-11-03 株式会社日本触媒 Polyacrylate (salt), polyacrylate (salt) water-absorbent resin, and manufacturing method for same
WO2011136237A1 (en) 2010-04-26 2011-11-03 株式会社日本触媒 Polyacrylic acid (salt), polyacrylic acid (salt)-based water-absorbing resin, and process for producing same
EP2673011B1 (en) 2011-02-07 2015-04-08 Basf Se Procedure for preparing water absorbing polymer particles having high free swell rate
US9974882B2 (en) 2012-10-01 2018-05-22 Nippon Shokubai Co., Ltd. Dust reducer consisting of multi-component metal compound, water absorbing agent containing multi-component metal compound, and method for producing the same
WO2014054656A1 (en) * 2012-10-01 2014-04-10 株式会社日本触媒 Dust-reducing agent comprising multiple metal compound, water absorbent containing multiple metal compound and method for manufacturing same
WO2017169246A1 (en) * 2016-03-31 2017-10-05 住友精化株式会社 Water-absorbing resin particle production device
US11117111B2 (en) 2016-03-31 2021-09-14 Sumitomo Seika Chemicals Co., Ltd. Apparatus for producing water-absorbing resin particles
US10730028B2 (en) 2016-03-31 2020-08-04 Sumitomo Seika Chemicals Co., Ltd. Apparatus for producing water-absorbing resin particles
CN108084619B (en) * 2018-02-07 2021-03-16 山东诺尔生物科技有限公司 Antibacterial and odor-removing water-absorbent resin and preparation method and application thereof
CN108084619A (en) * 2018-02-07 2018-05-29 山东诺尔生物科技有限公司 A kind of antibacterial is dispelled the water-absorbing resin and its preparation method and application of taste
WO2019241986A1 (en) 2018-06-22 2019-12-26 山东昊月新材料股份有限公司 High-absorbability resin and preparation method therefor
KR20210041070A (en) 2018-09-28 2021-04-14 가부시키가이샤 닛폰 쇼쿠바이 Method for producing water absorbent resin powder and water absorbent resin powder
JPWO2020067563A1 (en) * 2018-09-28 2021-09-02 株式会社日本触媒 Manufacturing method of water-absorbent resin powder and water-absorbent resin powder
WO2020067563A1 (en) * 2018-09-28 2020-04-02 株式会社日本触媒 Method for producing water-absorbing resin powder and water-absorbing resin powder
WO2021187325A1 (en) * 2020-03-18 2021-09-23 住友精化株式会社 Method for producing absorbent resin particles

Similar Documents

Publication Publication Date Title
JPH07242709A (en) Preparation of water-absorbent resin
EP0317106B1 (en) Method of surface-treating water-absorbent resin
JP5977839B2 (en) Polyacrylic acid (salt) water-absorbing resin and method for producing the same
US6133193A (en) Absorbent resin composition and method for production thereof
WO2001098382A1 (en) Process for production of water-absorbent resin
JPH07224204A (en) Production of water-absorbing resin
JP5587348B2 (en) Method for producing water absorbent resin
WO2011111657A1 (en) Drying method for granular water-containing gel-like cross-linked polymer
KR20150048785A (en) Particulate water-absorbing agent and method for manufacturing same
CN110372891B (en) Method for producing polyacrylic acid water-absorbent resin
JP6577572B2 (en) Method for producing particulate water-absorbing agent mainly composed of polyacrylic acid (salt) water-absorbing resin
KR20190069101A (en) Super absorbent polymer and preparation method for the same
JP4084648B2 (en) Method for producing water absorbent resin
WO2020067311A1 (en) Method for producing water-absorbing resin and water-absorbing resin
CN111116947A (en) Method for producing polyacrylic acid water-absorbent resin
JPH04246403A (en) Production of highly water-absorptive resin
JPH10251310A (en) Production of hydrophilic polymer
CN109071831B (en) Method for producing superabsorbent polymers
JP2020505477A (en) Super water absorbent resin and method for producing the same
WO2019190120A1 (en) Super absorbent polymer and method for preparing same
JPH1160630A (en) Reparation of water absorbent
JP7100742B1 (en) Poly (meth) acrylic acid (salt) -based water-absorbent resin and absorber
JP7078778B1 (en) Poly (meth) acrylic acid (salt) -based water-absorbent resin and absorber
JP2002212331A (en) Method for producing highly water-absorbing resin particle
US20230119016A1 (en) Method of Preparing Superabsorbent Polymer