WO2020067563A1 - Method for producing water-absorbing resin powder and water-absorbing resin powder - Google Patents

Method for producing water-absorbing resin powder and water-absorbing resin powder Download PDF

Info

Publication number
WO2020067563A1
WO2020067563A1 PCT/JP2019/038462 JP2019038462W WO2020067563A1 WO 2020067563 A1 WO2020067563 A1 WO 2020067563A1 JP 2019038462 W JP2019038462 W JP 2019038462W WO 2020067563 A1 WO2020067563 A1 WO 2020067563A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
absorbent resin
metal salt
polyvalent metal
resin powder
Prior art date
Application number
PCT/JP2019/038462
Other languages
French (fr)
Japanese (ja)
Inventor
智嗣 松本
藤野 眞一
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to JP2020549511A priority Critical patent/JP7116796B2/en
Priority to KR1020217007517A priority patent/KR20210041070A/en
Priority to CN201980060648.9A priority patent/CN112703053B/en
Publication of WO2020067563A1 publication Critical patent/WO2020067563A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/04Acids, Metal salts or ammonium salts thereof
    • C08F20/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof

Definitions

  • the present invention relates to a method for producing a water-absorbent resin powder and a water-absorbent resin powder.
  • absorbents having hydrophilic fibers such as pulp and a water-absorbing resin as constituent materials are widely used for the purpose of absorbing body fluids.
  • the performance requirements of the water-absorbent resin also increase. For example, not only the water absorption capacity under no pressure (CRC), but also the water absorption capacity under pressure (AAP) so that water can be absorbed even when weight is applied, or liquid permeability (eg, , GBP and SFC).
  • CRC water absorption capacity under no pressure
  • AAP water absorption capacity under pressure
  • Patent Document 1 discloses that a water-absorbing polymer particle is coated with a non-reactive coating agent such as a polyvalent metal salt by a continuous method.
  • a process for spray-coating in a fluidized bed reactor at a temperature in the range of 0 ° C. to 150 ° C. is disclosed.
  • Patent Literatures 2 to 7 disclose methods for improving liquid permeability (SFC) by mixing a polyvalent metal salt with a water-absorbent resin at the time of surface crosslinking or after surface crosslinking.
  • Patent Literatures 8 and 9 disclose a method for surface crosslinking of a water-absorbent resin, in which a surface-crosslinking agent is mixed with a heated water-absorbent resin particle while flowing using a gas flow to perform surface crosslinking. It has been disclosed.
  • Patent Document 10 discloses a method for producing a water-absorbent resin in which a surface cross-linking agent is sprayed on a monomer forming a fluidized bed.
  • Patent Documents 11 to 13 disclose a surface cross-linking method in which a surface cross-linking agent and a separately added water-absorbent resin are cross-linked by heating in a fluidized bed mixer.
  • Patent Documents 14 to 16 disclose a method of granulating water-absorbent resin fine particles by spraying a binder in a fluidized bed granulator to improve the water absorption rate.
  • Patent Document 17 discloses a polyvalent metal salt.
  • a water-absorbing resin composition for spraying an aqueous solution is disclosed.
  • Patent Documents 18 and 19 disclose a method of adding a polyvalent metal salt aqueous solution which is improved to obtain a water-absorbing resin having both excellent liquid permeability and excellent moisture absorption fluidity.
  • Patent Document 18 Comparative Example 2
  • when powdery aluminum sulfate hydrate was added to the water-absorbent resin the moisture-absorbing fluidity was poor.
  • Patent Document 20 discloses a water-absorbing resin to which silica or the like is added
  • Patent Document 21 discloses a water-absorbing resin to which a water-insoluble metal phosphate is added
  • Patent Document 22 discloses a water-absorbing resin to which a water-insoluble polyvalent metal complex salt is added in order to improve the moisture-absorbing fluidity.
  • the addition of such water-insoluble inorganic fine particles may cause a problem in that either the liquid permeability or the fluidity of moisture absorption is insufficient, or may lower the water absorption capacity under pressure.
  • Patent Document 23 discloses a technique for adding fine alum particles to neutralize ammonia, which is a cause of urinary odor, but has poor liquid permeability and insufficient moisture absorption fluidity.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a method for easily producing a water-absorbent resin powder having excellent liquid permeability, moisture-absorbing fluidity, and water absorption capacity under pressure, and a water-absorbent resin. Is to provide a powder.
  • the present inventors have conducted intensive studies in order to achieve the above object, and as a result, in a fluidized bed mixer, spray a polyvalent metal salt aqueous solution onto the water-absorbing resin particles at the time of surface crosslinking or after surface crosslinking under heating.
  • a water-absorbent resin powder excellent in liquid permeability, moisture-absorbing fluidity, and water absorption capacity under pressure can be obtained.
  • a water-absorbing resin powder having unprecedented fine polyvalent metal fine particles on the surface was excellent in liquid permeability, moisture-absorbing fluidity, and water absorption under pressure, and completed the present invention.
  • the present invention (1) is a method for producing a water-absorbent resin powder which is surface-crosslinked with an organic surface crosslinking agent and contains a water-soluble polyvalent metal salt, wherein the polyvalent metal salt has a concentration of 5% by weight or more. Having a spraying step of spraying the aqueous solution of the valent metal salt onto the water-absorbent resin particles at the time of surface crosslinking with the organic surface crosslinking agent or after the surface crosslinking in the fluidized bed mixer, and the air temperature at the spray position of the aqueous solution of the polyvalent metal salt. Is 50 ° C. or more.
  • the invention (2) of the present application is a method for producing a water-absorbent resin powder which is surface-crosslinked with an organic surface crosslinker and contains a water-soluble polyvalent metal salt.
  • a method for producing a water-absorbent resin powder which comprises adding water-soluble polyvalent metal salt particles having a volume average particle diameter of 0.3 to 15 ⁇ m measured by a laser diffraction / scattering method.
  • the invention (3) of the present application relates to a water-absorbing resin powder which is surface-crosslinked with an organic surface cross-linking agent and contains a water-soluble polyvalent metal salt, and has a number average particle diameter of 0.3 to 15 ⁇ m on the surface of the water-absorbing resin powder.
  • a water-absorbent resin powder to which (SEM image analysis) water-soluble polyvalent metal salt particles adhere.
  • a water-absorbent resin powder excellent in liquid permeability, moisture-absorbing fluidity, and water absorption under pressure can be easily produced.
  • a water-absorbent resin powder having excellent temporal color tone can be easily produced.
  • Example 3 is an SEM image of a water-absorbent resin powder of Example 1.
  • the present invention is not limited to the following embodiments, and various modifications are possible within the scope of the claims, and the technical means disclosed in the different embodiments may be appropriately combined. The obtained embodiment is also included in the technical scope of the present invention.
  • a to B representing a numerical range means “A or more and B or less”.
  • ppm means “ppm by weight” or “ppm by mass” unless otherwise specified.
  • to acid (salt) means “to acid and / or salt thereof”, and “(meth) acryl” means “acryl and / or methacryl”, respectively.
  • Water absorbent resin means a water-swellable, water-insoluble polymer gelling agent, and is generally in a powder form.
  • water swellability means that the CRC defined by ERT441.2-02 is 5 g / g or more
  • water-insoluble is defined by ERT470.2-02. Ext means 0 to 50% by weight.
  • ERT470.2-02. Ext means 0 to 50% by weight.
  • water-absorbent resin particles the water-absorbent resin before surface treatment or surface crosslinking of the aqueous polyvalent metal salt solution
  • water-absorbent resin particles the water-absorbent resin after surface treatment and surface crosslinking
  • Resin powder ".
  • EDANA European Disposables and Nonwovens Associations
  • ERT is an abbreviation of EDANA Recommended Test Methods, which is a standard for water-absorbing resin, which is a European standard (almost a global standard). It is. In this specification, unless otherwise specified, the measurement is performed based on the original ERT (publicly known document; revised in 2002).
  • Centrifuge Retention Capacity (ERT441.2-02) “CRC” is an abbreviation of Centrifuge Retention Capacity (centrifuge retention capacity), which means the water absorption capacity of a water-absorbent resin under no pressure (sometimes referred to as “water absorption capacity”). Specifically, 0.2 g of the water-absorbing resin is put into a nonwoven fabric bag, then immersed in a large excess of 0.9% by mass aqueous sodium chloride solution for 30 minutes to allow free swelling, and then centrifuged (250 G). ) Means water absorption capacity (unit: g / g) after draining for 3 minutes.
  • Ext is an abbreviation of Extractables and means a water-soluble component (a water-soluble component amount) of the water-absorbent resin.
  • the amount of dissolved polymer refers to the amount of dissolved polymer (unit: wt%) after adding 1.0 g of the water-absorbing resin to 200 mL of 0.9 wt% aqueous sodium chloride solution and stirring at 500 rpm for 16 hours.
  • the measurement of the amount of dissolved polymer is performed using pH titration.
  • FLOWRATE (ERT450.2-02) “FLOWRATE” means the powder fluidity of the water absorbent resin. Specifically, it refers to the speed (unit: g / s) at which 100 g of the water-absorbent resin flows down from the opening (diameter: 10 mm) of the conical hopper.
  • FLOWRATE may be referred to as "FR.”
  • liquid permeability As used herein, the term “liquid permeability" of a water-absorbent resin powder refers to the fluidity of a liquid passing between particles of a water-absorbent resin or a gel swelling the same under a load or no load. As representative measurement methods, there are SFC and GBP.
  • SFC Seline Flow Conductivety
  • the method for producing a water-absorbent resin powder according to one embodiment of the present invention includes (1) an organic surface cross-linking agent.
  • a method for producing a water-absorbent resin powder comprising a spraying step of spraying water-absorbent resin particles at the time of or after surface cross-linking, wherein the air temperature at the spray position of the aqueous polyvalent metal salt solution is 50 ° C or higher.
  • a polyvalent metal salt aqueous solution having a polyvalent metal salt concentration of 5% by weight or more is sprayed under a high-temperature atmosphere in a fluidized bed mixer, so that the polyvalent metal salt aqueous solution is in a spray-dried state. It is presumed that they adhere to the surface of the water-absorbent resin in a fine lump.
  • the method (2) for producing a water-absorbent resin powder according to one embodiment of the present invention is a method for producing a water-absorbent resin powder that is surface-crosslinked with an organic surface crosslinking agent and contains a water-soluble polyvalent metal salt, Production of water-absorbent resin powder by adding polyvalent metal salt particles having a volume average particle diameter of 0.3 to 15 ⁇ m measured by a laser diffraction / scattering method to a water-absorbent resin surface-crosslinked with an organic surface crosslinker Provide a way.
  • steps (2-1) to (2-9) will be described as a method for producing a water-absorbent resin according to one embodiment of the present invention.
  • the production method includes a surface cross-linking step and a spraying step described below, and other steps are optionally included.
  • Step of preparing monomer aqueous solution This step is a step of preparing a monomer aqueous solution. Note that a monomer slurry may be used instead of the monomer aqueous solution as long as the water-absorbing performance of the obtained water-absorbent resin is not reduced, but in this section, the monomer aqueous solution will be described for convenience. .
  • an acid group-containing unsaturated monomer is preferred, a carboxyl group-containing unsaturated monomer such as acrylic acid (salt) and methacrylic acid (salt) is more preferred, and acrylic acid (salt) is even more preferred.
  • a plurality of types of monomers can be combined.
  • the amount of acrylic acid (salt) used in all monomers is 10 to 100 mol%, more preferably 50 to 100 mol%, particularly 90 to 100 mol%.
  • such polyacrylic acid is used.
  • (Salt) -based water-absorbing resins are preferably used.
  • the acid group-containing unsaturated monomer is preferably partially in a salt form, preferably a salt with a monovalent basic compound, more preferably an alkali metal salt or an ammonium salt, and further preferably a sodium salt. is there.
  • the neutralization ratio is preferably from 10 to 90 mol%, more preferably from 40 to 85 mol%, further preferably from 50 to 80 mol%, particularly preferably from the acid groups of the monomer. Is from 60 to 75 mol%. If the neutralization ratio is less than 10 mol%, the water absorption capacity may be significantly reduced. On the other hand, when the neutralization ratio exceeds 90 mol%, a water-absorbent resin having a high water absorption capacity under pressure may not be obtained.
  • the above neutralization ratio is the same even when neutralizing a polymer instead of a monomer.
  • the above-described neutralization ratio is also applied to the neutralization ratio of the water-absorbent resin powder as the final product.
  • Internal crosslinking agent In one embodiment of the present invention, it is preferable to use an internal crosslinking agent in this step.
  • the internal cross-linking agent the compounds exemplified in US Pat. No. 6,241,928 are also applied to one embodiment of the present invention, and one or more compounds are selected from these in consideration of reactivity.
  • a compound having two or more polymerizable unsaturated groups more preferably having thermal decomposability at the following drying temperature, and a polymerizable unsaturated group
  • a compound having two or more polymerizable unsaturated groups having a (poly) alkylene glycol structural unit is used as an internal crosslinking agent.
  • the polymerizable unsaturated group preferably, an allyl group, a (meth) acrylate group, more preferably, a (meth) acrylate group is used.
  • the (poly) alkylene glycol structural unit is preferably polyethylene glycol, and the number n is preferably from 1 to 100, more preferably from 6 to 50.
  • the use amount of the internal crosslinking agent is preferably 0.0001 to 10 mol%, more preferably 0.001 to 1 mol%, based on the whole monomer.
  • a desired water-absorbing resin can be obtained by setting the amount to be used within the above range. If the amount is too small, the gel strength tends to decrease and the water-soluble component tends to increase.If the amount is too large, the water absorption ratio of the water absorbent resin tends to decrease, which is not preferable. .
  • the internal cross-linking agent added in this step undergoes a cross-linking reaction in the polymerization step or, for example, in the drying step after the polymerization step.
  • the internal cross-linking is not limited to the above-described embodiment, and the internal cross-linking may be performed by adding an internal cross-linking agent to the hydrogel cross-linked polymer during or after the polymerization step.
  • a radical cross-linking method using a radical polymerization initiator, a radiation cross-linking method using an active energy ray such as an electron beam or an ultraviolet ray, and the like can also be adopted. Further, these methods can be used in combination.
  • the following substances can be added during the preparation of the aqueous monomer solution from the viewpoint of improving the physical properties of the obtained water-absorbent resin.
  • a hydrophilic polymer such as starch, starch derivative, cellulose, cellulose derivative, polyvinyl alcohol, polyacrylic acid (salt), crosslinked polyacrylic acid (salt), preferably 50% by weight or less, more preferably Can be added at 20% by weight or less, more preferably at 10% by weight or less, particularly preferably at 5% by weight or less (the lower limit is 0% by weight).
  • a carbonate, an azo compound, a foaming agent such as air bubbles, a surfactant, a chelating agent, a chain transfer agent and the like are preferably used in an amount of 5% by weight or less, more preferably 1% by weight or less, and further preferably 0.5% by weight. The following can be added (the lower limit is 0% by weight).
  • the above-mentioned substance may be added not only in the form of being added to the aqueous monomer solution but also in the course of polymerization, or these forms may be used in combination.
  • a water-soluble resin or a water-absorbent resin is used as the hydrophilic polymer
  • a graft polymer or a water-absorbent resin composition eg, starch-acrylic acid polymer, PVA-acrylic acid polymer, etc.
  • These polymers and water-absorbent resin compositions are also included in the scope of the present invention.
  • each of the above substances is added when preparing the aqueous monomer solution.
  • concentration of the monomer component in the aqueous monomer solution is not particularly limited, but is preferably from 10 to 80% by weight, more preferably from 20 to 75% by weight, and still more preferably from 30 to 80% by weight, from the viewpoint of the physical properties of the water-absorbing resin. ⁇ 70% by weight.
  • a solvent other than water can be used in combination, if necessary.
  • the type of the solvent is not particularly limited.
  • the “concentration of the monomer component” is a value determined by the following formula (1), and the weight of the aqueous monomer solution is calculated based on the graft component, the water-absorbing resin, and the hydrophobicity in the inverse suspension polymerization. Does not include solvent weight.
  • the polymerization initiator used in one embodiment of the present invention is not particularly limited because it is appropriately selected depending on the polymerization form and the like.
  • the polymerization initiator include a thermal decomposition-type polymerization initiator, a photo-decomposition-type polymerization initiator, and a redox-based polymerization initiator using a reducing agent that promotes the decomposition of these polymerization initiators.
  • one or more of the polymerization initiators disclosed in US Pat. No. 7,265,190 are used. From the viewpoint of the handleability of the polymerization initiator and the physical properties of the water-absorbing resin, peroxides or azo compounds are preferable, peroxides are more preferable, and persulfates are more preferable among the peroxides.
  • the amount of the polymerization initiator used is preferably 0.001 to 1 mol%, more preferably 0.001 to 0.5 mol%, based on the monomer component.
  • the amount of the reducing agent used is preferably 0.0001 to 0.02 mol% based on the monomer.
  • an active energy ray such as ultraviolet light may be irradiated to carry out the polymerization reaction, or these active energy rays and the polymerization initiator may be used in combination. .
  • the polymerization form applied to one embodiment of the present invention is not particularly limited, but from the viewpoint of water absorption characteristics and ease of polymerization control, preferably, spray / droplet polymerization in a gas phase, aqueous solution polymerization or reverse phase polymerization Suspension polymerization, more preferably aqueous solution polymerization or reversed-phase suspension polymerization, further preferably aqueous solution polymerization.
  • aqueous solution polymerizations continuous aqueous solution polymerization is particularly preferred, and both continuous belt polymerization and continuous kneader polymerization are applied.
  • continuous belt polymerization is described in U.S. Pat. No. 4,893,999, U.S. Pat. No. 6,241,928 and U.S. Patent Application Publication No. 2005 / 215,734, and continuous kneader polymerization is described in U.S. Pat. And the like.
  • continuous aqueous polymerization methods By employing these continuous aqueous polymerization methods, the production efficiency of the water-absorbing resin is improved.
  • the hydrogel obtained in the above polymerization step is gel-pulverized by a screw extruder such as a kneader or a meat chopper, or a gel pulverizer such as a cutter mill, and the like.
  • a screw extruder such as a kneader or a meat chopper
  • a gel pulverizer such as a cutter mill, and the like.
  • This is a step of obtaining a hydrogel (hereinafter, referred to as "particulate hydrogel").
  • the polymerization step and the gel pulverization step are performed simultaneously. Further, when a particulate hydrogel is directly obtained in the polymerization process such as gas phase polymerization or reverse phase suspension polymerization, the gel pulverizing step may not be performed.
  • This step is a step of drying the particulate hydrogel obtained in the polymerization step and / or the gel pulverizing step to a desired resin solid content to obtain a dried polymer.
  • the resin solid content is determined from the loss on drying (weight change when 1 g of the water-absorbent resin is heated at 180 ° C. for 3 hours), and is preferably 80% by weight or more, more preferably 85 to 99% by weight, and further preferably 90% by weight. It is preferably from 98 to 98% by weight, particularly preferably from 92 to 97% by weight.
  • the method for drying the particulate hydrogel is not particularly limited, but includes, for example, heat drying, hot air drying, reduced pressure drying, fluidized bed drying, infrared drying, microwave drying, drum dryer drying, azeotropic distillation with a hydrophobic organic solvent. Drying by dehydration and high-humidity drying using high-temperature steam are included. Among them, hot air drying is preferable from the viewpoint of drying efficiency, and among the hot air dryings, band drying in which hot air drying is performed on a ventilation belt is more preferable.
  • the drying temperature (temperature of hot air) in the hot air drying is preferably from 120 to 250 ° C, more preferably from 150 to 200 ° C, from the viewpoint of the color tone and drying efficiency of the water-absorbent resin.
  • the drying conditions other than the above-mentioned drying temperature such as the wind speed of the hot air and the drying time, may be appropriately set according to the water content and the total weight of the particulate hydrogel to be dried and the amount of the target resin solids. Good. For example, when performing band drying, various conditions described in WO 2006/100300, WO 2011/025012, WO 2011/025013, WO 2011/111657 and the like are appropriately applied. Applied.
  • the CRC water absorption ratio
  • Ext water-soluble component
  • the dried polymer obtained in the drying step is pulverized (pulverizing step), and adjusted to a predetermined particle size (classifying step) to reduce the water-absorbent resin particles.
  • This is the step of obtaining.
  • the dry polymer obtained in the drying step is out of the following particle size, it is preferable to perform this step at least before the surface crosslinking step.
  • Examples of equipment used in the pulverizing step of one embodiment of the present invention include a high-speed rotary pulverizer such as a roll mill, a hammer mill, a screw mill, and a pin mill; a vibration mill, a knuckle type pulverizer, a cylindrical mixer, and the like. It is used together if necessary.
  • a high-speed rotary pulverizer such as a roll mill, a hammer mill, a screw mill, and a pin mill
  • a vibration mill such as a knuckle type pulverizer, a cylindrical mixer, and the like. It is used together if necessary.
  • the classification step of one embodiment of the present invention is not particularly limited, and includes, for example, a sieve classification and an airflow classification.
  • the particle size of the water-absorbent resin particles obtained in this step is, as a weight average particle size (D50), usually 100 to 2000 ⁇ m, preferably 200 to 600 ⁇ m, more preferably 200 to 550 ⁇ m, further preferably 250 to 500 ⁇ m, and particularly preferably. Is 350 to 450 ⁇ m. Further, the ratio of the water-absorbent resin particles having a particle diameter of less than 150 ⁇ m to the entire water-absorbent resin particles obtained in this step is preferably 10% by weight or less, more preferably 5% by weight or less, and still more preferably 1% by weight. It is as follows.
  • the ratio of the water-absorbent resin particles having a particle diameter of 850 ⁇ m or more to the entire water-absorbent resin particles obtained in this step is preferably 5% by weight or less, more preferably 3% by weight or less, and still more preferably 1% by weight. It is as follows.
  • the lower limit of the ratio of the water-absorbing resin particles is preferably as small as possible in each case, and 0% by weight is desired, but may be about 0.1% by weight.
  • the logarithmic standard deviation ( ⁇ ) of the particle size distribution of the water-absorbent resin particles is preferably 0.20 to 0.50, more preferably 0.25 to 0.40, and still more preferably 0.27 to 0.35. is there.
  • the particle size of the water-absorbent resin particles is measured using a standard sieve according to the measurement method disclosed in US Pat. No. 7,638,570 and EDANA@ERT420.2-02.
  • the water-absorbent resin powder is preferably subjected to a surface cross-linking treatment (surface cross-linking step) as described later so as to maintain the particle diameter and the particle size distribution in the above ranges. More preferably, the particle size is adjusted.
  • the production method according to one embodiment of the present invention relates to a method for preparing a water-absorbent resin particle having a concentration of 5% by weight or more at the time of surface crosslinking or after surface crosslinking in a fluidized bed mixer. Spraying step. That is, the production method according to one embodiment of the present invention includes a step of surface-crosslinking the water-absorbent resin particles with an organic surface crosslinking agent. Hereinafter, this step is also referred to as “surface crosslinking step”.
  • Surface cross-linking means providing a portion having a higher cross-linking density in the surface layer of the water-absorbent resin particles (near the surface, usually about several tens of ⁇ m from the surface of the water-absorbent resin particles).
  • a portion having a high crosslinking density can be formed by radical crosslinking on the surface, surface polymerization, a crosslinking reaction with a surface crosslinking agent, or the like.
  • the surface cross-linking in one embodiment of the present invention intends surface cross-linking with an organic surface cross-linking agent that covalently bonds to a functional group of the water-absorbent resin.
  • the procedure of this step is not particularly limited as long as the water-absorbent resin particles can be surface-crosslinked using an organic surface crosslinking agent, and includes, for example, the following procedures (I) and (II).
  • Surface cross-linking with an organic surface cross-linking agent includes surface cross-linking polymerization with a polymerizable monomer and covalent bonding with a functional group of the water-absorbing resin.
  • surface cross-linking with an organic surface cross-linking agent capable of ionic bonding may be mentioned.
  • the organic surface cross-linking agent of one embodiment of the present invention is preferably an organic cross-linking agent capable of forming a cross-linked structure through a covalent bond reaction with a functional group, particularly a carboxyl group, of the water-absorbing resin.
  • a functional group particularly a carboxyl group
  • the following organic crosslinking agents are used.
  • Polyamine compounds such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine and polyethyleneimine (crosslinked by amidation with COOH of a water-absorbent resin), and inorganic or organic salts thereof (for example, azetidinium) Salt, etc.); Polyvalent isocyanate compounds such as 2,4-tolylene diisocyanate and hexamethylene diisocyanate; Polyvalent oxazoline compounds such as 1,2-ethylenebisoxazoline; Carbonic acid derivatives such as urea, thiourea, guanidine, dicyandiamide, 2-oxazolidinone; 1,3-dioxolan-2-one, 4-methyl-1,3-dioxolan-2-one, 4,5-dimethyl-1,3-dioxolan-2-one, 4,4-dimethyl-1,3- Dioxolan-2-one
  • the amount of the organic surface cross-linking agent used depends on the compound to be used and the combination thereof, but is preferably in the range of 0.001 to 10 parts by weight, more preferably 0.01 to 5 parts by weight, per 100 parts by weight of the water-absorbing resin particles. More preferably, it is in the range of parts by weight.
  • the organic surface crosslinker can be used dissolved in water (ie, as an organic surface crosslinker aqueous solution).
  • the amount of the water is preferably 0.5 to 20 parts by weight, more preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the water-absorbent resin particles.
  • a hydrophilic organic solvent may be used in addition to water.
  • the effect of the present invention is not impaired, for example, 0 to 10 parts by weight, preferably 0 to 5 parts by weight per 100 parts by weight of the water-absorbent resin particles.
  • the water-insoluble fine particle powder, the surfactant, and the like may coexist in a weight part, more preferably 0 to 1 weight part.
  • the surface cross-linking of the water absorbent resin with a polyvalent metal salt is not excluded.
  • a water-soluble polyvalent metal salt is added in the surface treatment step separately from the polyvalent metal salt as a surface crosslinking agent.
  • non-cross-linkable water-soluble inorganic bases preferably, alkali metal salts, ammonium salts, alkali metal hydroxides, and ammonia or water thereof) Oxide
  • a non-reducing alkali metal salt pH buffer preferably hydrogen carbonate, dihydrogen phosphate, hydrogen phosphate, etc.
  • the amount of these used depends on the type and particle size of the water-absorbing resin particles, but is preferably 0.005 to 10 parts by mass, more preferably 0.05 to 5 parts by mass per 100 parts by mass of the solid content of the water-absorbing resin particles. Parts by mass are more preferred.
  • the method for mixing the water-absorbing resin particles and the organic surface cross-linking agent is not particularly limited. For example, a method of immersing the water-absorbing resin particles in a hydrophilic organic solvent and mixing the organic surface cross-linking agent aqueous solution, And a method in which an aqueous solution of an organic surface crosslinking agent is sprayed or dropped and mixed.
  • the mixing device used for mixing the water-absorbent resin particles and the aqueous solution of the organic surface cross-linking agent has a large mixing force in order to uniformly and surely mix these substances.
  • the mixing device include a cylindrical mixer, a double-walled conical mixer, a high-speed stirring mixer, a V-shaped mixer, a ribbon mixer, a screw mixer, a double-arm kneader, and a pulverizer.
  • a kneader, a rotary mixer, an air-flow mixer, a turbulizer (trademark), a batch Ploughshare (trademark) mixer, a continuous Ploughshare (trademark) mixer, a Schugi (trademark) mixer, a fluidized bed mixer, and the like are preferable. .
  • a heating step of heating a mixture of the water-absorbent resin particles and the aqueous solution of the organic surface cross-linking agent The water-absorbent resin particles after mixing the organic surface cross-linking agent are heated to promote surface cross-linking.
  • the heating temperature is in the range of 40 to 300 ° C, preferably 120 to 250 ° C, more preferably 150 to 250 ° C.
  • the heat treatment time is preferably from 1 minute to 2 hours, more preferably from 5 minutes to 1 hour.
  • the heat treatment can be performed using a usual dryer or heating furnace. When the heat treatment temperature is lower than 40 ° C., the absorption characteristics such as the absorption capacity under pressure may not be sufficiently improved. When the heat treatment temperature exceeds 300 ° C., the water-absorbent resin particles may be deteriorated, and various performances may be reduced.
  • Apparatuses used for heating the mixture of the water-absorbent resin particles and the aqueous solution of the organic surface cross-linking agent include, for example, a drum dryer, a paddle dryer, a fluidized-bed dryer, A band dryer and the like can be mentioned. Among these, a paddle dryer is preferable from the viewpoint of stirring power.
  • the surface cross-linking step in one embodiment of the present invention includes a method in which a treatment liquid containing a radically polymerizable compound is added to water-absorbent resin particles, and then the surface is cross-linked by irradiation with active energy. Further, a surfactant may be added to the treatment liquid, and the surface of the water-absorbent resin particles may be cross-linked by irradiation with active energy.
  • the surface-crosslinked water-absorbent resin particles usually have a water absorption capacity under pressure in a preferred range described later. That is, the surface-crosslinked water-absorbent resin particles usually have an AAP (0.7 psi) of 15 g / g or more when the CRC is 25 g / g or more.
  • the production method according to one embodiment of the present invention may further include (III) a step of cooling the water-absorbent resin particles.
  • this step is also referred to as a “cooling step”.
  • the cooling step is preferably performed after the heating in the surface crosslinking step from the viewpoint of stopping the progress of the extraneous surface crosslinking reaction and improving the handleability of the powder (water-absorbent resin powder).
  • the water-absorbent resin particles that have been heated to a high temperature in the surface cross-linking step are brought into contact with a cooling medium such as cold air or a cooling transfer surface to be forcibly cooled.
  • the cooling temperature is preferably 30 to 100 ° C, more preferably 40 to 80 ° C. If the cooling temperature is too low, the powder properties of the water-absorbent resin powder may be deteriorated, or the physical properties of the water-absorbent resin powder may be reduced.
  • the “cooling temperature” means the temperature of the cool air when using cool air, and the temperature of the transfer surface when using a cooling transfer surface. Further, when both the cold air and the cooling transmission surface are used, it is preferable that the temperature is intended, and both of them satisfy the above range.
  • the cooling time is preferably 1 minute to 1 hour, more preferably 5 minutes to 40 minutes.
  • the apparatus used in this step includes, for example, a paddle dryer, a fluidized bed dryer, a pneumatic transport device, a band dryer and the like.
  • the paddle dryer uses a refrigerant
  • the fluidized bed dryer and the band dryer use cold air.
  • Step 2-7 Surface Treatment Step
  • the water-soluble polyvalent metal salt aqueous solution is sprayed on the water-absorbent resin particles or the water-soluble polyvalent metal salt particles are added to the surface of the water-absorbent resin particles in the fluidized bed mixer.
  • This is a step of adhering water-soluble polyvalent metal salt particles to the surface and treating the surface of the water-absorbing resin particles.
  • the production method (1) is a method for producing a water-absorbent resin powder which is surface-crosslinked with an organic surface crosslinking agent and contains a water-soluble polyvalent metal salt. Then, a polyvalent metal salt aqueous solution having a polyvalent metal salt concentration of 5% by weight or more is mixed with a water-absorbent resin powder particle (preferably a surface-crosslinked water-absorbent resin particle) at the time of surface crosslinking or after surface crosslinking in a fluidized bed mixer. ), Wherein the air temperature at the spray position of the aqueous polyvalent metal salt solution is 50 ° C. or higher. Further, in the production method (1) according to one embodiment of the present invention, preferably, the water-absorbent resin particles after the surface cross-linking are simultaneously performed in the fluidized bed mixer.
  • the step of spraying the aqueous polyvalent metal salt solution onto the water-absorbing resin particles at the time of surface crosslinking or after the surface crosslinking is also referred to as “spraying step”.
  • "spraying the polyvalent metal salt aqueous solution onto the water-absorbent resin particles at the time of surface crosslinking” means that when performing surface crosslinking in a fluidized bed mixer, mixing of an organic surface crosslinking agent or organic surface crosslinking. Spraying a polyvalent metal salt aqueous solution simultaneously or separately during the reaction with the agent.
  • a fluidized bed mixer is used as a mixer for the organic surface cross-linking agent to spray a polyvalent metal salt aqueous solution, or a fluidized bed mixer is used as a heating device for water-absorbent resin particles mixed with the organic surface cross-linking agent.
  • an aqueous polyvalent metal salt solution can be separately sprayed using a fluidized bed mixer separately from the organic surface crosslinking agent mixer and heating device.
  • the organic surface cross-linking agent slightly penetrates into the water absorbent resin particles.
  • the organic surface crosslinking agent and the aqueous solution of the polyvalent metal salt are separately sprayed, that is, the organic surface crosslinking is performed.
  • polyvalent metal salt aqueous solution from an addition port different from the addition port of the agent, and it is more preferable to spray the polyvalent metal salt aqueous solution after dropping or spraying the organic surface cross-linking agent on the water absorbent resin particles.
  • a fluidized bed mixer may be used as a cooler in the cooling step to spray an aqueous solution of a polyvalent metal salt.
  • the cooling step is described in “Surface Cross-linking Step” for convenience, the surface cross-linking reaction is substantially completed when the cooling step is performed. This is synonymous with the subsequent spraying of the aqueous polyvalent metal salt solution onto the water-absorbing resin particles.
  • the spraying is preferably performed from the top of the fluidized bed mixer, even if the temperature of the cold air is lower than the preferred temperature range of the surface treatment step of one embodiment of the present invention, the high-temperature water-absorbent resin particles After passing through the layer, if the air temperature at the spray position is within the above range, the present invention can be stably performed.
  • a fluidized bed mixer for forming a fluidized bed a known mixer sold as a fluidized bed dryer / cooler or a fluidized bed granulator can be used.
  • a spray dryer ⁇ Pulvis ⁇ GB series is used in a laboratory scale. (Manufactured by Yamato Scientific Co., Ltd.) can be used.
  • the air temperature at the spraying position is 50 ° C. or higher, preferably 60 ° C. or higher, more preferably 80 ° C. or higher, and further preferably 100 ° C. or higher.
  • the upper limit of the air temperature is preferably 250 ° C. or lower, more preferably 220 ° C., and further preferably 200 ° C. or lower.
  • the “wind temperature at the spray position” is the wind temperature near the spray port, and the wind temperature near the spray port can be measured by a thermometer.
  • the spray port is preferably installed in a space portion in the fluidized bed mixer, it can also be referred to as the temperature of the space portion in the fluidized bed mixer.
  • the solvent component (particularly water) is suitably evaporated from the aqueous solution of the polyvalent metal salt to form a fine water-soluble polyvalent metal salt (in the present specification, “water-soluble polyvalent metal salt”).
  • Metal salt particles can be attached to the surface of the water-absorbent resin powder. That is, before the sprayed aqueous solution of the polyvalent metal salt is absorbed by the water-absorbent resin, the droplets of the aqueous solution of the polyvalent metal salt rapidly dry on the air layer or the surface of the water-absorbent resin in the fluidized-bed mixer. It is presumed that the fine water-soluble polyvalent metal salt adheres to the surface of the water-absorbent resin in a lump, a substantially spherical shape, or a bump.
  • the temperature of the water-absorbent resin particles introduced is preferably 50 to 250 ° C, more preferably 60 to 220 ° C. This temperature is, specifically, in the case of a batch type fluidized bed mixer, the temperature of the water absorbent resin particles immediately before spraying, in the case of a continuous type fluidized bed mixer, in the case of a continuous type fluidized bed mixer, the water absorbent resin particles at a position immediately before the spraying point Intended temperature.
  • the method of spraying the aqueous solution of the polyvalent metal salt is not particularly limited, but it is preferable to use a two-fluid spray from the viewpoint that the size of the droplet to be sprayed is suitable.
  • the spraying of the aqueous solution of the polyvalent metal salt may be performed from the upper part of the fluidized bed mixer, or may be performed from the lower part of the fluidized bed mixer. That is, in the fluidized bed mixer, the spray may be installed at the upper part or may be installed at the lower part. However, from the viewpoint of easy formation of water-soluble polyvalent metal salt particles, it is preferable that the aqueous solution of the polyvalent metal salt is sprayed from above the fluidized bed mixer.
  • a fluidized bed mixer is configured to fluidize water-absorbent resin particles introduced into a lower portion by sending hot air from a lower portion.
  • a fluidized bed mixer is generally used. The top of the mixer is widened to reduce the wind speed.
  • a polyvalent metal salt aqueous solution is sprayed from the upper part of the fluidized bed mixer, in the related art, huge aggregates are easily formed, and there is a possibility that the flow of the water absorbent resin particles may be stopped. Thus, the flow of the water-absorbent resin particles can be maintained.
  • the solvent component of the polyvalent metal salt aqueous solution evaporates in the process until the polyvalent metal salt aqueous solution reaches the water-absorbing resin particles. It is considered that solid water-soluble polyvalent metal salt particles are easily formed (precipitated) on the surface of the conductive resin particles.
  • the solvent component of the polyvalent metal salt aqueous solution does not evaporate, and the polyvalent metal salt aqueous solution immediately contacts the water-absorbing resin particles. It is considered that water-soluble polyvalent metal salt particles are hardly formed.
  • the amount of the water-soluble polyvalent metal salt in the aqueous polyvalent metal salt solution is preferably 0.01 to 1 part by weight, preferably 0.05 to 0.1 part by weight, per 100 parts by weight of the surface-crosslinked water-absorbing resin particles. More preferably, it is 5 parts by weight.
  • the ratio of the water-soluble polyvalent metal salt is in the above range, a water-absorbent resin powder having excellent liquid permeability can be obtained.
  • the water-soluble polyvalent metal salt is intended to mean a salt of a metal having a valence of 2 or more, preferably 3 or more, especially trivalent or tetravalent.
  • Water-soluble is intended to dissolve 5% by weight or more in water at 20 ° C, where the solubility is calculated without water of crystallization (eg, an aqueous solution of aluminum sulfate 18-hydrate is aluminum sulfate). Calculated as concentration).
  • a water-soluble polyvalent metal salt having a solubility of 11% by weight or more, further 15% by weight or more, particularly 20% by weight or more is preferably applied in one embodiment of the present invention.
  • the “water-soluble polyvalent metal salt” is simply referred to as “polyvalent metal salt”.
  • a salt or hydroxide of a polyvalent metal cation is intended, and in particular, an organic acid salt or an inorganic acid salt of a polyvalent metal, Includes aluminum chloride, polyaluminum chloride, aluminum sulfate, aluminum nitrate, potassium aluminum bisulfate, sodium aluminum bisulfate, potassium alum, ammonium alum, sodium alum, sodium aluminate, calcium chloride, calcium nitrate, magnesium chloride, magnesium sulfate , Magnesium nitrate, zinc chloride, zinc sulfate, zinc nitrate, zirconium chloride, zirconium sulfate, zirconium nitrate, and the like.
  • Part of the polyvalent metal salt may be a hydroxide, that is, a basic salt. Further, it is preferable to use salts having these waters of crystallization.
  • polyvalent metals such as aluminum, magnesium, calcium, zinc, zirconium and organic acids (for example, anisic acid, benzoic acid, formic acid, valeric acid, citric acid, glyoxylic acid, glycolic acid, glutaric acid, Succinic acid, tartaric acid, lactic acid, fumaric acid, propionic acid, 3-hydroxypropionic acid, malonic acid, imidinoacetic acid, malic acid, isethionic acid, adipic acid, oxalic acid, salicylic acid, gluconic acid, sorbic acid, p-oxybenzoic acid Etc.) can be exemplified.
  • water-soluble aluminum salts (aluminum compounds).
  • aluminum chloride, polyaluminum chloride, and aluminum sulfate are preferable from the viewpoint of being easily adjusted to the concentration of the polyvalent metal salt of one embodiment of the present invention.
  • Aluminum nitrate, potassium aluminum bisulfate, sodium aluminum bisulfate, potassium alum, ammonium alum, sodium alum, sodium aluminate are preferred, aluminum sulfate is particularly preferred, aluminum sulfate 18 hydrate, aluminum sulfate 14-18 hydrate, etc.
  • Hydrous crystalline powder can be most preferably used. These may be used alone or in combination of two or more.
  • the concentration of the polyvalent metal salt in the aqueous solution of the polyvalent metal salt is preferably 5% by weight or more, more preferably 11% by weight or more, further preferably 15% by weight or more, and more preferably 20% by weight.
  • the above is particularly preferred.
  • the upper limit of the concentration is intended to be a saturated concentration, and is preferably 40% by weight or less, more preferably 30% by weight or less. The higher the concentration, the easier it is to form massive polyvalent metal salt particles on the surface of the water-absorbent resin particles. However, if the concentration is excessively high, manufacturing problems such as clogging of the spray nozzle and an increase in viscosity are likely to occur.
  • the temperature of the aqueous solution of the polyvalent metal salt to be added may be room temperature, and may be appropriately cooled or heated to, for example, 0 to 100 ° C. in order to adjust the mixing property and solubility.
  • an organic acid (salt) may be sprayed with the same solution or another solution simultaneously with the aqueous polyvalent metal salt solution.
  • an organic acid (salt) it is possible to prevent the polyvalent metal salt (for example, aluminum ion) from penetrating inside the water-absorbing resin particles, and to uniformly diffuse the polyvalent metal salt particles on the surface of the water-absorbing resin particles.
  • the liquid permeability of the water-absorbent resin particles is greatly improved.
  • the organic acid (salt) the problem that the metal component adheres to the surface of the water-absorbent resin particles in a planar and non-uniform manner as in the related art can be solved. It is possible to exhibit an effect that fine dots can be uniformly attached (localized) to the entire vicinity of the surface of the resin particles.
  • the organic acid (salt) may be directly mixed with the water-absorbing resin particles, but is preferably mixed with the polyvalent metal salt. It is more preferable to mix both the organic acid (salt) and the polyvalent metal salt as an aqueous solution, and it is particularly preferable to mix the organic acid (salt) and the polyvalent metal salt as a common aqueous solution.
  • organic acid examples include anisic acid, benzoic acid, formic acid, valeric acid, citric acid, glyoxylic acid, glycolic acid, glutaric acid, succinic acid, tartaric acid, lactic acid, fumaric acid, propionic acid, and 3-hydroxypropion. Acids, malonic acid, imidinoacetic acid, malic acid, isethionic acid, adipic acid, oxalic acid, salicylic acid, gluconic acid, sorbic acid, p-oxybenzoic acid, and alkali metal salts such as sodium and potassium or ammonium salts thereof.
  • hydroxycarboxylic acids such as glycolic acid, tartaric acid, lactic acid, 3-hydroxypropionic acid, malic acid, salicylic acid, and gluconic acid, and alkali metal salts and ammonium salts thereof are preferable. These may be used alone or in combination of two or more.
  • the amount of the organic acid (salt) to be used is at most within twice the number of moles of the polyvalent metal salt, preferably within one time, more preferably within 0.5 times. If the amount of the organic acid (salt) used is too large, troubles in production such as clogging of the spray nozzle and increase in viscosity are likely to occur.
  • the method for producing a water-absorbent resin powder according to one embodiment of the present invention can be carried out by a method other than the above-mentioned spraying step.
  • the invention (2) of the present application is a method for producing a water-absorbent resin powder surface-crosslinked with an organic surface crosslinker and containing a water-soluble polyvalent metal salt.
  • a method for producing a water-absorbent resin powder which comprises adding water-soluble polyvalent metal salt particles having a volume average particle diameter of 0.3 to 15 ⁇ m as measured by a laser diffraction / scattering method.
  • a polyvalent metal salt aqueous solution is formed into water-soluble polyvalent metal salt particles by a spray drying method or an azeotropic dehydration method, it can be added to the water-absorbing resin particles.
  • a water-absorbing resin powder having substantially spherical water-soluble polyvalent metal salt particles attached thereto is obtained.
  • the amount of the polyvalent metal salt used is preferably in the same range as that described in the spraying step.
  • the volume average particle diameter of the water-soluble polyvalent metal salt particles measured by the laser diffraction / scattering method is preferably 0.3 to 15 ⁇ m, more preferably 0.3 to 10 ⁇ m, and further preferably 0.3 to 5 ⁇ m. preferable.
  • a measuring solvent is appropriately selected so that the water-soluble polyvalent metal salt particles do not dissolve.
  • the volume average particle diameter is measured after applying ultrasonic vibration to the measurement solvent to which the water-soluble polyvalent metal salt particles are added.
  • the amount of the water-soluble polyvalent metal salt particles on the standard sieve having a mesh size of 45 ⁇ m is preferably 10% by weight or less, more preferably 5% by weight or less, based on the total measured water-soluble polyvalent metal salt particles. And more preferably 1% by weight or less.
  • Water-soluble polyvalent metal salt particles having the above volume average particle diameter are added to the water-absorbent resin particles with respect to the water-absorbent resin particles surface-crosslinked with the organic surface cross-linking agent.
  • the shape of the water-soluble polyvalent metal salt particles is preferably substantially spherical. However, the water-soluble polyvalent metal salt particles may slightly aggregate within the range of the volume average particle diameter. The closer the shape of the water-soluble polyvalent metal salt particles to be added to a sphere, the better the flowability of the water-absorbent resin powder.
  • the shape of the water-soluble polyvalent metal salt particles can be confirmed by taking a scanning electron microscope (SEM) photograph of the water-soluble polyvalent metal salt particles at a magnification of 2000 times and performing image analysis of the photograph.
  • SEM scanning electron microscope
  • water-soluble polyvalent metal salt particles When adding the water-soluble polyvalent metal salt particles to the water-absorbing resin particles, they may be dry-blended or may be added together with the organic solvent.
  • volatile alcohols such as methanol, ethanol, propanol, and isopropyl alcohol
  • polyhydric alcohols such as ethylene glycol, propylene glycol, butanediol, and glycerin
  • room temperature such as diethylene glycol, triethylene glycol, and polyethylene glycol having a molecular weight of 200 to 600
  • It can be added together with an organic solvent such as liquid polyethylene glycol.
  • the amount of the organic solvent to be used is preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight, based on 100 parts by weight of the water-absorbing resin particles.
  • water may be contained in these organic solvents. Since the dry-blended water-soluble polyvalent metal salt particles are easily peeled off from the water-absorbing resin powder, the above-mentioned solvent is preferably added after the dry-blending.
  • a known mixer is used for adding the water-soluble polyvalent metal salt particles to the water-absorbent resin particles, and the apparatus is not particularly limited.
  • a vertical type, a horizontal type, and an obliquely-oriented stirring mixer or a fluidized bed mixer can be used.
  • mixing during pneumatic transport is also possible.
  • a mixer equipped with a mechanism for loosening aggregates and a heating mechanism for drying is preferable.
  • Specific examples include a paddle dryer, a steam tube dryer, a drum dryer, a fluidized-bed dryer, and a screw-type mixer or kneader equipped with a heating jacket.
  • additives can be added to the water-absorbent resin particles or the water-absorbent resin powder.
  • examples include chelating agents, oxidizing agents, reducing agents, cationic polymers, hydrophilic polymers, ⁇ -hydroxycarboxylic acids, surfactants, water-insoluble inorganic fine particles, fragrances, deodorants, antibacterial agents and the like.
  • the use amount (addition amount) of the additive is not particularly limited because it is appropriately determined according to its use, but is preferably 3 parts by weight or less based on 100 parts by weight of the water-absorbent resin particles or the water-absorbent resin powder. , More preferably 1 part by weight or less.
  • Examples of the form of the additive at the time of the addition include a powder, a liquid, a solution, and a dispersion liquid. It is preferably added before the step.
  • the cationic polymer and / or the water-insoluble inorganic fine particles is added to the water-absorbent resin particles or the water-absorbent resin powder in one embodiment of the present invention. It is preferred to use.
  • the above-mentioned cationic polymer is a cationic polymer having an amino group, and further is a water-soluble cationic polymer, and is preferably a water-soluble cationic polymer that dissolves in water at 25 ° C. in an amount of 2% by weight or more, more preferably 5% by weight or more. It is a polymer.
  • polyalkyleneimines such as polyethyleneimine, polyetherpolyamine, polyetheramine, polyvinylamine, polyalkylamine, polyallylamine, polydiallylamine, poly (N-alkylallylamine), monoallylamine-diallylamine copolymer, N-alkyl Allylamine-monoallylamine copolymer, monoallylamine-dialkyldiallylammonium salt / copolymer, diallylamine-dialkyldiallylammonium salt / copolymer, polyethylene polyamine, polypropylene polyamine, polyamidine and the like; and salts thereof are preferred.
  • a modified cationic polymer described in WO 2009/041727 is more preferably mentioned.
  • the water-insoluble inorganic fine particles preferably have an average particle size measured by a Coulter counter method in the range of preferably 0.001 to 200 ⁇ m, more preferably 0.005 to 50 ⁇ m, and still more preferably 0.01 to 10 ⁇ m. It is.
  • the water-insoluble inorganic fine particles are preferably hydrophilic fine particles, for example, a metal oxide such as silica (silicon dioxide) or titanium oxide, zinc and silicon, or a composite hydrate containing zinc and aluminum (for example, WO 2005/010102), silicic acid (salt) such as natural zeolite and synthetic zeolite, kaolin, talc, clay, bentonite, calcium phosphate, barium phosphate, silicic acid or a salt thereof, clay, diatomaceous earth, silica gel, zeolite, Examples include bentonite, hydroxyapatite, hydrotalcite, vermiculite, perlite, isolite, activated clay, quartz sand, quartzite, strontium ore, fluorite, and bauxite.
  • a metal oxide such as silica (silicon dioxide) or titanium oxide, zinc and silicon, or a composite hydrate containing zinc and aluminum (for example, WO 2005/010102)
  • silicon dioxide and silicic acid (salt) are more preferred, and silicon dioxide is even more preferred.
  • the silicon dioxide is preferably fumed silica or colloidal silica, and is preferably colloidal silica in view of the balance of water absorption properties.
  • the amount used is preferably 0.001 to 1 part by weight based on 100 parts by weight of the water-absorbing resin particles or water-absorbing resin powder, and if water-insoluble inorganic fine particles are used, the amount used is Is preferably 0.001 to 1 part by weight based on 100 parts by weight of the water-absorbent resin particles or the water-absorbent resin powder.
  • the amount of the cationic polymer and / or the water-insoluble inorganic fine particles used can also be referred to as the content of the cationic polymer and / or the water-insoluble inorganic fine particles in the water-absorbent resin powder.
  • a surfactant so that the water-soluble polyvalent metal salt particles attached to the surface of the water-absorbent resin powder do not peel off due to friction or the like.
  • a surfactant it is preferably used in an amount of 0.0001 to 0 parts by weight based on 100 parts by weight of the water-absorbent resin particles or the water-absorbent resin powder in order to prevent a decrease in the physical properties of the water-absorbent resin powder during water absorption. 0.1 part by weight.
  • the amount of the surfactant used can also be referred to as the content of the surfactant in the water-absorbent resin powder.
  • the surface tension of the extract is preferably 60 to 75 mN / m, more preferably 65-72 mN / m.
  • the above-mentioned surface tension usually shows about 71 to 75 mN / m.
  • the water-absorbent resin of the present invention preferably contains a chelating agent from the viewpoint of preventing coloration with time and preventing urine deterioration.
  • a chelating agent of the present invention from the viewpoint of the effect, a polymer compound or a non-polymer compound, among which a non-polymer compound is preferable, specifically, an amino polycarboxylic acid, an organic polyphosphoric acid, and an inorganic polyvalent phosphoric acid Compounds selected from are preferred.
  • the molecular weight of the chelating agent is preferably from 100 to 5,000, more preferably from 200 to 1,000. In the absence of a chelating agent, the resulting water-absorbent resin is inferior in coloration and deterioration.
  • polyvalent has a plurality of such functional groups in one molecule, and has 2 to 30, more preferably 3 to 20, especially 4 to 10 such functional groups.
  • these chelating agents are preferably water-soluble chelating agents, specifically, water-soluble chelating agents that dissolve in an amount of 1 g or more, more preferably 10 g or more in 100 g (25 ° C.) of water.
  • amino polycarboxylic acid examples include imino diacetic acid, hydroxyethyl imino diacetic acid, nitrilotriacetic acid, nitrilotripropionic acid, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraminehexaacetic acid, trans-1,2-diaminocyclohexane.
  • Tetraacetic acid N, N-bis (2-hydroxyethyl) glycine, diaminopropanol tetraacetic acid, ethylenediamine dipropionic acid, hydroxyethylenediamine triacetic acid, glycol ether diamine tetraacetic acid, diaminopropane tetraacetic acid, N, N'-bis (2 -Hydroxybenzyl) ethylenediamine-N, N'-diacetic acid, 1,6-hexamethylenediamine-N, N, N ', N'-4acetic acid and salts thereof, among which diethylenetriaminepentaacetic acid (salt) Or or trietile Tetramine 6 acetate (salt) are more preferable, diethylenetriaminepentaacetic acid (salt) is more preferable.
  • organic polyvalent phosphoric acid examples include ethylenediamine-N, N'-di (methylenephosphinic acid), ethylenediaminetetra (methylenephosphinic acid), cyclohexanediaminetetra (methylenephosphonic acid), ethylenediamine-N, N'-diacetate-N , N'-di (methylenephosphonic acid), ethylenediamine-N, N'-di (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), polymethylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid)
  • amino polyvalent phosphoric acids such as dinitrometic acid-di (methylenephosphinic acid), nitriloacetic acid- (methylenephosphinic acid), nitriloacetic acid- ⁇ -propionic acid-methylenephosphonic acid, and nitrilotris (methylenephosphonic acid).
  • examples of the inorganic polyvalent phosphoric acid include pyrophosphoric acid, tripolyphosphoric acid, and salts thereof.
  • ethylenediaminetetra (methylenephosphonic acid) (salt) is preferable.
  • the amount of the chelating agent is 0.0001 part by weight or more, 0.001 part by weight or more, 0.01 part by weight or more, and 0.02 part by weight or more with respect to 100 parts by weight of the water absorbent resin.
  • an oxidizing agent and / or a reducing agent in the water-absorbent resin of the present invention after the polymerization step from the viewpoints of reducing residual monomers and preventing coloring.
  • the oxidizing agent of the present invention include persulfates such as ammonium persulfate, sodium persulfate and potassium persulfate; organic peroxides such as t-butyl peroxide and benzoyl peroxide; hydrogen peroxide; chlorate; Salt, chlorite, hypochlorite and the like can be mentioned. Of these, persulfates are preferred from the viewpoint of reducing residual monomers.
  • These oxidizing agents may be used alone or in combination of two or more.
  • sulfites eg, sodium sulfite, potassium sulfite, ammonium sulfite, etc.
  • bisulfites eg, sodium bisulfite, potassium bisulfite, ammonium bisulfite, etc.
  • pyrosulfite dithionite Acid, trithionate, tetrathionate, thiosulfate, sulfinatoacetic acid derivatives such as 2-hydroxy-2-sulfinatoacetic acid, dimethyl sulfoxide, thiourea dioxide, nitrite, nitrogen such as amino acids and ethanolamine Organic compounds, phosphites, hypophosphites, and the like.
  • a sulfur-based inorganic reducing agent particularly, a sulfite, a hydrogen sulfite, a pyrosulfite, and a dithionite are preferable, and as such salts, a sodium salt, a potassium salt, and an ammonium salt are preferable. Among them, sodium sulfite and sodium hydrogen sulfite are particularly preferable. These reducing agents may be used alone or in combination of two or more.
  • the amount of the oxidizing agent or the reducing agent is 0.0001 parts by weight or more, 0.001 parts by weight or more, 0.01 parts by weight or more, 0.02 parts by weight or more with respect to 100 parts by weight of the water absorbent resin. 0.03 parts by weight or more, 0.05 parts by weight or more, preferably 0.06 parts by weight or more, preferably 3 parts by weight or less, 1 part by weight or less, 0.7 parts by weight or less, and preferably 0.5 parts by weight or less. .
  • a sizing step in addition to the above-described steps, a fine powder removing step, a fine powder reusing step, and the like can be provided as necessary. Further, one or more steps such as a transport step, a storage step, a packing step, and a storage step may be further included.
  • the sizing step includes a step of classifying and removing the fine powder after the heat treatment step and a step of classifying and pulverizing when the water-absorbent resin aggregates and exceeds a desired size.
  • the step of reusing the fine powder includes a step of adding the fine powder as it is or a large hydrogel in the fine powder granulation step and adding it in any step of the process of producing the water absorbent resin.
  • the present invention also relates to a water absorbent resin powder which is surface-crosslinked with an organic surface crosslinking agent and contains a water-soluble polyvalent metal salt.
  • a water-absorbent resin powder to which water-soluble polyvalent metal salt particles having a diameter of 0.3 to 15 ⁇ m (SEM image analysis) are attached.
  • Adhesion of water-soluble polyvalent metal salt particles refers to a state in which solids of water-soluble polyvalent metal salt particles are three-dimensionally present on the surface of a water-absorbent resin. The valent metal salt is present on the surface of the water-absorbent resin powder.
  • At least one polyvalent metal salt particle having a number average particle diameter of 0.3 to 15 ⁇ m adheres to one water-absorbent resin on average, preferably 10 or more, and more preferably 100 or more. It is preferred that more than one are attached.
  • SEM image analysis means analysis on an image acquired using a scanning electron microscope.
  • the number average particle size of the water-soluble polyvalent metal salt particles was randomly selected from 20 water-soluble polyvalent metal particles observed at a magnification of 2,000 under a scanning electron microscope.
  • the diameter is measured with a ruler, the measured value is corrected by the observation magnification of a microscope, and the average value of the corrected measured values is calculated.
  • the minimum Feret diameter is regarded as the particle diameter.
  • the number average particle diameter of the water-soluble polyvalent metal salt particles is 0.3 to 15 ⁇ m, preferably 0.3 to 10 ⁇ m, more preferably 0.3 to 5 ⁇ m.
  • the volume average particle diameter is preferably 0.3 to 15 ⁇ m, more preferably 0.3 to 10 ⁇ m, and 0.3 to 10 ⁇ m. 5 ⁇ m is more preferred.
  • the water-soluble polyvalent metal salt particles are preferably close to a circle in an SEM image, and more preferably a circle.
  • the powder flowability of the water-soluble polyvalent metal salt particles is improved as the particles become closer to a circle in the SEM image.
  • the circular shape means a graphic having a circularity of 0.8 or more.
  • the degree of circularity means that in each of the water-soluble polyvalent metal salt particles, the total length of the outer periphery in the shape when the water-soluble polyvalent metal salt particles are observed from a certain direction is L, and the area in the shape is S. Is a value obtained by the following equation (2).
  • the coating area of the water-soluble polyvalent metal salt particles is preferably from 0.1 to 50%, more preferably from 0.5 to 20%, based on the area of the water-absorbing resin powder. More preferably, it is 1 to 10%.
  • the coverage area of the water-soluble polyvalent metal salt particles is the total area of all the water-soluble polyvalent metal salt particles that can be confirmed on the water-absorbent resin powder in the SEM image obtained at 2000 times, Is a value obtained by dividing by the area of.
  • the element mapping method include an energy dispersive X-ray spectrometer (EDS) and an electron probe microanalyzer (EPMA).
  • EDS energy dispersive X-ray spectrometer
  • EPMA electron probe microanalyzer
  • the SFC of the water-absorbent resin powder according to one embodiment of the present invention is preferably 10 [10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ] or more, and 30 [10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ].
  • the above is more preferable.
  • the upper limit is not particularly limited as the higher value, it is preferably 500 [10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ] or less, more preferably 200 [10 ⁇ 7 ⁇ ) from the viewpoint of balance with other physical properties. cm 3 ⁇ s ⁇ g ⁇ 1 ] or less.
  • the CRC of the water-absorbent resin powder according to one embodiment of the present invention is preferably 25 g / g or more, and more preferably 27 g / g or more.
  • the upper limit is not particularly limited as the higher value, but is preferably 50 g / g or less, more preferably 40 g / g, from the viewpoint of balance with other physical properties.
  • the AAP (0.7 psi) of the water-absorbent resin powder according to one embodiment of the present invention is preferably 15 g / g or more, more preferably 20 g / g or more, and even more preferably 24 g / g or more.
  • the upper limit is not particularly limited as the upper limit, but is preferably 30 g / g or less, more preferably 28 g / g or less, from the viewpoint of balance with other physical properties, particularly SFC.
  • the AAP (0.7 psi) is measured according to the EDANA method (ERT442.2-02) by changing the load condition to 4.83 kPa (0.7 psi) as in the examples described later.
  • the moisture-absorbing fluidity of the water-absorbent resin powder according to one embodiment of the present invention is preferably such that when stored at 25 ° C. and a relative humidity of 70% for 1 hour, the moisture-absorbing blocking ratio is 50% by weight or less, and 30% by weight or less. Is more preferable, and the content is more preferably 10% by weight or less.
  • the surface tension when the components of the water-absorbent resin powder according to one embodiment of the present invention are extracted with 0.9% by weight saline is preferably in the range of 60 to 72 mN / m, more preferably 65 to 72 mN / m. m.
  • the water content of the water-absorbent resin powder according to one embodiment of the present invention is 0.1 to 15% by weight. Is preferably 1 to 12% by weight, more preferably 3 to 10% by weight.
  • the water content is controlled by the amount of water evaporated in the drying process and the surface crosslinking process, the amount of water of the aqueous solution of the polyvalent metal salt to be sprayed, the temperature and time of drying (particularly spray drying) in the fluidized bed, and the addition of water. it can.
  • the total amount of the added water is not usually reflected in the water content of the water-absorbing resin particles.
  • the water content of the water-absorbent resin powder is preferably improved.
  • the Ext (water-soluble content) of the water-absorbent resin powder according to one embodiment of the present invention is 50% by weight or less, preferably 35% by weight or less, more preferably 25% by weight or less, and still more preferably 15% by weight. It is as follows.
  • the lower limit is not particularly limited, but is preferably about 0% by weight, more preferably about 0.1% by weight.
  • the Ext is 50% by weight or less, the gel strength does not decrease and the water-absorbing resin powder having excellent liquid permeability is obtained. Furthermore, since it has little rewet, it is suitable as an absorbent for sanitary articles such as paper diapers. Note that Ext can be controlled with an internal crosslinking agent or the like.
  • the L value is preferably 85 or more, more preferably 88 or more, and further preferably 90 or more in the Hunter Lab color system.
  • the upper limit is 100, but if the value is at least 80, no problem occurs due to the color tone.
  • the a value is preferably -3 to 3, more preferably -2 to 2, and even more preferably -1 to 1.
  • the b value is preferably from 0 to 10, more preferably from 0 to 7, and even more preferably from 0 to 5. As the L value approaches 100, the whiteness increases, and as the a value and the b value approach 0, the color becomes low and substantially white.
  • the temporal color tone of the water-absorbent resin powder according to one embodiment of the present invention is, in the Hunter Lab color system, the L value is preferably 70 or more, more preferably 75 or more, still more preferably 80 or more, and particularly preferably 83 or more. is there.
  • the upper limit is 100, but if the value is at least 80, no problem occurs due to the color tone.
  • the a value is preferably -3 to 3, more preferably -2 to 2, and even more preferably -1 to 1.
  • the b value is preferably from 0 to 15, more preferably from 0 to 12, and even more preferably from 0 to 10. As the L value approaches 100, the whiteness increases, and as the a value and the b value approach 0, the color becomes low and substantially white.
  • the water-absorbent resin powder according to one embodiment of the present invention has a smaller change in the color tone over time with respect to the initial color tone, that is, is less likely to be colored, as compared with a conventional water-absorbent resin to which a polyvalent metal salt is added.
  • the initial color tone and the color tone over time are measured in accordance with the color evaluation before and after the color acceleration test described in WO2009 / 005114.
  • Method for producing water-absorbent resin powder 1.
  • a method for producing a water-absorbent resin powder comprising: a spraying step of spraying water-absorbent resin particles at the time of surface cross-linking or after surface cross-linking in an machine, wherein the air temperature at the spray position of the aqueous solution of the polyvalent metal salt is 50 ° C or higher. .
  • a method for producing a water-absorbent resin powder surface-crosslinked with an organic surface crosslinker and containing a water-soluble polyvalent metal salt wherein the water-absorbent resin surface-crosslinked with the organic surface crosslinker is subjected to a laser diffraction / scattering method.
  • a method for producing a water-absorbent resin powder which comprises adding water-soluble polyvalent metal salt particles having a volume average particle diameter of 0.3 to 15 ⁇ m measured in the step.
  • Water absorbent resin powder 10. A water-absorbing resin powder surface-crosslinked with an organic surface cross-linking agent and containing a water-soluble polyvalent metal salt, wherein water-soluble polyvalent metal salt particles adhere to the surface of the water-absorbing resin powder, and A water-absorbent resin powder having a number average particle diameter of the valent metal salt particles of 0.3 to 15 ⁇ m. With such a configuration, the physical properties of the water-absorbing resin are improved.
  • one embodiment of the present invention provides a polyvalent metal salt aqueous solution having a polyvalent metal salt concentration of 5% by weight or more under heating.
  • the present invention relates to a method for producing a water-absorbent resin powder by spraying water-absorbent resin particles onto or after surface cross-linking in a fluidized bed mixer.
  • aqueous solution having a polyvalent metal salt concentration of 5% by weight or more in a fluidized bed mixer under heating,
  • the aqueous solution of the polyvalent metal salt is in a spray-dried state, and the water-soluble polyvalent metal salt is formed into fine aggregates having an average particle diameter of 0.3 to 15 ⁇ m and adheres to the surface of the water-absorbent resin. It is estimated that the property is improved.
  • the polyvalent metal salt aqueous solution is added to the layer of the stirred water-absorbent resin particles, so that the polyvalent metal salt is absorbed by the water-absorbent resin, or The water-absorbent resin is coated by being thinly stretched by contact between the water-absorbent resins.
  • a substantially spherical / lumped solid polyvalent metal salt as shown in FIG. 1 is discontinuously attached to the surface of the water-absorbent resin in a dotted manner.
  • the water-absorbent resin is coated with a polyvalent metal salt, whereas an embodiment of the present invention has a new shape as shown in FIG. Gives water absorbent resin.
  • Patent Documents 1 to 22 do not suggest a method for producing a water-absorbent resin powder and a water-absorbent resin powder according to an embodiment of the present invention.
  • CRC ⁇ Centrifuge holding capacity
  • AAP of the water-absorbent resin powder according to one embodiment of the present invention was measured in accordance with the EDANA method (ERT442.2-02). The load condition was changed to 4.83 kPa (0.7 psi).
  • BR Blocking Ratio
  • the water-absorbent resin powder contained in the aluminum cup was gently transferred onto a JIS standard sieve (the inner diameter of 80 mm) having a mesh size of 2000 ⁇ m, and a low tap sieve shaker (manufactured by Iida Seisakusho Co., Ltd.) ES-65 sieve shaker; 230 rpm, impact 130 rpm), classified for 8 seconds, the weight (i (g)) of the water-absorbent resin powder remaining on the sieve and the water absorption passed through the sieve The weight (j (g)) of the resin powder was measured. Then, the moisture absorption blocking ratio was calculated according to the following equation (3).
  • Moisture absorption blocking ratio (% by weight) ((i (g)) / (i (g) + j (g))) ⁇ 100
  • the surface tension of the extract of the water-absorbent resin powder is a value measured for an extract extracted from the water-absorbent resin powder with a 0.9% by weight aqueous sodium chloride solution. Specifically, 50 mL of a 0.9% by mass aqueous sodium chloride solution (physiological saline) adjusted to 23 ° C. to 25 ° C.
  • the obtained dried polymer is pulverized by a roll mill and classified with a standard sieve having openings of 850 ⁇ m and 150 ⁇ m to obtain water-absorbent resin particles (1) having a particle diameter of 150 to 850 ⁇ m (weight average particle (D50) is 370 ⁇ m). Obtained.
  • the surface cross-linking agent is an organic cross-linking agent that cross-links with a carboxyl group, which is a functional group of the water-absorbent resin particles (1), by a covalent bond (a dehydration reaction between COOH and OH).
  • the surface-crosslinked water-absorbent resin particles (1) thus obtained had a weight average particle (D50) of 380 ⁇ m.
  • Table 1 shows the measurement results of various physical properties of the obtained surface-crosslinked water-absorbent resin particles (1).
  • the surface tension of the extract of the surface-crosslinked water-absorbent resin particles (1) was 70 mN / m.
  • the surface tension of the water-absorbent resin powders obtained in Examples and Comparative Examples performed after Production Example 1 was about 70 mN / m.
  • Example 1 Addition of a polyvalent metal salt aqueous solution having a polyvalent metal salt concentration of 27% by weight under heating]
  • the surface-crosslinked water-absorbent resin particles (1) obtained in Production Example 2 were sprayed with a polyvalent metal salt aqueous solution having a polyvalent metal salt concentration of 27% by weight in a fluidized bed mixer under heating.
  • the water-absorbing resin particles (1) were charged into a fluidized bed mixer (product name; Pulvis GB22, manufactured by Yamato Scientific Co., Ltd.) for forming a fluidized bed, and hot air: 100 ° C., air volume: 0.2 m 3 /
  • the water-absorbent resin particles (1) were heated while flowing under the conditions of min (punching: 8 cm ⁇ , wind speed: 0.66 m / s).
  • water-absorbent resin particles (1) After the temperature of the water-absorbent resin particles (1) and the fluidized bed exhaust temperature reached 80 ° C., 5 g of a 27% by weight aqueous solution of aluminum sulfate (1% by weight based on 100% by weight of the water-absorbent resin particles) was added at a speed of 15 g / min. And sprayed. Furthermore, water-absorbent resin particles (1) were obtained by mixing the water-absorbent resin particles sprayed with the aluminum sulfate aqueous solution in a fluidized bed mixer for 5 minutes. Table 1 shows the measurement results of various physical property values.
  • Example 1 the concentration of the saturated aqueous solution of aluminum sulfate (20 ° C.) is about 50% by weight.
  • Example 1 it is estimated that the aqueous solution of aluminum sulfate is added to the water-absorbent resin particles simultaneously with the spray drying.
  • adhesion of spherical particles of aluminum sulfate hydrate was observed as shown in FIG. Based on the acquired SEM image, the number average particle diameter of aluminum sulfate hydrate was 3 ⁇ m, the coating area was 2% with respect to the area of the water-absorbent resin powder, and the circularity was 0.85.
  • Comparative Example 4 Addition of a polyvalent metal salt aqueous solution having a polyvalent metal salt concentration of 4% by weight at room temperature (change of spray direction)] An attempt was made to produce a water-absorbing resin powder in the same manner as in Comparative Example 1 except that the aqueous solution of aluminum sulfate was sprayed upward from the vicinity of the punching metal, but the flow of the water-absorbing resin particles did not stop. Further, the water-absorbing resin particles sprayed with the aluminum sulfate aqueous solution were mixed for 5 minutes in a fluidized bed mixer to obtain a comparative water-absorbing resin powder (4). Table 1 shows the measurement results of various physical properties of the comparative water absorbent resin powder (4). Observation by SEM showed no particles or lumps of aluminum sulfate hydrate on the surface of the comparative water absorbent resin powder (4).
  • Example 1 an aqueous solution of aluminum sulfate having a polyvalent metal salt concentration of 27% by weight was sprayed in a fluidized bed mixer without using water-absorbing resin particles. As a result, a fine powder of aluminum sulfate hydrate was obtained. . When this fine powder was classified with a sieve having an opening of 45 ⁇ m to remove large aggregates, aluminum sulfate hydrate fine particles having a volume average particle diameter of 4 ⁇ m measured by a laser diffraction / scattering method were obtained.
  • Example 2 To 100 parts by weight of the surface-crosslinked water-absorbent resin particles (1) obtained in Production Example 2, 0.25 part by weight of the aluminum sulfate hydrate obtained in Reference Example 1 was added and mixed. 2) was obtained. Table 1 shows the measurement results of various physical properties of the water-absorbent resin powder (2). Based on the SEM image of the obtained water-absorbent resin powder (2), the number average particle diameter of aluminum sulfate hydrate was 2 ⁇ m.
  • Example 3 A water-absorbent resin powder (3) was obtained in the same manner as in Example 2 except that 0.5 parts by weight of the aluminum sulfate hydrate obtained in Reference Example 1 was added and mixed.
  • Table 1 shows the measurement results of various physical properties of the water-absorbent resin powder (3).
  • a water-absorbent resin powder in the production method of one embodiment of the present invention in which a polyvalent metal salt having a polyvalent metal salt concentration of 5% by weight or more is sprayed under heating, a water-absorbent resin powder can be stably obtained without aggregation. It can be seen that the water-absorbent resin powder has high liquid permeability (SFC) and high hygroscopic fluidity.
  • SFC liquid permeability
  • the comparative example was compared with the comparative water-absorbent resin powder obtained in Comparative Examples 5 and 6, which corresponded to the conventional high liquid permeability and high hygroscopic fluidity technology in which a polyvalent metal salt was added without using a fluidized bed mixer.
  • the water-absorbent resin powders obtained in 1 to 3 are excellent in liquid permeability and hygroscopic fluidity. Furthermore, unlike the water-absorbent resin to which silica or the like is added, the surface-crosslinked water-absorbent resin particles obtained by the production method of one embodiment of the present invention have a water absorption under pressure (AAP) of the surface cross-linked of Production Example 2. It shows a water absorption capacity under pressure almost equivalent to that of the obtained water-absorbent resin particles.
  • AAP water absorption under pressure
  • Example 4 A water-absorbent resin powder (4) was obtained in the same manner as in Example 3, except that the surface-crosslinked water-absorbent resin particles (4) were used. Table 2 shows the measurement results of various physical properties of the water-absorbent resin powder (4).
  • Comparative Example 7 A comparative water-absorbent resin powder (7) was obtained in the same manner as in Comparative Example 5 except that the surface-crosslinked water-absorbent resin particles (4) were used. Table 2 shows the measurement results of various physical properties of the comparative water absorbent resin powder (7).
  • Comparative Example 8 A comparative water-absorbent resin powder (8) was obtained in the same manner as in Comparative Example 6, except that the surface-crosslinked water-absorbent resin particles (4) were used. Table 2 shows the measurement results of various physical properties of the comparative water absorbent resin powder (8).
  • the water-absorbent resin powder (4) of Example 4 also has a low moisture-absorbing blocking ratio and is close to 0% by weight with respect to the comparative water-absorbent resin powder (8) of Comparative Example 8, so that the water-absorbent fluidity is low. Is excellent.
  • a dispersion (1) in which aluminum sulfate hydrate was precipitated and dispersed was obtained by adding 2 parts by weight of a 13.5% by weight aqueous solution of aluminum sulfate to 4 parts by weight of polyethylene glycol (molecular weight: 200) with vigorous stirring.
  • Example 5 To 100 parts by weight of the surface-crosslinked water-absorbent resin particles (1) obtained in Production Example 2, 6 parts by weight of the dispersion (1) obtained in Reference Example 2 was added dropwise while stirring. It was further dried in an oven at 180 ° C. for 30 minutes, and passed through a sieve having openings of 850 ⁇ m to obtain a water-absorbent resin powder (5).
  • Table 3 shows the measurement results of various physical properties of the water-absorbent resin powder (5).
  • the aluminum sulfate hydrate was a slightly elongated polyhedron, and the number average particle diameter was 1 ⁇ m. There was no dust.
  • Example 6 A water-absorbent resin powder (6) was obtained in the same manner as in Example 5, except that 6 parts by weight of the dispersion (2) obtained in Reference Example 3 was added instead of the dispersion (1). Table 3 shows the measurement results of various physical properties of the water-absorbent resin powder (6). In addition, when observed with a SEM image, the shape of aluminum sulfate hydrate was a mixture of spherical and polyhedral, the number average particle diameter was 1 ⁇ m, and the circularity was 0.81. There was no dust.
  • Comparative Example 9 A comparative water absorbent resin (9) was prepared in the same manner as in Example 5, except that an aqueous solution consisting of 4 parts by weight of polyethylene glycol (molecular weight: 200) and 2 parts by weight of deionized water was added instead of the dispersion liquid (1). Obtained. Table 3 shows the measurement results of various physical properties of the comparative water absorbent resin (9).
  • Example 7 Aluminum lactate was ground in a mortar to obtain aluminum lactate particles having a volume average particle diameter of 4 ⁇ m.
  • Table 4 shows the measurement results of various physical properties of the water-absorbent resin powder (7).
  • the water-absorbent resin powder produced by using the present invention is excellent in liquid permeability, so that it can be suitably used for various sanitary materials such as disposable diapers and sanitary napkins, and other various water-absorbent resins.

Abstract

A method for producing a water-absorbing resin powder which has been surface-crosslinked with a substance that is not a water-soluble polyvalent-metal salt and which contains a water-soluble polyvalent-metal salt, the method comprising spraying an aqueous polyvalent-metal salt solution having a polyvalent-metal salt concentration of 5 wt% or higher, with heating in a fluidized-bed mixer, over water-absorbing resin particles which are undergoing or have undergone surface crosslinking. By the production method, a water-absorbing resin powder having excellent liquid permeability can be easily obtained.

Description

吸水性樹脂粉末の製造方法および吸水性樹脂粉末Method for producing water-absorbent resin powder and water-absorbent resin powder
 本発明は、吸水性樹脂粉末の製造方法および吸水性樹脂粉末に関する。 The present invention relates to a method for producing a water-absorbent resin powder and a water-absorbent resin powder.
 紙おむつ、生理用ナプキン、失禁パッド等の衛生材料には、体液を吸収させることを目的として、パルプ等の親水性繊維と吸水性樹脂とをその構成材料とする吸収体が幅広く利用されている。 2. Description of the Related Art For sanitary materials such as disposable diapers, sanitary napkins, incontinence pads, etc., absorbents having hydrophilic fibers such as pulp and a water-absorbing resin as constituent materials are widely used for the purpose of absorbing body fluids.
 近年、これら衛生材料は、高機能かつ薄型化が進み、衛生材料一枚あたりの吸水性樹脂の使用量や、吸水性樹脂と親水性繊維とからなる吸収体全体に対する吸水性樹脂の比率が増加する傾向にある。つまり、嵩比重の小さい親水性繊維を少なくし、吸水性に優れかつかさ比重の大きい吸水性樹脂を多く使用することにより、吸収体中における吸水性樹脂の比率を高め、吸水量を低下させることなく衛生材料の薄型化を図っている。 In recent years, these sanitary materials have become more sophisticated and thinner, and the amount of water-absorbent resin used per sanitary material and the ratio of water-absorbent resin to the entire absorbent body composed of water-absorbent resin and hydrophilic fibers have increased. Tend to. In other words, by reducing the number of hydrophilic fibers having a low bulk specific gravity and using a large amount of a water-absorbent resin having excellent water absorbency and a large bulk specific gravity, the ratio of the water-absorbent resin in the absorber is increased and the water absorption is reduced. Instead of sanitary materials.
 吸収体全体に対する吸水性樹脂の比率が上がるに従って、吸水性樹脂に求められる性能の要求も高まっている。例えば、無加圧下での吸水倍率(CRC)だけでなく、体重がかかった状態でも吸水できるように加圧下での吸水倍率(AAP)が求められたり、ゲルブロッキングを防ぐために通液性(例えば、GBPやSFC)が求められたりする。 (4) As the ratio of the water-absorbent resin to the entire absorber increases, the performance requirements of the water-absorbent resin also increase. For example, not only the water absorption capacity under no pressure (CRC), but also the water absorption capacity under pressure (AAP) so that water can be absorbed even when weight is applied, or liquid permeability (eg, , GBP and SFC).
 また、吸収体の効率的な生産のために、吸水性樹脂の取扱性に対する要求も高まっている。中でも、吸水性樹脂は吸湿性を示すため、湿度によらず粉末としての取扱性が変わらないように、吸湿流動性(別称:anti-caking性)が求められる。 要求 In addition, the demand for handleability of water-absorbent resin is increasing for efficient production of absorbers. Above all, since the water-absorbing resin exhibits hygroscopicity, it is required to have a hygroscopic fluidity (also called anti-caking property) so that the handling property as a powder does not change regardless of humidity.
 これらの要求を満たすために主に吸水性樹脂粒子表面に添加剤を添加する技術が開発されてきた。 技術 Technologies for adding additives mainly to the surface of the water-absorbent resin particles have been developed to satisfy these requirements.
 例えば、通液性の向上のために多価金属塩を用いることが知られており、特許文献1には、吸水性ポリマー粒子に、多価金属塩等の非反応性コーティング剤を連続的方法で流動床反応機中0℃~150℃の範囲で噴霧コーティングさせる段階を含む、吸水性物質の製造方法が開示されている。特許文献2~7には、表面架橋時または表面架橋後の吸水性樹脂に多価金属塩を混合する、通液性(SFC)の向上方法が開示されている。 For example, it is known to use a polyvalent metal salt for improving liquid permeability. Patent Document 1 discloses that a water-absorbing polymer particle is coated with a non-reactive coating agent such as a polyvalent metal salt by a continuous method. A process for spray-coating in a fluidized bed reactor at a temperature in the range of 0 ° C. to 150 ° C. is disclosed. Patent Literatures 2 to 7 disclose methods for improving liquid permeability (SFC) by mixing a polyvalent metal salt with a water-absorbent resin at the time of surface crosslinking or after surface crosslinking.
 表面架橋の改良方法として、特許文献8,9には、流動させながら加熱された吸水性樹脂粒子に気体流を用いて表面架橋剤を混合して表面架橋する、吸水性樹脂の表面架橋方法が開示されている。特許文献10には、流動層を形成しているモノマーに表面架橋剤を噴霧する吸水性樹脂の製造方法が開示されている。特許文献11~13には、流動層混合器で、表面架橋剤と別途添加された吸水性樹脂とを加熱して架橋させる表面架橋方法が開示されている。 As a method for improving surface crosslinking, Patent Literatures 8 and 9 disclose a method for surface crosslinking of a water-absorbent resin, in which a surface-crosslinking agent is mixed with a heated water-absorbent resin particle while flowing using a gas flow to perform surface crosslinking. It has been disclosed. Patent Document 10 discloses a method for producing a water-absorbent resin in which a surface cross-linking agent is sprayed on a monomer forming a fluidized bed. Patent Documents 11 to 13 disclose a surface cross-linking method in which a surface cross-linking agent and a separately added water-absorbent resin are cross-linked by heating in a fluidized bed mixer.
 吸水速度の向上のために、特許文献14~16には、流動層造粒装置中でバインダーを噴霧する吸水性樹脂微粒子の造粒法が開示され、また特許文献17には、多価金属塩水溶液を噴霧する吸水性樹脂組成物が開示されている。さらに特許文献18、19には、通液性と吸湿流動性とが共に優れた吸水性樹脂を得るために改善された多価金属塩水溶液の添加方法が開示されている。なお、特許文献18(比較例2)によれば、吸水性樹脂に硫酸アルミニウム水和物を粉体添加した場合、吸湿流動性は悪かった。 Patent Documents 14 to 16 disclose a method of granulating water-absorbent resin fine particles by spraying a binder in a fluidized bed granulator to improve the water absorption rate. Patent Document 17 discloses a polyvalent metal salt. A water-absorbing resin composition for spraying an aqueous solution is disclosed. Further, Patent Documents 18 and 19 disclose a method of adding a polyvalent metal salt aqueous solution which is improved to obtain a water-absorbing resin having both excellent liquid permeability and excellent moisture absorption fluidity. According to Patent Document 18 (Comparative Example 2), when powdery aluminum sulfate hydrate was added to the water-absorbent resin, the moisture-absorbing fluidity was poor.
 一方、二酸化ケイ素等の水不溶性無機微粒子を添加して通液性または吸湿流動性を向上させる方法も非常に汎用に行われている。例えば通液性(SFC)の向上のために、特許文献20にはシリカ等を添加した吸水性樹脂が、特許文献21には水不溶性金属燐酸塩を添加した吸水性樹脂が開示されている。また、吸湿流動性の向上のために、特許文献22には水不溶性多価金属複合塩を添加した吸水性樹脂が開示されている。しかしながら、このような水不溶性無機微粒子の添加は通液性または吸湿流動性のいずれかが不十分である場合や、加圧下の吸水倍率を低下させる恐れがあった。 On the other hand, a method of adding water-insoluble inorganic fine particles such as silicon dioxide to improve liquid permeability or moisture absorption fluidity is also widely used. For example, in order to improve liquid permeability (SFC), Patent Document 20 discloses a water-absorbing resin to which silica or the like is added, and Patent Document 21 discloses a water-absorbing resin to which a water-insoluble metal phosphate is added. Patent Document 22 discloses a water-absorbing resin to which a water-insoluble polyvalent metal complex salt is added in order to improve the moisture-absorbing fluidity. However, the addition of such water-insoluble inorganic fine particles may cause a problem in that either the liquid permeability or the fluidity of moisture absorption is insufficient, or may lower the water absorption capacity under pressure.
 また、特許文献23にはミョウバンの微粒子を添加して尿臭の原因であるアンモニアを中和する技術が開示されているものの、通液性が悪く、吸湿流動性も十分ではなかった。 特許 Also, Patent Document 23 discloses a technique for adding fine alum particles to neutralize ammonia, which is a cause of urinary odor, but has poor liquid permeability and insufficient moisture absorption fluidity.
日本国公開特許公報「特表2009-522387号公報」Japanese Unexamined Patent Publication "Tokuhoku 2009-52287" 日本国公開特許公報「特開2005-097519号公報」Japanese Unexamined Patent Publication "JP-A-2005-097519" 国際公開第2000/053664号パンフレットInternational Publication No. 2000/053664 pamphlet 国際公開第2000/053644号パンフレットWO 2000/053644 pamphlet 国際公開第2001/074913号パンフレットWO 2001/074913 pamphlet 日本国公開特許公報「特表2004-508432号公報」Japanese Unexamined Patent Publication "Tokuhyo 2004-508432" 国際公開第2007/121941号パンフレットWO 2007/121941 pamphlet 日本国公開特許公報「特開平7-242709号公報」Japanese Unexamined Patent Publication "JP-A-7-242709" 日本国公開特許公報「特開平7-224204号公報」Japanese Unexamined Patent Publication "JP-A-7-224204" 国際公開第2003/044120号パンフレットWO 2003/044120 pamphlet 国際公開第2013/110414号パンフレットInternational Publication No. 2013/110414 pamphlet 国際公開第2013/110415号パンフレットWO 2013/110415 pamphlet 国際公開第2009/028568号パンフレットWO 2009/028568 pamphlet 日本国公開特許公報「特表平3-501493号公報」Japanese Unexamined Patent Publication "Tokuhei 3-501493" 日本国公開特許公報「特開平6-313043号公報」Japanese Unexamined Patent Publication "JP-A-6-313043" 日本国公開特許公報「特開平6-313042号公報」Japanese Unexamined Patent Publication "JP-A-6-313042" 日本国公開特許公報「特開昭61-257235号公報」Japanese Unexamined Patent Publication "JP-A-61-257235" 日本国公開特許公報「特開2005-113117号公報」Japanese Unexamined Patent Publication "JP 2005-113117 A" 日本国公開特許公報「特開2005-344103号公報」Japanese Unexamined Patent Publication "JP 2005-344103 A" 国際公開第2007/037522号パンフレットWO 2007/037522 pamphlet 国際公開第2002/060983号パンフレットWO2002 / 060983 pamphlet 国際公開第2014/054656号パンフレットWO 2014/054656 pamphlet 日本国公開特許公報「特開2000-79159号公報」Japanese Unexamined Patent Publication "JP-A-2000-79159"
 しかしながら、通液性、吸湿流動性、および加圧下吸水倍率に優れた吸水性樹脂粉末を簡便に製造するという観点からは、上述の従来技術にはさらなる改善の余地があった。 However, from the viewpoint of easily producing a water-absorbent resin powder excellent in liquid permeability, moisture absorption fluidity, and water absorption under pressure, there is room for further improvement in the above-mentioned conventional technology.
 本発明は、上記問題点に鑑みなされたものであって、その目的は、通液性、吸湿流動性、および加圧下吸水倍率に優れた吸水性樹脂粉末を簡便に製造する方法および吸水性樹脂粉末を提供することである。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for easily producing a water-absorbent resin powder having excellent liquid permeability, moisture-absorbing fluidity, and water absorption capacity under pressure, and a water-absorbent resin. Is to provide a powder.
 本願発明者らは、上記目的を達成するために鋭意検討を重ねた結果、流動層混合機内で、加熱下で多価金属塩水溶液を表面架橋時または表面架橋後の吸水性樹脂粒子に噴霧することによって、通液性、吸湿流動性、および加圧下吸水倍率に優れた吸水性樹脂粉末を得ることができることを見出した。さらに従来にない細かな多価金属微粒子が表面に存在する吸水性樹脂粉末は通液性、吸湿流動性、および加圧下吸水倍率に優れることを見出し、本発明を完成するに至った。 The present inventors have conducted intensive studies in order to achieve the above object, and as a result, in a fluidized bed mixer, spray a polyvalent metal salt aqueous solution onto the water-absorbing resin particles at the time of surface crosslinking or after surface crosslinking under heating. As a result, it has been found that a water-absorbent resin powder excellent in liquid permeability, moisture-absorbing fluidity, and water absorption capacity under pressure can be obtained. Furthermore, they found that a water-absorbing resin powder having unprecedented fine polyvalent metal fine particles on the surface was excellent in liquid permeability, moisture-absorbing fluidity, and water absorption under pressure, and completed the present invention.
 すなわち、本願発明(1)は、有機表面架橋剤で表面架橋され且つ水溶性多価金属塩を含む吸水性樹脂粉末の製造方法であって、多価金属塩の濃度が5重量%以上の多価金属塩水溶液を、流動層混合機内で有機表面架橋剤による表面架橋時または表面架橋後の吸水性樹脂粒子に噴霧する噴霧工程を有し、上記多価金属塩水溶液の噴霧位置での風温が50℃以上である、吸水性樹脂粉末の製造方法を提供する。 That is, the present invention (1) is a method for producing a water-absorbent resin powder which is surface-crosslinked with an organic surface crosslinking agent and contains a water-soluble polyvalent metal salt, wherein the polyvalent metal salt has a concentration of 5% by weight or more. Having a spraying step of spraying the aqueous solution of the valent metal salt onto the water-absorbent resin particles at the time of surface crosslinking with the organic surface crosslinking agent or after the surface crosslinking in the fluidized bed mixer, and the air temperature at the spray position of the aqueous solution of the polyvalent metal salt. Is 50 ° C. or more.
 また、本願発明(2)は、有機表面架橋剤で表面架橋され且つ水溶性多価金属塩を含む吸水性樹脂粉末の製造方法であって、有機表面架橋剤で表面架橋された吸水性樹脂に対し、レーザ回折・散乱法で測定される体積平均粒子径が0.3~15μmの水溶性多価金属塩粒子を添加する、吸水性樹脂粉末の製造方法を提供する。 The invention (2) of the present application is a method for producing a water-absorbent resin powder which is surface-crosslinked with an organic surface crosslinker and contains a water-soluble polyvalent metal salt. On the other hand, there is provided a method for producing a water-absorbent resin powder, which comprises adding water-soluble polyvalent metal salt particles having a volume average particle diameter of 0.3 to 15 μm measured by a laser diffraction / scattering method.
 さらに、本願発明(3)は、有機表面架橋剤で表面架橋され且つ水溶性多価金属塩を含む吸水性樹脂粉末であって、吸水性樹脂粉末の表面に数平均粒子径0.3~15μm(SEM画像分析)の水溶性多価金属塩粒子が付着した、吸水性樹脂粉末を提供する。 Further, the invention (3) of the present application relates to a water-absorbing resin powder which is surface-crosslinked with an organic surface cross-linking agent and contains a water-soluble polyvalent metal salt, and has a number average particle diameter of 0.3 to 15 μm on the surface of the water-absorbing resin powder. Provided is a water-absorbent resin powder to which (SEM image analysis) water-soluble polyvalent metal salt particles adhere.
 本発明の一態様によれば、通液性、吸湿流動性、および加圧下吸水倍率に優れた吸水性樹脂粉末を簡便に製造することができる。 According to one embodiment of the present invention, a water-absorbent resin powder excellent in liquid permeability, moisture-absorbing fluidity, and water absorption under pressure can be easily produced.
 また、本発明の一態様によれば、経時色調にも優れた吸水性樹脂粉末を簡便に製造することができる。 According to one embodiment of the present invention, a water-absorbent resin powder having excellent temporal color tone can be easily produced.
実施例1の吸水性樹脂粉末のSEM画像である。3 is an SEM image of a water-absorbent resin powder of Example 1.
 以下、本発明の一実施形態に係る吸水性樹脂粉末の製造方法および本発明の一実施形態に係る吸水性樹脂粉末について詳しく説明するが、本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更および実施することができる。 Hereinafter, the method for producing a water-absorbent resin powder according to one embodiment of the present invention and the water-absorbent resin powder according to one embodiment of the present invention will be described in detail, but the scope of the present invention is not limited to these descriptions. In addition, other than the examples described below, modifications and implementations can be made as appropriate without departing from the spirit of the present invention.
 具体的には、本発明は下記各実施形態に限定されるものではなく、請求項に示した範囲において種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても、本発明の技術的範囲に含まれる。 Specifically, the present invention is not limited to the following embodiments, and various modifications are possible within the scope of the claims, and the technical means disclosed in the different embodiments may be appropriately combined. The obtained embodiment is also included in the technical scope of the present invention.
 なお、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上、B以下」を意味する。また、特に注釈のない限り、「ppm」は「重量ppm」または「質量ppm」を意味する。さらに、「~酸(塩)」は「~酸および/またはその塩」、「(メタ)アクリル」は「アクリルおよび/またはメタクリル」をそれぞれ意味する。 Unless otherwise specified in this specification, “A to B” representing a numerical range means “A or more and B or less”. Further, “ppm” means “ppm by weight” or “ppm by mass” unless otherwise specified. Further, “to acid (salt)” means “to acid and / or salt thereof”, and “(meth) acryl” means “acryl and / or methacryl”, respectively.
 〔1〕用語の定義
 〔1-1〕「吸水性樹脂」「吸水性樹脂粒子」「吸水性樹脂粉末」
 本明細書中、「吸水性樹脂」とは、水膨潤性水不溶性の高分子ゲル化剤を意味し、一般的に粉末状である。ここで、「水膨潤性」とは、ERT441.2-02にて規定されるCRCが5g/g以上であることをいい、「水不溶性」とは、ERT470.2-02にて規定されるExtが0重量%~50重量%であることをいう。なお、要求性能(CRCおよびExt)を満たす範囲内であれば、添加剤等を含有した吸水性樹脂組成物であっても、本明細書中においては「吸水性樹脂」と称する。
[1] Definition of terms [1-1] "Water absorbent resin""Water absorbent resin particles""Water absorbent resin powder"
In the present specification, “water-absorbent resin” means a water-swellable, water-insoluble polymer gelling agent, and is generally in a powder form. Here, “water swellability” means that the CRC defined by ERT441.2-02 is 5 g / g or more, and “water-insoluble” is defined by ERT470.2-02. Ext means 0 to 50% by weight. In addition, as long as the required performance (CRC and Ext) is satisfied, even a water-absorbing resin composition containing an additive or the like is referred to as a "water-absorbing resin" in this specification.
 便宜上、本明細書中において、多価金属塩水溶液の表面処理または表面架橋を行う前の吸水性樹脂を「吸水性樹脂粒子」、表面処理および表面架橋を行った後の吸水性樹脂を「吸水性樹脂粉末」と称する。 For convenience, in this specification, the water-absorbent resin before surface treatment or surface crosslinking of the aqueous polyvalent metal salt solution is referred to as “water-absorbent resin particles”, and the water-absorbent resin after surface treatment and surface crosslinking is referred to as “water-absorbent resin”. Resin powder ".
 〔1-2〕「EDANA」および「ERT」
 「EDANA」は、欧州不織布工業会(European Disposables and Nonwovens Associations)の略称であり、「ERT」とは、欧州標準(ほぼ世界標準)である吸水性樹脂の測定方法(EDANA Recommended Test Methods)の略称である。なお、本明細書においては、特に断りのない限り、ERT原本(公知文献;2002年改定)に準拠して測定を行う。
[1-2] “EDANA” and “ERT”
"EDANA" is an abbreviation of European Disposables and Nonwovens Associations, and "ERT" is an abbreviation of EDANA Recommended Test Methods, which is a standard for water-absorbing resin, which is a European standard (almost a global standard). It is. In this specification, unless otherwise specified, the measurement is performed based on the original ERT (publicly known document; revised in 2002).
 〔1-3-1〕遠心分離機保持容量(CRC)(ERT441.2-02)
 「CRC」は、Centrifuge Retention Capacity(遠心分離機保持容量)の略称であり、吸水性樹脂の無加圧下吸水倍率(「吸水倍率」と称する場合もある)を意味する。具体的には、吸水性樹脂0.2gを不織布製の袋に入れた後、大過剰の0.9質量%塩化ナトリウム水溶液中に30分間浸漬して自由膨潤させ、その後、遠心分離機(250G)で3分間水切りした後の吸水倍率(単位;g/g)のことをいう。
[1-3-1] Centrifuge Retention Capacity (CRC) (ERT441.2-02)
“CRC” is an abbreviation of Centrifuge Retention Capacity (centrifuge retention capacity), which means the water absorption capacity of a water-absorbent resin under no pressure (sometimes referred to as “water absorption capacity”). Specifically, 0.2 g of the water-absorbing resin is put into a nonwoven fabric bag, then immersed in a large excess of 0.9% by mass aqueous sodium chloride solution for 30 minutes to allow free swelling, and then centrifuged (250 G). ) Means water absorption capacity (unit: g / g) after draining for 3 minutes.
 〔1-3-2〕「Ext」(ERT470.2-02)
 「Ext」は、Extractablesの略称であり、吸水性樹脂の水可溶分(水可溶成分量)を意味する。
[1-3-2] "Ext" (ERT470.2-02)
“Ext” is an abbreviation of Extractables and means a water-soluble component (a water-soluble component amount) of the water-absorbent resin.
 具体的には、吸水性樹脂1.0gを0.9重量%塩化ナトリウム水溶液200mLに添加し、500rpmで16時間攪拌した後の溶解ポリマー量(単位;重量%)のことをいう。溶解ポリマー量の測定は、pH滴定を用いて行う。 Specifically, it refers to the amount of dissolved polymer (unit: wt%) after adding 1.0 g of the water-absorbing resin to 200 mL of 0.9 wt% aqueous sodium chloride solution and stirring at 500 rpm for 16 hours. The measurement of the amount of dissolved polymer is performed using pH titration.
 〔1-3-3〕「FLOWRATE」(ERT450.2-02)
 「FLOWRATE」は、吸水性樹脂の粉体流動性を意味する。具体的には、円錐型ホッパーの開口部(口径10mm)から100gの吸水性樹脂が流れ落ちる速度(単位;g/s)のことをいう。以下「FLOWRATE」のことを「F.R.」と記載することがある。
[1-3-3] "FLOWRATE" (ERT450.2-02)
“FLOWRATE” means the powder fluidity of the water absorbent resin. Specifically, it refers to the speed (unit: g / s) at which 100 g of the water-absorbent resin flows down from the opening (diameter: 10 mm) of the conical hopper. Hereinafter, "FLOWRATE" may be referred to as "FR."
 〔1-4〕「通液性」
 本明細書中、吸水性樹脂粉末の「通液性」は、荷重下または無荷重下での、吸水性樹脂またはそれを膨潤させたゲルの粒子間を通過する液の流れ性のことをいい、代表的な測定方法として、SFCおよびGBPがある。
[1-4] "Liquid permeability"
As used herein, the term "liquid permeability" of a water-absorbent resin powder refers to the fluidity of a liquid passing between particles of a water-absorbent resin or a gel swelling the same under a load or no load. As representative measurement methods, there are SFC and GBP.
 「SFC(Saline Flow Conductivety)」は、2.07kPa荷重下での吸水性樹脂に対する0.69質量%塩化ナトリウム水溶液の通液性をいい、米国特許第5669894号に開示されるSFC試験方法に準拠して測定される。 “SFC (Saline Flow Conductivety)” refers to the liquid permeability of a 0.69% by mass aqueous sodium chloride solution to a water-absorbent resin under a load of 2.07 kPa, and conforms to the SFC test method disclosed in US Pat. No. 5,669,894. Measured.
 「GBP(Gel Bed Pearmeability)」は、WO2004/096304に開示されている方法により測定される。 "GBP (Gel Bed Pearmeability)" is measured by the method disclosed in WO2004 / 096304.
 〔2〕吸水性樹脂粉末の製造方法
 本発明の一実施形態に係る吸水性樹脂粉末の製造方法(本明細書中、単に「製造方法」とも称する)は、(1)は、有機表面架橋剤で表面架橋され且つ水溶性多価金属塩を含む吸水性樹脂粉末の製造方法であって、多価金属塩の濃度が5重量%以上の多価金属塩水溶液を、流動層混合機内で表面架橋時または表面架橋後の吸水性樹脂粒子に噴霧する噴霧工程を有し、上記多価金属塩水溶液の噴霧位置での風温が50℃以上である、吸水性樹脂粉末の製造方法を提供する。
[2] Method for producing water-absorbent resin powder The method for producing a water-absorbent resin powder according to one embodiment of the present invention (hereinafter, also simply referred to as “production method”) includes (1) an organic surface cross-linking agent. A water-absorbent resin powder containing a water-soluble polyvalent metal salt, the surface of which is crosslinked in a fluidized bed mixer with a polyvalent metal salt aqueous solution having a polyvalent metal salt concentration of 5% by weight or more. A method for producing a water-absorbent resin powder, comprising a spraying step of spraying water-absorbent resin particles at the time of or after surface cross-linking, wherein the air temperature at the spray position of the aqueous polyvalent metal salt solution is 50 ° C or higher.
 本発明の一実施形態では、流動層混合機内において、多価金属塩の濃度が5重量%以上の多価金属塩水溶液を高温雰囲気下で噴霧することによって、多価金属塩水溶液は噴霧乾燥状態となり、吸水性樹脂の表面に微細な塊状となって付着すると推定される。 In one embodiment of the present invention, a polyvalent metal salt aqueous solution having a polyvalent metal salt concentration of 5% by weight or more is sprayed under a high-temperature atmosphere in a fluidized bed mixer, so that the polyvalent metal salt aqueous solution is in a spray-dried state. It is presumed that they adhere to the surface of the water-absorbent resin in a fine lump.
 また、本発明の一実施形態に係る吸水性樹脂粉末の製造方法(2)は、有機表面架橋剤で表面架橋され且つ水溶性多価金属塩を含む吸水性樹脂粉末の製造方法であって、有機表面架橋剤で表面架橋された吸水性樹脂に対し、レーザ回折・散乱法で測定される体積平均粒子径が0.3~15μmの多価金属塩粒子を添加する、吸水性樹脂粉末の製造方法を提供する。 The method (2) for producing a water-absorbent resin powder according to one embodiment of the present invention is a method for producing a water-absorbent resin powder that is surface-crosslinked with an organic surface crosslinking agent and contains a water-soluble polyvalent metal salt, Production of water-absorbent resin powder by adding polyvalent metal salt particles having a volume average particle diameter of 0.3 to 15 μm measured by a laser diffraction / scattering method to a water-absorbent resin surface-crosslinked with an organic surface crosslinker Provide a way.
 上記構成により、通液性、吸湿流動性、および加圧下吸水倍率に優れた吸水性樹脂粉末を得ることができる。 に よ り According to the above configuration, it is possible to obtain a water-absorbent resin powder excellent in liquid permeability, moisture-absorbing fluidity, and water absorption capacity under pressure.
 また、上記構成により、表面に水溶性多価金属塩粒子が付着している吸水性樹脂粉末を得ることができる。 Further, with the above configuration, a water-absorbing resin powder having water-soluble polyvalent metal salt particles adhered to the surface can be obtained.
 以下に、本発明の一実施形態に係る吸水性樹脂の製造方法として代表的な工程(2-1)~(2-9)を記載するが、本発明の一実施形態に係る吸水性樹脂の製造方法は、後述の表面架橋工程および噴霧工程を含み、他の工程は任意に含まれる。 Hereinafter, typical steps (2-1) to (2-9) will be described as a method for producing a water-absorbent resin according to one embodiment of the present invention. The production method includes a surface cross-linking step and a spraying step described below, and other steps are optionally included.
 (2-1)単量体水溶液の調製工程
 本工程は、単量体水溶液を調製する工程である。なお、得られる吸水性樹脂の吸水性能が低下しない範囲で、単量体水溶液の代わりに単量体のスラリー液を使用することもできるが、本項では便宜上、単量体水溶液について説明を行う。
(2-1) Step of preparing monomer aqueous solution This step is a step of preparing a monomer aqueous solution. Note that a monomer slurry may be used instead of the monomer aqueous solution as long as the water-absorbing performance of the obtained water-absorbent resin is not reduced, but in this section, the monomer aqueous solution will be described for convenience. .
 本工程で使用できる単量体として、アクリル酸(塩)、メタクリル酸(塩)、(無水)マレイン酸(塩)、フマル酸(塩)、クロトン酸(塩)、イタコン酸(塩)、ビニルスルホン酸(塩)、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸(塩)、(メタ)アクリロキシアルカンスルホン酸(塩)等の酸基含有不飽和単量体;N-ビニル-2-ピロリドン、N-ビニルアセトアミド、(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート等の親水性モノマー類、並びにそれらの塩が挙げられる。これらの中でも、酸基含有不飽和単量体が好ましく、アクリル酸(塩)、メタクリル酸(塩)等のカルボキシル基含有不飽和単量体がより好ましく、アクリル酸(塩)がさらに好ましい。本発明の一実施形態では複数種類の単量体を組み合わせることもできる。全単量体中のアクリル酸(塩)の使用量は10~100モル%、さらには50~100モル%、特に90~100モル%とされ、本発明の一実施形態では、かかるポリアクリル酸(塩)系吸水性樹脂が好適に使用される。 Acrylic acid (salt), methacrylic acid (salt), (anhydride) maleic acid (salt), fumaric acid (salt), crotonic acid (salt), itaconic acid (salt), vinyl Acid group-containing unsaturated monomers such as sulfonic acid (salt), 2- (meth) acrylamido-2-methylpropanesulfonic acid (salt) and (meth) acryloxyalkanesulfonic acid (salt); N-vinyl-2 -Pyrrolidone, N-vinylacetamide, (meth) acrylamide, N-isopropyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, polyethylene glycol Examples include hydrophilic monomers such as (meth) acrylates, and salts thereof. Among these, an acid group-containing unsaturated monomer is preferred, a carboxyl group-containing unsaturated monomer such as acrylic acid (salt) and methacrylic acid (salt) is more preferred, and acrylic acid (salt) is even more preferred. In one embodiment of the present invention, a plurality of types of monomers can be combined. The amount of acrylic acid (salt) used in all monomers is 10 to 100 mol%, more preferably 50 to 100 mol%, particularly 90 to 100 mol%. In one embodiment of the present invention, such polyacrylic acid is used. (Salt) -based water-absorbing resins are preferably used.
 酸基含有不飽和単量体は部分的に塩型になっていることが好ましく、好ましくは1価の塩基性化合物との塩、より好ましくはアルカリ金属塩またはアンモニウム塩、さらに好ましくはナトリウム塩である。 The acid group-containing unsaturated monomer is preferably partially in a salt form, preferably a salt with a monovalent basic compound, more preferably an alkali metal salt or an ammonium salt, and further preferably a sodium salt. is there.
 本発明の一実施形態における中和率は、単量体の酸基に対して、好ましくは10~90モル%、より好ましくは40~85モル%、さらに好ましくは50~80モル%、特に好ましくは60~75モル%である。該中和率が10モル%未満の場合、吸水倍率が著しく低下することがある。一方、該中和率が90モル%を超える場合、加圧下吸水倍率の高い吸水性樹脂が得られないことがある。 In one embodiment of the present invention, the neutralization ratio is preferably from 10 to 90 mol%, more preferably from 40 to 85 mol%, further preferably from 50 to 80 mol%, particularly preferably from the acid groups of the monomer. Is from 60 to 75 mol%. If the neutralization ratio is less than 10 mol%, the water absorption capacity may be significantly reduced. On the other hand, when the neutralization ratio exceeds 90 mol%, a water-absorbent resin having a high water absorption capacity under pressure may not be obtained.
 上記中和率は、単量体に対してではなく重合体に対して中和する場合でも同様である。また、最終製品としての吸水性樹脂粉末の中和率についても、上記中和率が適用される。 The above neutralization ratio is the same even when neutralizing a polymer instead of a monomer. In addition, the above-described neutralization ratio is also applied to the neutralization ratio of the water-absorbent resin powder as the final product.
 (内部架橋剤)
 本発明の一実施形態では、本工程において内部架橋剤を用いることが好ましい。内部架橋剤としては米国特許第6241928号に例示された化合物が本発明の一実施形態にも適用され、これらの中から反応性を考慮して1種または2種以上の化合物が選択される。
(Internal crosslinking agent)
In one embodiment of the present invention, it is preferable to use an internal crosslinking agent in this step. As the internal cross-linking agent, the compounds exemplified in US Pat. No. 6,241,928 are also applied to one embodiment of the present invention, and one or more compounds are selected from these in consideration of reactivity.
 また、得られる吸水性樹脂の吸水性能等の観点から、好ましくは重合性不飽和基を2個以上有する化合物、より好ましくは下記乾燥温度で熱分解性を有し、かつ、重合性不飽和基を2個以上有する化合物、さらに好ましくは(ポリ)アルキレングリコール構造単位を有する重合性不飽和基を2個以上する化合物が、内部架橋剤として用いられる。 Further, from the viewpoint of the water absorbing performance of the resulting water-absorbing resin, preferably a compound having two or more polymerizable unsaturated groups, more preferably having thermal decomposability at the following drying temperature, and a polymerizable unsaturated group And more preferably a compound having two or more polymerizable unsaturated groups having a (poly) alkylene glycol structural unit is used as an internal crosslinking agent.
 上記重合性不飽和基として、好ましくはアリル基、(メタ)アクリレート基、より好ましくは(メタ)アクリレート基が挙げられる。また、上記(ポリ)アルキレングリコール構造単位としてポリエチレングリコールが好ましく、n数として好ましくは1~100、より好ましくは6~50である。 と し て As the polymerizable unsaturated group, preferably, an allyl group, a (meth) acrylate group, more preferably, a (meth) acrylate group is used. The (poly) alkylene glycol structural unit is preferably polyethylene glycol, and the number n is preferably from 1 to 100, more preferably from 6 to 50.
 上記内部架橋剤の使用量は、単量体全体に対して、好ましくは0.0001~10モル%、より好ましくは0.001~1モル%である。該使用量を上記範囲内とすることで所望する吸水性樹脂が得られる。なお、該使用量が少なすぎる場合、ゲル強度が低下し水可溶分が増加する傾向にあり、該使用量が多すぎる場合、吸水性樹脂の吸水倍率が低下する傾向にあるため、好ましくない。 使用 The use amount of the internal crosslinking agent is preferably 0.0001 to 10 mol%, more preferably 0.001 to 1 mol%, based on the whole monomer. A desired water-absorbing resin can be obtained by setting the amount to be used within the above range. If the amount is too small, the gel strength tends to decrease and the water-soluble component tends to increase.If the amount is too large, the water absorption ratio of the water absorbent resin tends to decrease, which is not preferable. .
 本工程で添加された内部架橋剤は重合工程、または重合工程後の例えば乾燥工程において架橋反応する。なお、本発明の一実施形態において、内部架橋は上記形態に限らず、重合工程途中や重合工程後の含水ゲル状架橋重合体に内部架橋剤を添加して架橋してもよい。さらにラジカル重合開始剤を用いてラジカル架橋する方法、並びに、電子線または紫外線等の活性エネルギー線を用いた放射線架橋する方法等を採用することもできる。また、これらの方法を併用することもできる。 内部 The internal cross-linking agent added in this step undergoes a cross-linking reaction in the polymerization step or, for example, in the drying step after the polymerization step. In one embodiment of the present invention, the internal cross-linking is not limited to the above-described embodiment, and the internal cross-linking may be performed by adding an internal cross-linking agent to the hydrogel cross-linked polymer during or after the polymerization step. Further, a radical cross-linking method using a radical polymerization initiator, a radiation cross-linking method using an active energy ray such as an electron beam or an ultraviolet ray, and the like can also be adopted. Further, these methods can be used in combination.
 (その他、単量体水溶液に添加される物質)
 本発明の一実施形態では、得られる吸水性樹脂の物性向上の観点から、下記の物質を単量体水溶液の調製時に添加することもできる。
(Other substances added to the monomer aqueous solution)
In one embodiment of the present invention, the following substances can be added during the preparation of the aqueous monomer solution from the viewpoint of improving the physical properties of the obtained water-absorbent resin.
 具体的には、澱粉、澱粉誘導体、セルロース、セルロース誘導体、ポリビニルアルコール、ポリアクリル酸(塩)、ポリアクリル酸(塩)架橋体等の親水性高分子を、好ましくは50重量%以下、より好ましくは20重量%以下、さらに好ましくは10重量%以下、特に好ましくは5重量%以下(下限は0重量%)で添加することができる。また、炭酸塩、アゾ化合物、気泡等の発泡剤、界面活性剤、キレート剤、連鎖移動剤等を、好ましくは5重量%以下、より好ましくは1重量%以下、さらに好ましくは0.5重量%以下(下限は0重量%)で添加することもできる。 Specifically, a hydrophilic polymer such as starch, starch derivative, cellulose, cellulose derivative, polyvinyl alcohol, polyacrylic acid (salt), crosslinked polyacrylic acid (salt), preferably 50% by weight or less, more preferably Can be added at 20% by weight or less, more preferably at 10% by weight or less, particularly preferably at 5% by weight or less (the lower limit is 0% by weight). Further, a carbonate, an azo compound, a foaming agent such as air bubbles, a surfactant, a chelating agent, a chain transfer agent and the like are preferably used in an amount of 5% by weight or less, more preferably 1% by weight or less, and further preferably 0.5% by weight. The following can be added (the lower limit is 0% by weight).
 上記物質は、単量体水溶液に添加される形態のみならず、重合途中で添加される形態でもよいし、これらの形態を併用することもできる。 The above-mentioned substance may be added not only in the form of being added to the aqueous monomer solution but also in the course of polymerization, or these forms may be used in combination.
 なお、上記親水性高分子として水溶性樹脂または吸水性樹脂を使用する場合には、グラフト重合体または吸水性樹脂組成物(例えば、澱粉-アクリル酸重合体、PVA-アクリル酸重合体等)が得られる。これらの重合体および吸水性樹脂組成物も本発明の範疇である。 When a water-soluble resin or a water-absorbent resin is used as the hydrophilic polymer, a graft polymer or a water-absorbent resin composition (eg, starch-acrylic acid polymer, PVA-acrylic acid polymer, etc.) is used. can get. These polymers and water-absorbent resin compositions are also included in the scope of the present invention.
 (単量体成分の濃度)
 本工程において、単量体水溶液を調製する際に、上記の各物質が添加される。該単量体水溶液中の単量体成分の濃度としては特に限定されないが、吸水性樹脂の物性の観点から、好ましくは10~80重量%、より好ましくは20~75重量%、さらに好ましくは30~70重量%である。
(Concentration of monomer component)
In this step, each of the above substances is added when preparing the aqueous monomer solution. The concentration of the monomer component in the aqueous monomer solution is not particularly limited, but is preferably from 10 to 80% by weight, more preferably from 20 to 75% by weight, and still more preferably from 30 to 80% by weight, from the viewpoint of the physical properties of the water-absorbing resin. ~ 70% by weight.
 また、水溶液重合または逆相懸濁重合を採用する場合、水以外の溶媒を必要に応じて併用することもできる。この場合、溶媒の種類は特に限定されない。 In the case where aqueous solution polymerization or reverse phase suspension polymerization is employed, a solvent other than water can be used in combination, if necessary. In this case, the type of the solvent is not particularly limited.
 なお、上記「単量体成分の濃度」とは、下記式(1)で求められる値であり、単量体水溶液の重量には、グラフト成分や吸水性樹脂、逆相懸濁重合における疎水性溶媒の重量は含めない。 The “concentration of the monomer component” is a value determined by the following formula (1), and the weight of the aqueous monomer solution is calculated based on the graft component, the water-absorbing resin, and the hydrophobicity in the inverse suspension polymerization. Does not include solvent weight.
 (単量体成分の濃度(重量%))=(単量体成分の重量)/(単量体水溶液の重量)×100 …式(1)
 (2-2)重合工程
 本工程は、上記単量体水溶液の調製工程で得られた単量体水溶液を重合させて、含水ゲル状架橋重合体(以下、「含水ゲル」と称する)を得る工程である。
(Concentration of monomer component (% by weight)) = (Weight of monomer component) / (Weight of aqueous monomer solution) × 100 Formula (1)
(2-2) Polymerization Step In this step, the aqueous monomer solution obtained in the step of preparing the aqueous monomer solution is polymerized to obtain a hydrogel crosslinked polymer (hereinafter, referred to as “hydrogel”). It is a process.
 (重合開始剤)
 本発明の一実施形態で使用される重合開始剤は、重合形態等によって適宜選択されるため、特に限定されない。重合開始剤として、例えば、熱分解型重合開始剤、光分解型重合開始剤、またはこれらの重合開始剤の分解を促進する還元剤を併用したレドックス系重合開始剤等が挙げられる。具体的には、米国特許第7265190号に開示された重合開始剤のうち、1種または2種以上が用いられる。なお、重合開始剤の取扱性や吸水性樹脂の物性の観点から、好ましくは過酸化物またはアゾ化合物、より好ましくは過酸化物、さらに好ましくは過酸化物の中でも過硫酸塩が使用される。
(Polymerization initiator)
The polymerization initiator used in one embodiment of the present invention is not particularly limited because it is appropriately selected depending on the polymerization form and the like. Examples of the polymerization initiator include a thermal decomposition-type polymerization initiator, a photo-decomposition-type polymerization initiator, and a redox-based polymerization initiator using a reducing agent that promotes the decomposition of these polymerization initiators. Specifically, one or more of the polymerization initiators disclosed in US Pat. No. 7,265,190 are used. From the viewpoint of the handleability of the polymerization initiator and the physical properties of the water-absorbing resin, peroxides or azo compounds are preferable, peroxides are more preferable, and persulfates are more preferable among the peroxides.
 該重合開始剤の使用量は、単量体成分に対して、好ましくは0.001~1モル%、より好ましくは0.001~0.5モル%である。また、該還元剤の使用量は、単量体に対して、好ましくは0.0001~0.02モル%である。 使用 The amount of the polymerization initiator used is preferably 0.001 to 1 mol%, more preferably 0.001 to 0.5 mol%, based on the monomer component. The amount of the reducing agent used is preferably 0.0001 to 0.02 mol% based on the monomer.
 なお、上記重合開始剤に代えて、放射線、電子線、紫外線等の活性エネルギー線を照射して重合反応を実施してもよく、これらの活性エネルギー線と重合開始剤とを併用してもよい。 Note that, instead of the polymerization initiator, radiation, an electron beam, an active energy ray such as ultraviolet light may be irradiated to carry out the polymerization reaction, or these active energy rays and the polymerization initiator may be used in combination. .
 (重合形態)
 本発明の一実施形態に適用される重合形態としては、特に限定されないが、吸水特性および重合制御の容易性等の観点から、好ましくは気相中の噴霧・液滴重合、水溶液重合または逆相懸濁重合、より好ましくは水溶液重合または逆相懸濁重合、さらに好ましくは水溶液重合が挙げられる。水溶液重合の中でも、連続水溶液重合が特に好ましく、連続ベルト重合、連続ニーダー重合の何れも適用される。
(Polymerization form)
The polymerization form applied to one embodiment of the present invention is not particularly limited, but from the viewpoint of water absorption characteristics and ease of polymerization control, preferably, spray / droplet polymerization in a gas phase, aqueous solution polymerization or reverse phase polymerization Suspension polymerization, more preferably aqueous solution polymerization or reversed-phase suspension polymerization, further preferably aqueous solution polymerization. Among aqueous solution polymerizations, continuous aqueous solution polymerization is particularly preferred, and both continuous belt polymerization and continuous kneader polymerization are applied.
 具体的な重合形態として、連続ベルト重合は米国特許第4893999号、米国特許第6241928号および米国特許出願公開第2005/215734号等に、連続ニーダー重合は米国特許第6987151号および米国特許第6710141号等に、それぞれ開示されている。これらの連続水溶液重合を採用することで、吸水性樹脂の生産効率が向上する。 As specific polymerization forms, continuous belt polymerization is described in U.S. Pat. No. 4,893,999, U.S. Pat. No. 6,241,928 and U.S. Patent Application Publication No. 2005 / 215,734, and continuous kneader polymerization is described in U.S. Pat. And the like. By employing these continuous aqueous polymerization methods, the production efficiency of the water-absorbing resin is improved.
 (2-3)ゲル粉砕工程
 本工程は、上記重合工程で得られた含水ゲルを、例えば、ニーダー、ミートチョッパー等のスクリュー押出し機、カッターミル等のゲル粉砕機でゲル粉砕し、粒子状の含水ゲル(以下、「粒子状含水ゲル」と称する)を得る工程である。なお、上記重合工程がニーダー重合の場合、重合工程とゲル粉砕工程とが同時に実施されている。また、気相重合や逆相懸濁重合等、粒子状含水ゲルが重合過程で直接得られる場合には、該ゲル粉砕工程が実施されないこともある。
(2-3) Gel Pulverizing Step In this step, the hydrogel obtained in the above polymerization step is gel-pulverized by a screw extruder such as a kneader or a meat chopper, or a gel pulverizer such as a cutter mill, and the like. This is a step of obtaining a hydrogel (hereinafter, referred to as "particulate hydrogel"). When the polymerization step is kneader polymerization, the polymerization step and the gel pulverization step are performed simultaneously. Further, when a particulate hydrogel is directly obtained in the polymerization process such as gas phase polymerization or reverse phase suspension polymerization, the gel pulverizing step may not be performed.
 (2-4)乾燥工程
 本工程は、上記重合工程および/またはゲル粉砕工程で得られた粒子状含水ゲルを所望する樹脂固形分まで乾燥させて乾燥重合体を得る工程である。該樹脂固形分は、乾燥減量(吸水性樹脂1gを180℃で3時間加熱した際の重量変化)から求められ、好ましくは80重量%以上、より好ましくは85~99重量%、さらに好ましくは90~98重量%、特に好ましくは92~97重量%である。
(2-4) Drying Step This step is a step of drying the particulate hydrogel obtained in the polymerization step and / or the gel pulverizing step to a desired resin solid content to obtain a dried polymer. The resin solid content is determined from the loss on drying (weight change when 1 g of the water-absorbent resin is heated at 180 ° C. for 3 hours), and is preferably 80% by weight or more, more preferably 85 to 99% by weight, and further preferably 90% by weight. It is preferably from 98 to 98% by weight, particularly preferably from 92 to 97% by weight.
 上記粒子状含水ゲルの乾燥方法としては、特に限定されないが、例えば、加熱乾燥、熱風乾燥、減圧乾燥、流動層乾燥、赤外線乾燥、マイクロ波乾燥、ドラムドライヤー乾燥、疎水性有機溶媒との共沸脱水による乾燥および高温の水蒸気を利用した高湿乾燥等が挙げられる。中でも乾燥効率の観点から、熱風乾燥が好ましく、熱風乾燥の中でも、通気ベルト上で熱風乾燥を行うバンド乾燥がより好ましい。 The method for drying the particulate hydrogel is not particularly limited, but includes, for example, heat drying, hot air drying, reduced pressure drying, fluidized bed drying, infrared drying, microwave drying, drum dryer drying, azeotropic distillation with a hydrophobic organic solvent. Drying by dehydration and high-humidity drying using high-temperature steam are included. Among them, hot air drying is preferable from the viewpoint of drying efficiency, and among the hot air dryings, band drying in which hot air drying is performed on a ventilation belt is more preferable.
 上記熱風乾燥における乾燥温度(熱風の温度)としては、吸水性樹脂の色調および乾燥効率の観点から、好ましくは120~250℃、より好ましくは150~200℃である。なお、熱風の風速および乾燥時間等、上記乾燥温度以外の乾燥条件については、乾燥に供する粒子状含水ゲルの含水率や総重量および目的とする樹脂固形分の量に応じて、適宜設定すればよい。例えば、バンド乾燥を行う際には、国際公開第2006/100300号、国際公開第2011/025012号、国際公開第2011/025013号、国際公開第2011/111657号等に記載される諸条件が適宜適用される。 乾燥 The drying temperature (temperature of hot air) in the hot air drying is preferably from 120 to 250 ° C, more preferably from 150 to 200 ° C, from the viewpoint of the color tone and drying efficiency of the water-absorbent resin. The drying conditions other than the above-mentioned drying temperature, such as the wind speed of the hot air and the drying time, may be appropriately set according to the water content and the total weight of the particulate hydrogel to be dried and the amount of the target resin solids. Good. For example, when performing band drying, various conditions described in WO 2006/100300, WO 2011/025012, WO 2011/025013, WO 2011/111657 and the like are appropriately applied. Applied.
 上述した乾燥温度や乾燥時間を上記範囲とすることで、得られる吸水性樹脂のCRC(吸水倍率)やExt(水可溶分)、色調を所望する範囲(下記〔3〕を参照)とすることができる。 By setting the above-mentioned drying temperature and drying time in the above ranges, the CRC (water absorption ratio), Ext (water-soluble component), and color tone of the obtained water-absorbent resin are set in a desired range (see the following [3]). be able to.
 (2-5)粉砕工程および分級工程
 本工程は、上記乾燥工程で得られた乾燥重合体を粉砕(粉砕工程)し、所定範囲の粒度に調整(分級工程)して、吸水性樹脂粒子を得る工程である。上記乾燥工程により得られた乾燥重合体が下記の粒度から外れている場合に、少なくとも表面架橋工程の前に本工程を実施するのが好ましい。
(2-5) Pulverizing Step and Classifying Step In this step, the dried polymer obtained in the drying step is pulverized (pulverizing step), and adjusted to a predetermined particle size (classifying step) to reduce the water-absorbent resin particles. This is the step of obtaining. When the dry polymer obtained in the drying step is out of the following particle size, it is preferable to perform this step at least before the surface crosslinking step.
 本発明の一実施形態の粉砕工程で使用される機器としては、例えば、ロールミル、ハンマーミル、スクリューミルおよびピンミル等の高速回転式粉砕機;振動ミル、ナックルタイプ粉砕機、円筒型ミキサー等が挙げられ、必要により併用される。 Examples of equipment used in the pulverizing step of one embodiment of the present invention include a high-speed rotary pulverizer such as a roll mill, a hammer mill, a screw mill, and a pin mill; a vibration mill, a knuckle type pulverizer, a cylindrical mixer, and the like. It is used together if necessary.
 また、本発明の一実施形態の分級工程としては、特に限定されないが、例えば、篩分級や気流分級等が挙げられる。 分 Also, the classification step of one embodiment of the present invention is not particularly limited, and includes, for example, a sieve classification and an airflow classification.
 本工程で得られる吸水性樹脂粒子の粒子径は、重量平均粒子径(D50)として、通常100~2000μm、好ましくは200~600μm、より好ましくは200~550μm、さらに好ましくは250~500μm、特に好ましくは350~450μmである。また、本工程で得られる吸水性樹脂粒子全体に対する、上記粒子径が150μm未満の吸水性樹脂粒子の割合は、好ましくは10重量%以下、より好ましくは5重量%以下、さらに好ましくは1重量%以下である。また、本工程で得られる吸水性樹脂粒子全体に対する、上記粒子径が850μm以上の吸水性樹脂粒子の割合は、好ましくは5重量%以下、より好ましくは3重量%以下、さらに好ましくは1重量%以下である。なお、これらの吸水性樹脂粒子の割合の下限値としては、何れの場合も少ないほど好ましく、0重量%が望まれるが、0.1重量%程度でもよい。さらに、吸水性樹脂粒子の粒度分布の対数標準偏差(σζ)は、好ましくは0.20~0.50、より好ましくは0.25~0.40、さらに好ましくは0.27~0.35である。なお、吸水性樹脂粒子の粒度は、米国特許第7638570号およびEDANA ERT420.2-02に開示されている測定方法に準じて、標準篩を用いて測定される。 The particle size of the water-absorbent resin particles obtained in this step is, as a weight average particle size (D50), usually 100 to 2000 μm, preferably 200 to 600 μm, more preferably 200 to 550 μm, further preferably 250 to 500 μm, and particularly preferably. Is 350 to 450 μm. Further, the ratio of the water-absorbent resin particles having a particle diameter of less than 150 μm to the entire water-absorbent resin particles obtained in this step is preferably 10% by weight or less, more preferably 5% by weight or less, and still more preferably 1% by weight. It is as follows. Further, the ratio of the water-absorbent resin particles having a particle diameter of 850 μm or more to the entire water-absorbent resin particles obtained in this step is preferably 5% by weight or less, more preferably 3% by weight or less, and still more preferably 1% by weight. It is as follows. The lower limit of the ratio of the water-absorbing resin particles is preferably as small as possible in each case, and 0% by weight is desired, but may be about 0.1% by weight. Further, the logarithmic standard deviation (σζ) of the particle size distribution of the water-absorbent resin particles is preferably 0.20 to 0.50, more preferably 0.25 to 0.40, and still more preferably 0.27 to 0.35. is there. The particle size of the water-absorbent resin particles is measured using a standard sieve according to the measurement method disclosed in US Pat. No. 7,638,570 and EDANA@ERT420.2-02.
 上述した粒子径や粒度分布は、最終製品としての吸水性樹脂粉末についても適用される。そのため、吸水性樹脂粉末が上記範囲の粒子径や粒度分布を維持するように、後述のように表面架橋処理(表面架橋工程)されることが好ましく、表面架橋工程以降に整粒工程を設けて粒度調整されることがより好ましい。 粒子 The particle size and particle size distribution described above are also applied to the water absorbent resin powder as the final product. Therefore, the water-absorbent resin powder is preferably subjected to a surface cross-linking treatment (surface cross-linking step) as described later so as to maintain the particle diameter and the particle size distribution in the above ranges. More preferably, the particle size is adjusted.
 (2-6)表面架橋工程
 本発明の一実施形態に係る製造方法は、濃度5重量%以上の多価金属塩水溶液を、流動層混合機内において表面架橋時または表面架橋後の吸水性樹脂粒子に噴霧する噴霧工程を有する。すなわち、本発明の一実施形態に係る製造方法は、吸水性樹脂粒子を有機表面架橋剤で表面架橋する工程を含む。以下、本工程を「表面架橋工程」とも称する。
(2-6) Surface Cross-linking Step The production method according to one embodiment of the present invention relates to a method for preparing a water-absorbent resin particle having a concentration of 5% by weight or more at the time of surface crosslinking or after surface crosslinking in a fluidized bed mixer. Spraying step. That is, the production method according to one embodiment of the present invention includes a step of surface-crosslinking the water-absorbent resin particles with an organic surface crosslinking agent. Hereinafter, this step is also referred to as “surface crosslinking step”.
 表面架橋とは、吸水性樹脂粒子の表面層(表面近傍、吸水性樹脂粒子表面から通常は数10μm前後)にさらに架橋密度の高い部分を設けることである。表面でのラジカル架橋や表面重合、表面架橋剤との架橋反応等によって架橋密度の高い部分を形成することができる。物性面から、本発明の一実施形態の表面架橋は、吸水性樹脂の官能基と共有結合する有機表面架橋剤での表面架橋を意図する。 Surface cross-linking means providing a portion having a higher cross-linking density in the surface layer of the water-absorbent resin particles (near the surface, usually about several tens of μm from the surface of the water-absorbent resin particles). A portion having a high crosslinking density can be formed by radical crosslinking on the surface, surface polymerization, a crosslinking reaction with a surface crosslinking agent, or the like. In terms of physical properties, the surface cross-linking in one embodiment of the present invention intends surface cross-linking with an organic surface cross-linking agent that covalently bonds to a functional group of the water-absorbent resin.
 本工程の手順は、有機表面架橋剤を用いて吸水性樹脂粒子を表面架橋できる限りにおいて、特に限定されないが、例えば、以下の(I)および(II)の手順を含んでいる。 手 順 The procedure of this step is not particularly limited as long as the water-absorbent resin particles can be surface-crosslinked using an organic surface crosslinking agent, and includes, for example, the following procedures (I) and (II).
 (I)吸水性樹脂に有機表面架橋剤を混合する工程
 本発明の一実施形態の有機表面架橋剤による表面架橋としては、重合性モノマーによる表面架橋重合や、吸水性樹脂の官能基と共有結合またはイオン結合しうる有機表面架橋剤による表面架橋が挙げられる。
(I) Step of mixing organic surface cross-linking agent with water-absorbent resin Surface cross-linking with an organic surface cross-linking agent according to one embodiment of the present invention includes surface cross-linking polymerization with a polymerizable monomer and covalent bonding with a functional group of the water-absorbing resin. Alternatively, surface cross-linking with an organic surface cross-linking agent capable of ionic bonding may be mentioned.
 本発明の一実施形態の有機表面架橋剤は、吸水性樹脂が有する官能基、特に、カルボキシル基と共有結合反応し、架橋構造を形成し得る有機架橋剤が好ましい。特に好ましくは以下の有機架橋剤が用いられる。例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、1,3-プロパンジオール、ジプロピレングリコール、2,2,4-トリメチル-1,3-ペンタンジオール、ポリプロピレングリコール、グリセリン、ポリグリセリン、2-ブテン-1,4-ジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,2-シクロヘキサンジメタノール、1,2-シクロヘキサノール、トリメチロールプロパン、ジエタノールアミン、トリエタノールアミン、ポリオキシプロピレン、オキシエチレン-オキシプロピレンブロック共重合体、ペンタエリスリトール、ソルビトール等の多価アルコール(吸水性樹脂のCOOHと脱水エステル化で架橋);
 エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセロールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、グリシドール等のエポキシ化合物(吸水性樹脂のCOOHとエポキシ基で架橋);
 エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、ポリエチレンイミン等の多価アミン化合物(吸水性樹脂のCOOHとアミド化で架橋)や、それらの無機塩ないし有機塩(例えば、アゼチジニウム塩等);
 2,4-トリレンジイソシアネート、ヘキサメチレンジイソシアネート等の多価イソシアネート化合物;
 1,2-エチレンビスオキサゾリン等の多価オキサゾリン化合物;
 尿素、チオ尿素、グアニジン、ジシアンジアミド、2-オキサゾリジノン等の炭酸誘導体;
 1,3-ジオキソラン-2-オン、4-メチル-1,3-ジオキソラン-2-オン、4,5-ジメチル-1,3-ジオキソラン-2-オン、4,4-ジメチル-1,3-ジオキソラン-2-オン、4-エチル-1,3-ジオキソラン-2-オン、4-ヒドロキシメチル-1,3-ジオキソラン-2-オン、1,3-ジオキサン-2-オン、4-メチル-1,3-ジオキサン-2-オン、4,6-ジメチル-1,3-ジオキサン-2-オン、1,3-ジオキソパン-2-オン等のアルキレンカーボネート化合物;
 オキサゾリジノンなどのモノまたは多価オキサゾリジノン化合物;
 エピクロロヒドリン、エピブロムヒドリン、α-メチルエピクロロヒドリン等のハロエポキシ、カチオン性高分子化合物(例えば、デックハーキュレス製カイメン;登録商標);γ-グリシドキシプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン等のシランカップリング剤;3-メチル-3-オキセタンメタノール、3-エチル-3-オキセタンメタノール、3-ブチル-3-オキセタンメタノール、3-メチル-3-オキセタンエタノール、3-エチル-3-オキセタンエタノール、3-ブチル-3-オキセタンエタノール、3-クロロメチル-3-メチルオキセタン、3-クロロメチル-3-エチルオキセタン、多価オキセタン化合物等のオキセタン化合物;等である。これら有機表面架橋剤は、1種のみを用いてもよいし、2種以上を併用してもよい。好ましくは多価アルコール、多価グリシジル、アルキレンカーボネート、オキサゾリジノン化合物から選ばれる1種以上の有機表面架橋剤が使用される。
The organic surface cross-linking agent of one embodiment of the present invention is preferably an organic cross-linking agent capable of forming a cross-linked structure through a covalent bond reaction with a functional group, particularly a carboxyl group, of the water-absorbing resin. Particularly preferably, the following organic crosslinking agents are used. For example, ethylene glycol, diethylene glycol, propylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, 1,3-propanediol, dipropylene glycol, 2,2,4-trimethyl-1,3-pentanediol, polypropylene glycol, Glycerin, polyglycerin, 2-butene-1,4-diol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,2-cyclohexanedimethanol , 1,2-cyclohexanol, trimethylolpropane, diethanolamine, triethanolamine, polyoxypropylene, oxyethylene-oxypropylene block copolymer, pentaerythritol, sorbitol Polyhydric alcohol (crosslinked with COOH and dehydration esterification of the water-absorbing resin);
Epoxy compounds such as ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerol polyglycidyl ether, diglycerol polyglycidyl ether, polyglycerol polyglycidyl ether, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, glycidol, etc. Cross-linked with COOH and epoxy groups);
Polyamine compounds such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine and polyethyleneimine (crosslinked by amidation with COOH of a water-absorbent resin), and inorganic or organic salts thereof (for example, azetidinium) Salt, etc.);
Polyvalent isocyanate compounds such as 2,4-tolylene diisocyanate and hexamethylene diisocyanate;
Polyvalent oxazoline compounds such as 1,2-ethylenebisoxazoline;
Carbonic acid derivatives such as urea, thiourea, guanidine, dicyandiamide, 2-oxazolidinone;
1,3-dioxolan-2-one, 4-methyl-1,3-dioxolan-2-one, 4,5-dimethyl-1,3-dioxolan-2-one, 4,4-dimethyl-1,3- Dioxolan-2-one, 4-ethyl-1,3-dioxolan-2-one, 4-hydroxymethyl-1,3-dioxolan-2-one, 1,3-dioxan-2-one, 4-methyl-1 Alkylene carbonate compounds such as 1,3-dioxan-2-one, 4,6-dimethyl-1,3-dioxan-2-one and 1,3-dioxopan-2-one;
Mono- or polyvalent oxazolidinone compounds such as oxazolidinone;
Haloepoxy such as epichlorohydrin, epibromhydrin, α-methylepichlorohydrin, cationic polymer compound (for example, Kaimen manufactured by Deck Hercules; registered trademark); γ-glycidoxypropyltrimethoxysilane, γ- Silane coupling agents such as aminopropyltriethoxysilane; 3-methyl-3-oxetanemethanol, 3-ethyl-3-oxetanemethanol, 3-butyl-3-oxetanemethanol, 3-methyl-3-oxetaneethanol, 3- Oxetane compounds such as ethyl-3-oxetaneethanol, 3-butyl-3-oxetaneethanol, 3-chloromethyl-3-methyloxetane, 3-chloromethyl-3-ethyloxetane, and polyvalent oxetane compounds; One of these organic surface crosslinking agents may be used alone, or two or more thereof may be used in combination. Preferably, one or more organic surface crosslinking agents selected from polyhydric alcohols, polyglycidyls, alkylene carbonates, and oxazolidinone compounds are used.
 有機表面架橋剤の使用量は、用いる化合物やそれらの組み合わせ等にもよるが、吸水性樹脂粒子100重量部に対して、0.001~10重量部の範囲内が好ましく、0.01~5重量部の範囲内がより好ましい。本発明の一実施形態において、有機表面架橋剤は、水に溶解して(すなわち、有機表面架橋剤水溶液として)使用され得る。上記水の量は、吸水性樹脂粒子100重量部に対して、好ましくは0.5~20重量部、より好ましくは0.5~10重量部の範囲である。また、本発明の一実施形態において、水以外に、親水性有機溶媒を用いることも可能である。さらに、吸水性樹脂粒子への有機表面架橋剤水溶液の混合に際し、本発明の効果を妨げない範囲、例えば、吸水性樹脂粒子100重量部に対して、0~10重量部、好ましくは0~5重量部、より好ましくは0~1重量部で、水不溶性微粒子粉体および界面活性剤等を共存させてもよい。 The amount of the organic surface cross-linking agent used depends on the compound to be used and the combination thereof, but is preferably in the range of 0.001 to 10 parts by weight, more preferably 0.01 to 5 parts by weight, per 100 parts by weight of the water-absorbing resin particles. More preferably, it is in the range of parts by weight. In one embodiment of the present invention, the organic surface crosslinker can be used dissolved in water (ie, as an organic surface crosslinker aqueous solution). The amount of the water is preferably 0.5 to 20 parts by weight, more preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the water-absorbent resin particles. In one embodiment of the present invention, a hydrophilic organic solvent may be used in addition to water. Further, in mixing the aqueous solution of the organic surface cross-linking agent with the water-absorbent resin particles, the effect of the present invention is not impaired, for example, 0 to 10 parts by weight, preferably 0 to 5 parts by weight per 100 parts by weight of the water-absorbent resin particles. The water-insoluble fine particle powder, the surfactant, and the like may coexist in a weight part, more preferably 0 to 1 weight part.
 本発明の一実施形態では上記有機表面架橋剤に加えて、吸水性樹脂を多価金属塩で表面架橋することを排除しない。吸水性樹脂を多価金属塩で表面架橋する場合は、表面架橋剤としての多価金属塩とは別途、表面処理工程で水溶性多価金属塩を添加する。 で は In one embodiment of the present invention, in addition to the organic surface cross-linking agent, the surface cross-linking of the water absorbent resin with a polyvalent metal salt is not excluded. When the surface of the water-absorbent resin is crosslinked with a polyvalent metal salt, a water-soluble polyvalent metal salt is added in the surface treatment step separately from the polyvalent metal salt as a surface crosslinking agent.
 吸水性樹脂粒子と有機表面架橋剤とをより均一に混合するため、非架橋性の水溶性無機塩基類(好ましくは、アルカリ金属塩、アンモニウム塩、アルカリ金属水酸化物、および、アンモニアあるいはその水酸化物)や、非還元性アルカリ金属塩pH緩衝剤(好ましくは炭酸水素塩、リン酸二水素塩、リン酸水素塩等)を、さらに吸水性樹脂粒子と有機表面架橋剤とに添加してもよい。これらの使用量は、吸水性樹脂粒子の種類や粒子径等にもよるが、吸水性樹脂粒子の固形分100質量部に対して、0.005~10質量部が好ましく、0.05~5質量部がより好ましい。 In order to mix the water-absorbent resin particles and the organic surface cross-linking agent more uniformly, non-cross-linkable water-soluble inorganic bases (preferably, alkali metal salts, ammonium salts, alkali metal hydroxides, and ammonia or water thereof) Oxide) and a non-reducing alkali metal salt pH buffer (preferably hydrogen carbonate, dihydrogen phosphate, hydrogen phosphate, etc.) are further added to the water-absorbing resin particles and the organic surface crosslinking agent. Is also good. The amount of these used depends on the type and particle size of the water-absorbing resin particles, but is preferably 0.005 to 10 parts by mass, more preferably 0.05 to 5 parts by mass per 100 parts by mass of the solid content of the water-absorbing resin particles. Parts by mass are more preferred.
 吸水性樹脂粒子と有機表面架橋剤とを混合する方法は特に限定されないが、たとえば吸水性樹脂粒子を親水性有機溶剤に浸漬し、有機表面架橋剤水溶液を混合する方法、吸水性樹脂粒子に直接、有機表面架橋剤水溶液を噴霧若しくは滴下して混合する方法等が例示できる。 The method for mixing the water-absorbing resin particles and the organic surface cross-linking agent is not particularly limited. For example, a method of immersing the water-absorbing resin particles in a hydrophilic organic solvent and mixing the organic surface cross-linking agent aqueous solution, And a method in which an aqueous solution of an organic surface crosslinking agent is sprayed or dropped and mixed.
 吸水性樹脂粒子と有機表面架橋剤水溶液とを混合する際に用いられる混合装置は、これら各物質を均一に、かつ確実に混合するために、大きな混合力を備えていることが好ましい。上記の混合装置としては、例えば、円筒型混合機、二重壁円錐混合機、高速攪拌型混合機、V字型混合機、リボン型混合機、スクリュー型混合機、双腕型ニーダー、粉砕型ニーダー、回転式混合機、気流型混合機、タービュライザー(商標)、バッチ式Ploughshare(商標)ミキサー、連続式Ploughshare(商標)ミキサー、Schugi(商標)ミキサー、流動層混合機等が好適である。 (4) It is preferable that the mixing device used for mixing the water-absorbent resin particles and the aqueous solution of the organic surface cross-linking agent has a large mixing force in order to uniformly and surely mix these substances. Examples of the mixing device include a cylindrical mixer, a double-walled conical mixer, a high-speed stirring mixer, a V-shaped mixer, a ribbon mixer, a screw mixer, a double-arm kneader, and a pulverizer. A kneader, a rotary mixer, an air-flow mixer, a turbulizer (trademark), a batch Ploughshare (trademark) mixer, a continuous Ploughshare (trademark) mixer, a Schugi (trademark) mixer, a fluidized bed mixer, and the like are preferable. .
 (II)吸水性樹脂粒子と有機表面架橋剤水溶液との混合物を加熱する加熱工程
 有機表面架橋剤を混合した後の吸水性樹脂粒子は、表面架橋を促進するために加熱される。加熱温度は、40~300℃、好ましくは120~250℃、より好ましくは150~250℃の範囲である。加熱処理時間は、好ましくは1分間~2時間、より好ましくは5分間~1時間である。加熱処理は、通常の乾燥機または加熱炉を用いて行うことができる。加熱処理温度が40℃未満の場合には、加圧下の吸収倍率等の吸収特性が十分に改善されない場合がある。加熱処理温度が300℃を超える場合には、吸水性樹脂粒子の劣化を引き起こし、各種性能が低下する場合がある。
(II) A heating step of heating a mixture of the water-absorbent resin particles and the aqueous solution of the organic surface cross-linking agent The water-absorbent resin particles after mixing the organic surface cross-linking agent are heated to promote surface cross-linking. The heating temperature is in the range of 40 to 300 ° C, preferably 120 to 250 ° C, more preferably 150 to 250 ° C. The heat treatment time is preferably from 1 minute to 2 hours, more preferably from 5 minutes to 1 hour. The heat treatment can be performed using a usual dryer or heating furnace. When the heat treatment temperature is lower than 40 ° C., the absorption characteristics such as the absorption capacity under pressure may not be sufficiently improved. When the heat treatment temperature exceeds 300 ° C., the water-absorbent resin particles may be deteriorated, and various performances may be reduced.
 吸水性樹脂粒子と有機表面架橋剤水溶液との混合物を加熱する際に用いられる装置(さらに任意に多価金属塩水溶液を噴霧添加する装置)は、例えばドラムドライヤー、パドルドライヤー、流動層乾燥機、バンド乾燥機等が挙げられる。これらの中でも撹拌力の観点からパドルドライヤーが好ましい。 Apparatuses used for heating the mixture of the water-absorbent resin particles and the aqueous solution of the organic surface cross-linking agent (apparatus for optionally adding a polyvalent metal salt aqueous solution by spraying) include, for example, a drum dryer, a paddle dryer, a fluidized-bed dryer, A band dryer and the like can be mentioned. Among these, a paddle dryer is preferable from the viewpoint of stirring power.
 また、本発明の一実施形態における表面架橋工程としては、ラジカル重合性化合物を含む処理液を吸水性樹脂粒子に添加した後に、活性エネルギーを照射して表面架橋する方法が挙げられる。また、上記処理液に界面活性剤を添加し、活性エネルギーを照射して吸水性樹脂粒子を表面架橋することもできる。 The surface cross-linking step in one embodiment of the present invention includes a method in which a treatment liquid containing a radically polymerizable compound is added to water-absorbent resin particles, and then the surface is cross-linked by irradiation with active energy. Further, a surfactant may be added to the treatment liquid, and the surface of the water-absorbent resin particles may be cross-linked by irradiation with active energy.
 本工程により、吸水性樹脂粒子の加圧下吸水倍率が向上する。表面架橋された吸水性樹脂粒子は通常、すでに後述の好ましい範囲の加圧下吸水倍率を有する。即ち、表面架橋された吸水性樹脂粒子は通常、CRCが25g/g以上のときにAAP(0.7psi)が15g/g以上である。 This step improves the water absorption capacity of the water-absorbent resin particles under pressure. The surface-crosslinked water-absorbent resin particles usually have a water absorption capacity under pressure in a preferred range described later. That is, the surface-crosslinked water-absorbent resin particles usually have an AAP (0.7 psi) of 15 g / g or more when the CRC is 25 g / g or more.
 (III)冷却工程
 本発明の一実施形態に係る製造方法は、さらに、(III)吸水性樹脂粒子を冷却する工程を含んでいてもよい。以下、本工程を「冷却工程」とも称する。
(III) Cooling Step The production method according to one embodiment of the present invention may further include (III) a step of cooling the water-absorbent resin particles. Hereinafter, this step is also referred to as a “cooling step”.
 冷却工程は、余分な表面架橋反応の進行を停止させ、粉体(吸水性樹脂粉末)の取扱性を良くする観点から、冷却工程は表面架橋工程での加熱後に行われることが好ましい。 The cooling step is preferably performed after the heating in the surface crosslinking step from the viewpoint of stopping the progress of the extraneous surface crosslinking reaction and improving the handleability of the powder (water-absorbent resin powder).
 具体的には、表面架橋工程での加熱で高温になった吸水性樹脂粒子を、冷却工程において、冷風や冷却伝面等の冷媒と接触させて強制冷却する。 Specifically, in the cooling step, the water-absorbent resin particles that have been heated to a high temperature in the surface cross-linking step are brought into contact with a cooling medium such as cold air or a cooling transfer surface to be forcibly cooled.
 冷却温度は、30~100℃が好ましく、40~80℃がより好ましい。冷却温度が低すぎると、吸水性樹脂粉末の粉体特性が悪くなる場合や、吸水性樹脂粉末の物性低下が起こる場合がある。なお、「冷却温度」は冷風を用いる場合は冷風の温度、冷却伝面を用いる場合は伝面の温度を意図する。また、冷風および冷却伝面を併用する場合はそれぞれ温度を意図し、その両方について上記範囲を満たすことが好ましい。 The cooling temperature is preferably 30 to 100 ° C, more preferably 40 to 80 ° C. If the cooling temperature is too low, the powder properties of the water-absorbent resin powder may be deteriorated, or the physical properties of the water-absorbent resin powder may be reduced. Note that the “cooling temperature” means the temperature of the cool air when using cool air, and the temperature of the transfer surface when using a cooling transfer surface. Further, when both the cold air and the cooling transmission surface are used, it is preferable that the temperature is intended, and both of them satisfy the above range.
 冷却時間は、好ましくは1分間~1時間、より好ましくは5分間~40分である。 The cooling time is preferably 1 minute to 1 hour, more preferably 5 minutes to 40 minutes.
 本工程で用いられる装置は、例えばパドルドライヤー、流動層乾燥機、空気輸送装置、バンド乾燥機等が挙げられる。ただし本工程では、パドルドライヤーは冷媒を、流動層乾燥機およびバンド乾燥機は冷風を用いる。 装置 The apparatus used in this step includes, for example, a paddle dryer, a fluidized bed dryer, a pneumatic transport device, a band dryer and the like. However, in this step, the paddle dryer uses a refrigerant, and the fluidized bed dryer and the band dryer use cold air.
 (2-7)表面処理工程
 本工程は、流動層混合機内において吸水性樹脂粒子に水溶性多価金属塩水溶液を噴霧、または水溶性多価金属塩粒子を添加し、吸水性樹脂粒子の表面に水溶性多価金属塩粒子を付着させ、吸水性樹脂粒子の表面処理を行う工程である。
(2-7) Surface Treatment Step In this step, the water-soluble polyvalent metal salt aqueous solution is sprayed on the water-absorbent resin particles or the water-soluble polyvalent metal salt particles are added to the surface of the water-absorbent resin particles in the fluidized bed mixer. This is a step of adhering water-soluble polyvalent metal salt particles to the surface and treating the surface of the water-absorbing resin particles.
 (2-7-1)噴霧工程
 本発明の一実施形態に係る製造方法(1)は、有機表面架橋剤で表面架橋され且つ水溶性多価金属塩を含む吸水性樹脂粉末の製造方法であって、多価金属塩の濃度が5重量%以上の多価金属塩水溶液を、流動層混合機内において表面架橋時または表面架橋後の吸水性樹脂粉末粒子(好ましくは表面架橋後の吸水性樹脂粒子)に噴霧する噴霧工程を有し、上記多価金属塩水溶液の噴霧位置での風温が50℃以上である。また、本発明の一実施形態に係る製造方法(1)では、好ましくは流動層混合機内において表面架橋後の吸水性樹脂粒子の冷却も同時に行われる。
(2-7-1) Spraying Step The production method (1) according to one embodiment of the present invention is a method for producing a water-absorbent resin powder which is surface-crosslinked with an organic surface crosslinking agent and contains a water-soluble polyvalent metal salt. Then, a polyvalent metal salt aqueous solution having a polyvalent metal salt concentration of 5% by weight or more is mixed with a water-absorbent resin powder particle (preferably a surface-crosslinked water-absorbent resin particle) at the time of surface crosslinking or after surface crosslinking in a fluidized bed mixer. ), Wherein the air temperature at the spray position of the aqueous polyvalent metal salt solution is 50 ° C. or higher. Further, in the production method (1) according to one embodiment of the present invention, preferably, the water-absorbent resin particles after the surface cross-linking are simultaneously performed in the fluidized bed mixer.
 以下、表面架橋時または表面架橋後の吸水性樹脂粒子に多価金属塩水溶液を噴霧する工程を「噴霧工程」とも称する。 Hereinafter, the step of spraying the aqueous polyvalent metal salt solution onto the water-absorbing resin particles at the time of surface crosslinking or after the surface crosslinking is also referred to as “spraying step”.
 本発明の一実施形態において「多価金属塩水溶液を表面架橋時の吸水性樹脂粒子に噴霧する」とは、流動層混合機内で表面架橋を行う場合、有機表面架橋剤の混合や有機表面架橋剤との反応時に同時または別途に多価金属塩水溶液を噴霧することである。具体的には、有機表面架橋剤の混合機として流動層混合機を使用して多価金属塩水溶液を噴霧したり、有機表面架橋剤を混合した吸水性樹脂粒子の加熱装置として流動層混合機を使用して多価金属塩水溶液を噴霧したり、また有機表面架橋剤の混合機および加熱装置とは別に流動層混合機を使用して多価金属塩水溶液を別途噴霧したりできる。 In one embodiment of the present invention, "spraying the polyvalent metal salt aqueous solution onto the water-absorbent resin particles at the time of surface crosslinking" means that when performing surface crosslinking in a fluidized bed mixer, mixing of an organic surface crosslinking agent or organic surface crosslinking. Spraying a polyvalent metal salt aqueous solution simultaneously or separately during the reaction with the agent. Specifically, a fluidized bed mixer is used as a mixer for the organic surface cross-linking agent to spray a polyvalent metal salt aqueous solution, or a fluidized bed mixer is used as a heating device for water-absorbent resin particles mixed with the organic surface cross-linking agent. And an aqueous polyvalent metal salt solution can be separately sprayed using a fluidized bed mixer separately from the organic surface crosslinking agent mixer and heating device.
 ここで、有機表面架橋剤の混合機として流動層混合機を使用して多価金属塩水溶液を噴霧する場合、有機表面架橋剤は吸水性樹脂粒子中にわずかに浸透することが好ましい。一方、多価金属塩は吸水性樹脂粒子表面に析出させたいため、本工程で多価金属塩水溶液を噴霧する場合、有機表面架橋剤と多価金属塩水溶液とを別途噴霧、すなわち有機表面架橋剤の添加口とは異なる添加口から多価金属塩水溶液を噴霧するのが好ましく、吸水性樹脂粒子に有機表面架橋剤を滴下または噴霧した後、多価金属塩水溶液を噴霧するのがより好ましい。 Here, when a polyvalent metal salt aqueous solution is sprayed using a fluidized bed mixer as a mixer for the organic surface cross-linking agent, it is preferable that the organic surface cross-linking agent slightly penetrates into the water absorbent resin particles. On the other hand, since the polyvalent metal salt is desired to precipitate on the surface of the water-absorbent resin particles, when the aqueous solution of the polyvalent metal salt is sprayed in this step, the organic surface crosslinking agent and the aqueous solution of the polyvalent metal salt are separately sprayed, that is, the organic surface crosslinking is performed. It is preferable to spray the polyvalent metal salt aqueous solution from an addition port different from the addition port of the agent, and it is more preferable to spray the polyvalent metal salt aqueous solution after dropping or spraying the organic surface cross-linking agent on the water absorbent resin particles. .
 また、冷却工程の冷却機として流動層混合機を使用して多価金属塩水溶液を噴霧することもできる。なお、冷却工程について便宜上「表面架橋工程」に記載しているが、冷却工程を行う際、表面架橋反応は実質終了しているので、本工程で多価金属塩水溶液を噴霧する場合、表面架橋後の吸水性樹脂粒子に対する多価金属塩水溶液の噴霧と同義である。表面処理工程では、噴霧は好ましくは流動層混合機の上部から行われるので、仮に冷風の温度が本発明の一実施形態の表面処理工程の好ましい温度範囲より低くとも、高温の吸水性樹脂粒子の層を通った後、噴霧位置での風温が上記範囲であれば、安定して本発明を実施できる。 Alternatively, a fluidized bed mixer may be used as a cooler in the cooling step to spray an aqueous solution of a polyvalent metal salt. Although the cooling step is described in “Surface Cross-linking Step” for convenience, the surface cross-linking reaction is substantially completed when the cooling step is performed. This is synonymous with the subsequent spraying of the aqueous polyvalent metal salt solution onto the water-absorbing resin particles. In the surface treatment step, since the spraying is preferably performed from the top of the fluidized bed mixer, even if the temperature of the cold air is lower than the preferred temperature range of the surface treatment step of one embodiment of the present invention, the high-temperature water-absorbent resin particles After passing through the layer, if the air temperature at the spray position is within the above range, the present invention can be stably performed.
 流動層を形成する流動層混合機としては、流動層乾燥機/冷却機や流動層造粒機として販売されている公知のものを使用できるが、例えば、ラボスケールであればスプレードライヤー Pulvis GBシリーズ(ヤマト科学社製)等を使用することができる。 As a fluidized bed mixer for forming a fluidized bed, a known mixer sold as a fluidized bed dryer / cooler or a fluidized bed granulator can be used. For example, in a laboratory scale, a spray dryer {Pulvis} GB series is used. (Manufactured by Yamato Scientific Co., Ltd.) can be used.
 噴霧工程において、噴霧位置での風温は、50℃以上であり、好ましくは60℃以上であり、より好ましくは80℃以上であり、さらに好ましくは100℃以上である。上記風温の上限は、好ましくは250℃以下であり、より好ましくは220℃であり、さらに好ましくは200℃以下である。本明細書中、「噴霧位置での風温」とは、噴霧口付近の風温であり、噴霧口付近の風温を温度計によって測定することができる。なお、後述のように噴霧口は好ましくは流動層混合機内の空間部分に設置されることから、流動層混合機内の空間部分の温度ということもできる。噴霧位置での風温が上記温度であれば、多価金属塩水溶液から溶媒成分(特に水)を好適に蒸発させ、微細な水溶性多価金属塩(本明細書中、「水溶性多価金属塩粒子」とも称される)を吸水性樹脂粉末表面に付着させることができる。すなわち、噴霧された多価金属塩水溶液が吸水性樹脂に吸収される前に、流動層混合機内の気層または吸水性樹脂の表面において、多価金属塩水溶液の液滴が急速に乾燥して、微細な水溶性多価金属塩が塊状、略球状、瘤状に吸水性樹脂の表面に付着すると推定される。 (4) In the spraying step, the air temperature at the spraying position is 50 ° C. or higher, preferably 60 ° C. or higher, more preferably 80 ° C. or higher, and further preferably 100 ° C. or higher. The upper limit of the air temperature is preferably 250 ° C. or lower, more preferably 220 ° C., and further preferably 200 ° C. or lower. In this specification, the “wind temperature at the spray position” is the wind temperature near the spray port, and the wind temperature near the spray port can be measured by a thermometer. In addition, as described later, since the spray port is preferably installed in a space portion in the fluidized bed mixer, it can also be referred to as the temperature of the space portion in the fluidized bed mixer. When the air temperature at the spray position is the above temperature, the solvent component (particularly water) is suitably evaporated from the aqueous solution of the polyvalent metal salt to form a fine water-soluble polyvalent metal salt (in the present specification, “water-soluble polyvalent metal salt”). Metal salt particles) can be attached to the surface of the water-absorbent resin powder. That is, before the sprayed aqueous solution of the polyvalent metal salt is absorbed by the water-absorbent resin, the droplets of the aqueous solution of the polyvalent metal salt rapidly dry on the air layer or the surface of the water-absorbent resin in the fluidized-bed mixer. It is presumed that the fine water-soluble polyvalent metal salt adheres to the surface of the water-absorbent resin in a lump, a substantially spherical shape, or a bump.
 噴霧工程において、導入される吸水性樹脂粒子の温度は50~250℃であることが好ましく、60~220℃であることがより好ましい。この温度は具体的には、バッチ式の流動層混合機の場合、噴霧直前の吸水性樹脂粒子の温度、連続式の流動層混合機の場合、噴霧箇所の直前の位置での吸水性樹脂粒子の温度を意図する。 温度 In the spraying step, the temperature of the water-absorbent resin particles introduced is preferably 50 to 250 ° C, more preferably 60 to 220 ° C. This temperature is, specifically, in the case of a batch type fluidized bed mixer, the temperature of the water absorbent resin particles immediately before spraying, in the case of a continuous type fluidized bed mixer, in the case of a continuous type fluidized bed mixer, the water absorbent resin particles at a position immediately before the spraying point Intended temperature.
 噴霧工程において、多価金属塩水溶液の噴霧方法は、特に限定されないが、噴霧される液滴のサイズが好適であるという観点からは、二流体スプレーを用いることが好ましい。 方法 In the spraying step, the method of spraying the aqueous solution of the polyvalent metal salt is not particularly limited, but it is preferable to use a two-fluid spray from the viewpoint that the size of the droplet to be sprayed is suitable.
 噴霧工程において、多価金属塩水溶液の噴霧は、流動層混合機の上部から行ってもよく、流動層混合機の下部から行ってもよい。すなわち、流動層混合機において、スプレーは上部に設置されていてもよく、下部に設置されていてもよい。しかし、水溶性多価金属塩粒子の形成のしやすさという観点からは、流動層混合機の上部から多価金属塩水溶液が噴霧されることが好ましい。一般的に流動層混合機は、下部から熱風を送ることにより、下部に導入された吸水性樹脂粒子を流動化させており、吸水性樹脂粒子が過度に舞い上がるのを防止するため、通常流動層混合機の上部を広くして、風速を遅くしている。流動層混合機の上部から多価金属塩水溶液を噴霧すると、従来技術では巨大な凝集物ができやすく、吸水性樹脂粒子の流動が止まる恐れがあったが、本発明の一実施形態の製造条件では吸水性樹脂粒子の流動を維持できる。さらに、流動層混合機の上部から多価金属塩水溶液を噴霧させると、多価金属塩水溶液が吸水性樹脂粒子に到達するまでの過程で多価金属塩水溶液の溶媒成分が蒸発するため、吸水性樹脂粒子表面で固体の水溶性多価金属塩粒子が形成(析出)されやすいと考えられる。一方、流動層混合機の下部から多価金属塩水溶液を噴霧させると、多価金属塩水溶液の溶媒成分が蒸発することなく、多価金属塩水溶液が吸水性樹脂粒子にすぐに接触するため、水溶性多価金属塩粒子が形成されにくいと考えられる。 に お い て In the spraying step, the spraying of the aqueous solution of the polyvalent metal salt may be performed from the upper part of the fluidized bed mixer, or may be performed from the lower part of the fluidized bed mixer. That is, in the fluidized bed mixer, the spray may be installed at the upper part or may be installed at the lower part. However, from the viewpoint of easy formation of water-soluble polyvalent metal salt particles, it is preferable that the aqueous solution of the polyvalent metal salt is sprayed from above the fluidized bed mixer. In general, a fluidized bed mixer is configured to fluidize water-absorbent resin particles introduced into a lower portion by sending hot air from a lower portion.In order to prevent the water-absorbent resin particles from excessively rising, a fluidized bed mixer is generally used. The top of the mixer is widened to reduce the wind speed. When a polyvalent metal salt aqueous solution is sprayed from the upper part of the fluidized bed mixer, in the related art, huge aggregates are easily formed, and there is a possibility that the flow of the water absorbent resin particles may be stopped. Thus, the flow of the water-absorbent resin particles can be maintained. Furthermore, when the polyvalent metal salt aqueous solution is sprayed from the upper part of the fluidized bed mixer, the solvent component of the polyvalent metal salt aqueous solution evaporates in the process until the polyvalent metal salt aqueous solution reaches the water-absorbing resin particles. It is considered that solid water-soluble polyvalent metal salt particles are easily formed (precipitated) on the surface of the conductive resin particles. On the other hand, when the polyvalent metal salt aqueous solution is sprayed from the lower portion of the fluidized bed mixer, the solvent component of the polyvalent metal salt aqueous solution does not evaporate, and the polyvalent metal salt aqueous solution immediately contacts the water-absorbing resin particles. It is considered that water-soluble polyvalent metal salt particles are hardly formed.
 上記多価金属塩水溶液中の水溶性多価金属塩は、表面架橋された吸水性樹脂粒子100重量部に対して、0.01~1重量部であることが好ましく、0.05~0.5重量部であることがより好ましい。水溶性多価金属塩が上記割合であれば、通液性に優れた吸水性樹脂粉末を得ることができる。 The amount of the water-soluble polyvalent metal salt in the aqueous polyvalent metal salt solution is preferably 0.01 to 1 part by weight, preferably 0.05 to 0.1 part by weight, per 100 parts by weight of the surface-crosslinked water-absorbing resin particles. More preferably, it is 5 parts by weight. When the ratio of the water-soluble polyvalent metal salt is in the above range, a water-absorbent resin powder having excellent liquid permeability can be obtained.
 本明細書中、水溶性多価金属塩は、2価以上、好ましくは3価以上、特に3価または4価の原子価を有する金属の塩を意図する。「水溶性」とは20℃の水に5重量%以上溶解することを意図し、ここで溶解度は結晶水を除いた形で計算(例;硫酸アルミニウムの18水和物の水溶液は、硫酸アルミニウムとしての濃度で計算)される。溶解度が11重量%以上、さらに15重量%以上、特に20重量%以上である水溶性多価金属塩が、本発明の一実施形態において好ましく適用される。本明細書中、「水溶性多価金属塩」を単に「多価金属塩」とも称する。 中 In the present specification, the water-soluble polyvalent metal salt is intended to mean a salt of a metal having a valence of 2 or more, preferably 3 or more, especially trivalent or tetravalent. "Water-soluble" is intended to dissolve 5% by weight or more in water at 20 ° C, where the solubility is calculated without water of crystallization (eg, an aqueous solution of aluminum sulfate 18-hydrate is aluminum sulfate). Calculated as concentration). A water-soluble polyvalent metal salt having a solubility of 11% by weight or more, further 15% by weight or more, particularly 20% by weight or more is preferably applied in one embodiment of the present invention. In the present specification, the “water-soluble polyvalent metal salt” is simply referred to as “polyvalent metal salt”.
 本発明の一実施形態で使用することができる多価金属塩としては、多価金属カチオンの塩または水酸化物を意図し、特に多価金属の有機酸塩ないし無機酸塩であり、代表的には、塩化アルミニウム、ポリ塩化アルミニウム、硫酸アルミニウム、硝酸アルミニウム、ビス硫酸カリウムアルミニウム、ビス硫酸ナトリウムアルミニウム、カリウムミョウバン、アンモニウムミョウバン、ナトリウムミョウバン、アルミン酸ナトリウム、塩化カルシウム、硝酸カルシウム、塩化マグネシウム、硫酸マグネシウム、硝酸マグネシウム、塩化亜鉛、硫酸亜鉛、硝酸亜鉛、塩化ジルコニウム、硫酸ジルコニウム、硝酸ジルコニウム等を例示することができる。多価金属塩は一部が水酸化物、すなわち塩基性塩でもよい。また、これらの結晶水を有する塩を使用するのが好ましい。さらに溶解度にもよるが、アルミニウム、マグネシウム、カルシウム、亜鉛、ジルコニウム等の多価金属と有機酸(例えば、アニス酸、安息香酸、ギ酸、吉草酸、クエン酸、グリオキシル酸、グリコール酸、グルタル酸、コハク酸、酒石酸、乳酸、フマル酸、プロピオン酸、3-ヒドロキシプロピオン酸、マロン酸、イミジノ酢酸、リンゴ酸、イセチオン酸、アジピン酸、シュウ酸、サリチル酸、グルコン酸、ソルビン酸、p-オキシ安息香酸等)との組み合わせを例示することができる。 As the polyvalent metal salt that can be used in one embodiment of the present invention, a salt or hydroxide of a polyvalent metal cation is intended, and in particular, an organic acid salt or an inorganic acid salt of a polyvalent metal, Includes aluminum chloride, polyaluminum chloride, aluminum sulfate, aluminum nitrate, potassium aluminum bisulfate, sodium aluminum bisulfate, potassium alum, ammonium alum, sodium alum, sodium aluminate, calcium chloride, calcium nitrate, magnesium chloride, magnesium sulfate , Magnesium nitrate, zinc chloride, zinc sulfate, zinc nitrate, zirconium chloride, zirconium sulfate, zirconium nitrate, and the like. Part of the polyvalent metal salt may be a hydroxide, that is, a basic salt. Further, it is preferable to use salts having these waters of crystallization. Further, depending on the solubility, polyvalent metals such as aluminum, magnesium, calcium, zinc, zirconium and organic acids (for example, anisic acid, benzoic acid, formic acid, valeric acid, citric acid, glyoxylic acid, glycolic acid, glutaric acid, Succinic acid, tartaric acid, lactic acid, fumaric acid, propionic acid, 3-hydroxypropionic acid, malonic acid, imidinoacetic acid, malic acid, isethionic acid, adipic acid, oxalic acid, salicylic acid, gluconic acid, sorbic acid, p-oxybenzoic acid Etc.) can be exemplified.
 物性の観点から特に好ましいのは、水溶性アルミニウム塩(アルミニウム化合物)、中でも、本発明の一実施形態の多価金属塩の濃度に調整しやすいという観点から、塩化アルミニウム、ポリ塩化アルミニウム、硫酸アルミニウム、硝酸アルミニウム、ビス硫酸カリウムアルミニウム、ビス硫酸ナトリウムアルミニウム、カリウムミョウバン、アンモニウムミョウバン、ナトリウムミョウバン、アルミン酸ナトリウムが好ましく、硫酸アルミニウムが特に好ましく、硫酸アルミニウム18水塩、硫酸アルミニウム14~18水塩等の含水結晶の粉末は最も好適に使用することができる。これらは1種のみ用いてもよいし、2種以上を併用してもよい。 Particularly preferred from the viewpoint of physical properties are water-soluble aluminum salts (aluminum compounds). Among them, aluminum chloride, polyaluminum chloride, and aluminum sulfate are preferable from the viewpoint of being easily adjusted to the concentration of the polyvalent metal salt of one embodiment of the present invention. Aluminum nitrate, potassium aluminum bisulfate, sodium aluminum bisulfate, potassium alum, ammonium alum, sodium alum, sodium aluminate are preferred, aluminum sulfate is particularly preferred, aluminum sulfate 18 hydrate, aluminum sulfate 14-18 hydrate, etc. Hydrous crystalline powder can be most preferably used. These may be used alone or in combination of two or more.
 多価金属塩水溶液中の多価金属塩の濃度は、5重量%以上であることが好ましく、11重量%以上であることがより好ましく、15重量%以上であることがさらに好ましく、20重量%以上が特に好ましい。上記濃度の上限は飽和濃度を意図し、好ましくは40重量%以下であり、より好ましくは30重量%以下である。上記濃度が高いほど吸水性樹脂粒子表面に塊状の多価金属塩粒子ができやすいが、過度に濃度が高いと、噴霧ノズルの詰まりや粘度上昇など製造上のトラブルが発生しやすい。 The concentration of the polyvalent metal salt in the aqueous solution of the polyvalent metal salt is preferably 5% by weight or more, more preferably 11% by weight or more, further preferably 15% by weight or more, and more preferably 20% by weight. The above is particularly preferred. The upper limit of the concentration is intended to be a saturated concentration, and is preferably 40% by weight or less, more preferably 30% by weight or less. The higher the concentration, the easier it is to form massive polyvalent metal salt particles on the surface of the water-absorbent resin particles. However, if the concentration is excessively high, manufacturing problems such as clogging of the spray nozzle and an increase in viscosity are likely to occur.
 添加する多価金属塩水溶液の液温は室温でもよく、混合性や溶解度を調整するために、適宜、冷却ないし加熱し、例えば0~100℃としてもよい。 (4) The temperature of the aqueous solution of the polyvalent metal salt to be added may be room temperature, and may be appropriately cooled or heated to, for example, 0 to 100 ° C. in order to adjust the mixing property and solubility.
 表面処理工程では、さらに多価金属塩水溶液と同時に有機酸(塩)を同一溶液または別溶液で噴霧してもよい。有機酸(塩)を用いることにより、多価金属塩(例えば、アルミニウムイオン)が吸水性樹脂粒子の内部に浸透することを抑制し、多価金属塩粒子を吸水性樹脂粒子表面に均一に拡散させることができるため、吸水性樹脂粒子の通液性が大きく向上する。また、有機酸(塩)を用いることにより、従来のように金属成分が吸水性樹脂粒子の表面に面状にかつ不均一に付着してしまう問題を解消することができ、金属成分を吸水性樹脂粒子の表面近傍全体に細かい点状で均一に付着(局在)させることができるという効果を発揮できる。 In the surface treatment step, an organic acid (salt) may be sprayed with the same solution or another solution simultaneously with the aqueous polyvalent metal salt solution. By using an organic acid (salt), it is possible to prevent the polyvalent metal salt (for example, aluminum ion) from penetrating inside the water-absorbing resin particles, and to uniformly diffuse the polyvalent metal salt particles on the surface of the water-absorbing resin particles. As a result, the liquid permeability of the water-absorbent resin particles is greatly improved. Further, by using the organic acid (salt), the problem that the metal component adheres to the surface of the water-absorbent resin particles in a planar and non-uniform manner as in the related art can be solved. It is possible to exhibit an effect that fine dots can be uniformly attached (localized) to the entire vicinity of the surface of the resin particles.
 有機酸(塩)は、そのまま吸水性樹脂粒子と混合してもよいが、多価金属塩と共に混合することが好ましい。また、有機酸(塩)と多価金属塩とを共に水溶液として混合することがより好ましく、有機酸(塩)と多価金属塩とを共通の水溶液として混合することが特に好ましい。 The organic acid (salt) may be directly mixed with the water-absorbing resin particles, but is preferably mixed with the polyvalent metal salt. It is more preferable to mix both the organic acid (salt) and the polyvalent metal salt as an aqueous solution, and it is particularly preferable to mix the organic acid (salt) and the polyvalent metal salt as a common aqueous solution.
 有機酸(塩)としては、例えば、アニス酸、安息香酸、ギ酸、吉草酸、クエン酸、グリオキシル酸、グリコール酸、グルタル酸、コハク酸、酒石酸、乳酸、フマル酸、プロピオン酸、3-ヒドロキシプロピオン酸、マロン酸、イミジノ酢酸、リンゴ酸、イセチオン酸、アジピン酸、シュウ酸、サリチル酸、グルコン酸、ソルビン酸、p-オキシ安息香酸、およびこれらのナトリウムやカリウム等のアルカリ金属塩やアンモニウム塩が挙げられる。中でも、グリコール酸、酒石酸、乳酸、3-ヒドロキシプロピオン酸、リンゴ酸、サリチル酸、グルコン酸等のヒドロキシカルボン酸、およびこれらのアルカリ金属塩やアンモニウム塩が好ましい。これらは1種のみを用いてもよいし、2種以上を併用してもよい。 Examples of the organic acid (salt) include anisic acid, benzoic acid, formic acid, valeric acid, citric acid, glyoxylic acid, glycolic acid, glutaric acid, succinic acid, tartaric acid, lactic acid, fumaric acid, propionic acid, and 3-hydroxypropion. Acids, malonic acid, imidinoacetic acid, malic acid, isethionic acid, adipic acid, oxalic acid, salicylic acid, gluconic acid, sorbic acid, p-oxybenzoic acid, and alkali metal salts such as sodium and potassium or ammonium salts thereof. Can be Among them, hydroxycarboxylic acids such as glycolic acid, tartaric acid, lactic acid, 3-hydroxypropionic acid, malic acid, salicylic acid, and gluconic acid, and alkali metal salts and ammonium salts thereof are preferable. These may be used alone or in combination of two or more.
 有機酸(塩)の使用量は多くとも多価金属塩のモル数の2倍以内が好ましく、1倍以内がより好ましく、0.5倍以内がさらに好ましい。有機酸(塩)の使用量が多過ぎると噴霧ノズルの詰まりや粘度上昇など製造上のトラブルが発生しやすい。 The amount of the organic acid (salt) to be used is at most within twice the number of moles of the polyvalent metal salt, preferably within one time, more preferably within 0.5 times. If the amount of the organic acid (salt) used is too large, troubles in production such as clogging of the spray nozzle and increase in viscosity are likely to occur.
 (2-7-2)水溶性多価金属塩粒子の添加工程
 本発明の一実施形態に係る吸水性樹脂粉末の製造方法は、上記の噴霧工程以外の方法でも実施することができる。本願発明(2)は、有機表面架橋剤で表面架橋され且つ水溶性多価金属塩を含む吸水性樹脂粉末の製造方法であって、有機表面架橋剤で表面架橋された吸水性樹脂粒子に対し、レーザ回折・散乱法で測定される体積平均粒子径が0.3~15μmの水溶性多価金属塩粒子を添加する、吸水性樹脂粉末の製造方法を提供する。例えば、多価金属塩水溶液をスプレードライ法や共沸脱水法により水溶性多価金属塩粒子とした後、吸水性樹脂粒子に添加することができる。この場合、略球状の水溶性多価金属塩粒子が付着した吸水性樹脂粉末が得られる。このとき、多価金属塩の使用量は上記噴霧工程において記載されているものと同様の範囲であることが好ましい。
(2-7-2) Step of Adding Water-Soluble Polyvalent Metal Salt Particles The method for producing a water-absorbent resin powder according to one embodiment of the present invention can be carried out by a method other than the above-mentioned spraying step. The invention (2) of the present application is a method for producing a water-absorbent resin powder surface-crosslinked with an organic surface crosslinker and containing a water-soluble polyvalent metal salt. And a method for producing a water-absorbent resin powder, which comprises adding water-soluble polyvalent metal salt particles having a volume average particle diameter of 0.3 to 15 μm as measured by a laser diffraction / scattering method. For example, after a polyvalent metal salt aqueous solution is formed into water-soluble polyvalent metal salt particles by a spray drying method or an azeotropic dehydration method, it can be added to the water-absorbing resin particles. In this case, a water-absorbing resin powder having substantially spherical water-soluble polyvalent metal salt particles attached thereto is obtained. At this time, the amount of the polyvalent metal salt used is preferably in the same range as that described in the spraying step.
 ここで、レーザ回折・散乱法で測定される水溶性多価金属塩粒子の体積平均粒子径は、0.3~15μmが好ましく、0.3~10μmがより好ましく、0.3~5μmがさらに好ましい。レーザ回折・散乱法で測定する際、水溶性多価金属塩粒子が溶解しないよう、測定溶媒は適宜選択される。また、水溶性多価金属塩粒子の凝集を防ぐため、水溶性多価金属塩粒子が添加された測定溶媒に超音波振動を与えてから体積平均粒子径が測定される。なお、レーザ回折・散乱法で測定できない大きな水溶性多価金属塩粒子がないことを、38μmや45μmの目開きをもつ標準篩を水溶性多価金属塩粒子が通過することにより事前に確認してもよい。測定される水溶性多価金属塩粒子全体に対して、好ましくは、目開きが45μmの標準篩上の水溶性多価金属塩粒子が10重量%以下であり、より好ましくは5重量%以下であり、さらに好ましくは1重量%以下である。有機表面架橋剤で表面架橋された吸水性樹脂粒子に対し、上記体積平均粒子径をもつ水溶性多価金属塩粒子を吸水性樹脂粒子に添加する。 Here, the volume average particle diameter of the water-soluble polyvalent metal salt particles measured by the laser diffraction / scattering method is preferably 0.3 to 15 μm, more preferably 0.3 to 10 μm, and further preferably 0.3 to 5 μm. preferable. When measuring by the laser diffraction / scattering method, a measuring solvent is appropriately selected so that the water-soluble polyvalent metal salt particles do not dissolve. Further, in order to prevent aggregation of the water-soluble polyvalent metal salt particles, the volume average particle diameter is measured after applying ultrasonic vibration to the measurement solvent to which the water-soluble polyvalent metal salt particles are added. In addition, the absence of large water-soluble polyvalent metal salt particles that cannot be measured by the laser diffraction / scattering method was confirmed in advance by passing the water-soluble polyvalent metal salt particles through a standard sieve having openings of 38 μm or 45 μm. You may. The amount of the water-soluble polyvalent metal salt particles on the standard sieve having a mesh size of 45 μm is preferably 10% by weight or less, more preferably 5% by weight or less, based on the total measured water-soluble polyvalent metal salt particles. And more preferably 1% by weight or less. Water-soluble polyvalent metal salt particles having the above volume average particle diameter are added to the water-absorbent resin particles with respect to the water-absorbent resin particles surface-crosslinked with the organic surface cross-linking agent.
 上記水溶性多価金属塩粒子の形状は、略球状が好ましい。但し、上記水溶性多価金属塩粒子は、上記体積平均粒子径の範囲内で少し凝集しても良い。添加させる上記水溶性多価金属塩粒子の形状が球状に近いほど吸水性樹脂粉末の流動性がよい。なお、水溶性多価金属塩粒子の形状は、2000倍に拡大した、水溶性多価金属塩粒子の走査電子顕微鏡(SEM)写真を撮影し、当該写真の画像解析を行うことで確認できる。 形状 The shape of the water-soluble polyvalent metal salt particles is preferably substantially spherical. However, the water-soluble polyvalent metal salt particles may slightly aggregate within the range of the volume average particle diameter. The closer the shape of the water-soluble polyvalent metal salt particles to be added to a sphere, the better the flowability of the water-absorbent resin powder. The shape of the water-soluble polyvalent metal salt particles can be confirmed by taking a scanning electron microscope (SEM) photograph of the water-soluble polyvalent metal salt particles at a magnification of 2000 times and performing image analysis of the photograph.
 水溶性多価金属塩粒子を吸水性樹脂粒子に添加する場合、ドライブレンドしてもよいが、有機溶媒とともに添加してもよい。例えば、メタノール、エタノール、プロパノール、イソプロピルアルコール等の揮発性アルコール;エチレングリコール、プロピレングリコール、ブタンジオール、グリセリン等の多価アルコール;ジエチレングリコール、トリエチレングリコール、分子量が200~600のポリエチレングリコール等の室温で液状のポリエチレングリコール:等の有機溶媒とともに添加することができる。有機溶媒の使用量は、吸水性樹脂粒子100重量部に対して、0.1~10重量部が好ましく、0.5~5重量部がより好ましい。なお、水溶性多価金属塩粒子が溶解しない程度であればこれらの有機溶媒中に水分が含まれていてもよい。ドライブレンドされた水溶性多価金属塩粒子は吸水性樹脂粉末から剥がれ落ちやすいので、好ましくは、ドライブレンド後に上記の溶媒を添加する。 (4) When adding the water-soluble polyvalent metal salt particles to the water-absorbing resin particles, they may be dry-blended or may be added together with the organic solvent. For example, volatile alcohols such as methanol, ethanol, propanol, and isopropyl alcohol; polyhydric alcohols such as ethylene glycol, propylene glycol, butanediol, and glycerin; at room temperature such as diethylene glycol, triethylene glycol, and polyethylene glycol having a molecular weight of 200 to 600; It can be added together with an organic solvent such as liquid polyethylene glycol. The amount of the organic solvent to be used is preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight, based on 100 parts by weight of the water-absorbing resin particles. In addition, as long as the water-soluble polyvalent metal salt particles do not dissolve, water may be contained in these organic solvents. Since the dry-blended water-soluble polyvalent metal salt particles are easily peeled off from the water-absorbing resin powder, the above-mentioned solvent is preferably added after the dry-blending.
 水溶性多価金属塩粒子を吸水性樹脂粒子に添加する際に用いられる装置は、公知の混合機が用いられ特に限定されない。例えば縦型、横型、さらには斜め向きの撹拌混合機、流動層混合機が挙げられる。さらに、空気輸送中の混合も可能である。具体的には、円筒型混合機、二重壁円錐混合機、縦型または横型の高速攪拌型混合機、V字型混合機、リボン型混合機、スクリュー型混合機、双腕型ニーダー、回転式混合機、気流型混合機、流動層混合機が挙げられる。水溶性多価金属塩粒子を有機溶媒と共に添加する場合は、凝集物をほぐす機構や乾燥させるための加熱機構が付いた混合機が好適である。具体的には、パドルドライヤー、スチームチューブドライヤー、ドラムドライヤー、流動層乾燥機、加熱ジャケットの付いたスクリュー型混合機やニーダー、等が挙げられる。 装置 A known mixer is used for adding the water-soluble polyvalent metal salt particles to the water-absorbent resin particles, and the apparatus is not particularly limited. For example, a vertical type, a horizontal type, and an obliquely-oriented stirring mixer or a fluidized bed mixer can be used. Furthermore, mixing during pneumatic transport is also possible. Specifically, a cylindrical mixer, a double-walled conical mixer, a vertical or horizontal high-speed stirring mixer, a V-shaped mixer, a ribbon mixer, a screw mixer, a double-arm kneader, a rotary mixer Type mixer, air-flow type mixer, fluidized bed mixer. When the water-soluble polyvalent metal salt particles are added together with the organic solvent, a mixer equipped with a mechanism for loosening aggregates and a heating mechanism for drying is preferable. Specific examples include a paddle dryer, a steam tube dryer, a drum dryer, a fluidized-bed dryer, and a screw-type mixer or kneader equipped with a heating jacket.
 (2-8)その他の添加工程
 本発明の一実施形態では、さらにその他の添加剤を吸水性樹脂粒子または吸水性樹脂粉末に添加することができる。例えば、キレート剤、酸化剤、還元剤、カチオン性ポリマー、親水性ポリマー、αヒドロキシカルボン酸、界面活性剤、水不溶性無機微粒子、芳香剤、消臭剤、抗菌剤等が挙げられる。該添加剤の使用量(添加量)は、その用途に応じて適宜決定されるため、特に限定されないが、吸水性樹脂粒子または吸水性樹脂粉末100重量部に対して、好ましくは3重量部以下、より好ましくは1重量部以下である。上記添加時の添加剤の形態は、粉体、液体、溶液、分散液等が挙げられるが、水を含む場合、水溶性多価金属塩粒子が溶解してしまわない程度とするか、表面処理工程以前に添加することが好ましい。
(2-8) Other Addition Step In one embodiment of the present invention, other additives can be added to the water-absorbent resin particles or the water-absorbent resin powder. Examples include chelating agents, oxidizing agents, reducing agents, cationic polymers, hydrophilic polymers, α-hydroxycarboxylic acids, surfactants, water-insoluble inorganic fine particles, fragrances, deodorants, antibacterial agents and the like. The use amount (addition amount) of the additive is not particularly limited because it is appropriately determined according to its use, but is preferably 3 parts by weight or less based on 100 parts by weight of the water-absorbent resin particles or the water-absorbent resin powder. , More preferably 1 part by weight or less. Examples of the form of the additive at the time of the addition include a powder, a liquid, a solution, and a dispersion liquid. It is preferably added before the step.
 上記添加剤の中でも、吸水性樹脂粉末のSFCをさらに向上させるため、カチオン性ポリマーおよび/または水不溶性無機微粒子の少なくとも1つを本発明の一実施形態において吸水性樹脂粒子または吸水性樹脂粉末に使用することが好ましい。上記カチオン性ポリマーとしては、アミノ基を有するカチオン性ポリマーであり、さらには水溶性カチオン性ポリマーであり、好ましくは、25℃の水に2重量%以上、さらには5重量%以上溶解する水溶性ポリマーである。例えば、ポリエチレンイミン等のポリアルキレンイミン、ポリエーテルポリアミン、ポリエーテルアミン、ポリビニルアミン、ポリアルキルアミン、ポリアリルアミン、ポリジアリルアミン、ポリ(N-アルキルアリルアミン)、モノアリルアミン-ジアリルアミン共重合体、N-アルキルアリルアミン-モノアリルアミン共重合体、モノアリルアミン-ジアルキルジアリルアンモニウム塩・共重合体、ジアリルアミン-ジアルキルジアリルアンモニウム塩・共重合体、ポリエチレンポリアミン、ポリプロピレンポリアミン、ポリアミジン等;およびこれらの塩が好ましく挙げられる。また、国際公開第2009/041727号に記載の改質カチオン性ポリマーがより好ましく挙げられる。 Among the above additives, in order to further improve the SFC of the water-absorbent resin powder, at least one of the cationic polymer and / or the water-insoluble inorganic fine particles is added to the water-absorbent resin particles or the water-absorbent resin powder in one embodiment of the present invention. It is preferred to use. The above-mentioned cationic polymer is a cationic polymer having an amino group, and further is a water-soluble cationic polymer, and is preferably a water-soluble cationic polymer that dissolves in water at 25 ° C. in an amount of 2% by weight or more, more preferably 5% by weight or more. It is a polymer. For example, polyalkyleneimines such as polyethyleneimine, polyetherpolyamine, polyetheramine, polyvinylamine, polyalkylamine, polyallylamine, polydiallylamine, poly (N-alkylallylamine), monoallylamine-diallylamine copolymer, N-alkyl Allylamine-monoallylamine copolymer, monoallylamine-dialkyldiallylammonium salt / copolymer, diallylamine-dialkyldiallylammonium salt / copolymer, polyethylene polyamine, polypropylene polyamine, polyamidine and the like; and salts thereof are preferred. Further, a modified cationic polymer described in WO 2009/041727 is more preferably mentioned.
 また、上記水不溶性無機微粒子は、コールターカウンター法により測定された平均粒子径が、好ましくは0.001~200μm、より好ましくは0.005~50μm、さらに好ましくは0.01~10μmの範囲の微粒子である。上記水不溶性無機微粒子は、好ましくは親水性微粒子であり、例えば、シリカ(二酸化珪素)や酸化チタン等の金属酸化物、亜鉛と珪素、または、亜鉛とアルミニウムとを含む複合含水酸化物(例えば、国際公開第2005/010102号に例示)、天然ゼオライトや合成ゼオライト等の珪酸(塩)、カオリン、タルク、クレー、ベントナイト、リン酸カルシウム、リン酸バリウム、珪酸またはその塩、粘土、珪藻土、シリカゲル、ゼオライト、ベントナイト、ヒドロキシアパタイト、ハイドロタルサイト、バーミュキュライト、パーライト、イソライト、活性白土、ケイ砂、ケイ石、ストロンチウム鉱石、蛍石、ボーキサイト等が挙げられる。また、このうち二酸化ケイ素および珪酸(塩)がより好ましく、二酸化ケイ素がさらに好ましい。二酸化ケイ素はフュームドシリカまたはコロイダルシリカが好ましく、吸水特性のバランスからコロイダルシリカが好ましい。 The water-insoluble inorganic fine particles preferably have an average particle size measured by a Coulter counter method in the range of preferably 0.001 to 200 μm, more preferably 0.005 to 50 μm, and still more preferably 0.01 to 10 μm. It is. The water-insoluble inorganic fine particles are preferably hydrophilic fine particles, for example, a metal oxide such as silica (silicon dioxide) or titanium oxide, zinc and silicon, or a composite hydrate containing zinc and aluminum (for example, WO 2005/010102), silicic acid (salt) such as natural zeolite and synthetic zeolite, kaolin, talc, clay, bentonite, calcium phosphate, barium phosphate, silicic acid or a salt thereof, clay, diatomaceous earth, silica gel, zeolite, Examples include bentonite, hydroxyapatite, hydrotalcite, vermiculite, perlite, isolite, activated clay, quartz sand, quartzite, strontium ore, fluorite, and bauxite. Of these, silicon dioxide and silicic acid (salt) are more preferred, and silicon dioxide is even more preferred. The silicon dioxide is preferably fumed silica or colloidal silica, and is preferably colloidal silica in view of the balance of water absorption properties.
 カチオン性ポリマーを使用するならばその使用量は吸水性樹脂粒子または吸水性樹脂粉末100重量部に対して好ましくは0.001~1重量部で、水不溶性無機微粒子を使用するならばその使用量は吸水性樹脂粒子または吸水性樹脂粉末100重量部に対して好ましくは0.001~1重量部である。カチオン性ポリマーおよび/または水不溶性無機微粒子の使用量は、吸水性樹脂粉末におけるカチオン性ポリマーおよび/または水不溶性無機微粒子の含有量ともいうことができる。 If a cationic polymer is used, the amount used is preferably 0.001 to 1 part by weight based on 100 parts by weight of the water-absorbing resin particles or water-absorbing resin powder, and if water-insoluble inorganic fine particles are used, the amount used is Is preferably 0.001 to 1 part by weight based on 100 parts by weight of the water-absorbent resin particles or the water-absorbent resin powder. The amount of the cationic polymer and / or the water-insoluble inorganic fine particles used can also be referred to as the content of the cationic polymer and / or the water-insoluble inorganic fine particles in the water-absorbent resin powder.
 また、吸水性樹脂粉末の表面に付着した水溶性多価金属塩粒子が摩擦等ではがれないよう、界面活性剤を適用することが好ましい。界面活性剤を使用するならば吸水時の吸水性樹脂粉末の物性の低下を防ぐために、その使用量は吸水性樹脂粒子または吸水性樹脂粉末100重量部に対して、好ましくは0.0001~0.1重量部である。界面活性剤の使用量は、吸水性樹脂粉末における界面活性剤の含有量ともいうことができる。また、吸水物性に対する悪影響を与えないようにするため、他の指標として、吸水性樹脂粉末の成分を0.9重量%塩化ナトリウム水溶液で抽出したとき抽出液の表面張力が好ましくは60~75mN/m、より好ましくは65~72mN/mの範囲になるように使用量が決定される。なお、界面活性剤が添加されていない吸水性樹脂粉末の場合、上記表面張力は通常約71~75mN/mを示す。 界面 Further, it is preferable to apply a surfactant so that the water-soluble polyvalent metal salt particles attached to the surface of the water-absorbent resin powder do not peel off due to friction or the like. If a surfactant is used, it is preferably used in an amount of 0.0001 to 0 parts by weight based on 100 parts by weight of the water-absorbent resin particles or the water-absorbent resin powder in order to prevent a decrease in the physical properties of the water-absorbent resin powder during water absorption. 0.1 part by weight. The amount of the surfactant used can also be referred to as the content of the surfactant in the water-absorbent resin powder. In order to prevent adverse effects on the water absorption properties, as another index, when the components of the water absorbent resin powder are extracted with a 0.9% by weight aqueous sodium chloride solution, the surface tension of the extract is preferably 60 to 75 mN / m, more preferably 65-72 mN / m. In the case of a water-absorbing resin powder to which no surfactant is added, the above-mentioned surface tension usually shows about 71 to 75 mN / m.
 上記添加剤の中でも、本発明の吸水性樹脂は、経時着色防止、尿劣化防止等の観点から、キレート剤を含むことが好ましい。本発明のキレート剤としては、効果の面から、高分子化合物または非高分子化合物、中でも非高分子化合物が好ましく、具体的には、アミノ多価カルボン酸、有機多価燐酸、無機多価燐酸から選ばれる化合物が好ましい。効果の面から、キレート剤の分子量は100~5000であることが好ましく、より好ましくは200~1000である。キレート剤がない場合、着色や劣化の面で劣った吸水性樹脂となる。 中 で も Among the above-mentioned additives, the water-absorbent resin of the present invention preferably contains a chelating agent from the viewpoint of preventing coloration with time and preventing urine deterioration. As the chelating agent of the present invention, from the viewpoint of the effect, a polymer compound or a non-polymer compound, among which a non-polymer compound is preferable, specifically, an amino polycarboxylic acid, an organic polyphosphoric acid, and an inorganic polyvalent phosphoric acid Compounds selected from are preferred. From the viewpoint of effects, the molecular weight of the chelating agent is preferably from 100 to 5,000, more preferably from 200 to 1,000. In the absence of a chelating agent, the resulting water-absorbent resin is inferior in coloration and deterioration.
 ここで、多価とは1分子中に複数の該官能基を有し、2~30個、さらには3~20個、特に4~10個の該官能基を有する。また、これらキレート剤は、水溶性キレート剤、具体的には、100g(25℃)の水に1g以上、さらには10g以上溶解する水溶性キレート剤であることが好ましい。 Here, polyvalent has a plurality of such functional groups in one molecule, and has 2 to 30, more preferably 3 to 20, especially 4 to 10 such functional groups. In addition, these chelating agents are preferably water-soluble chelating agents, specifically, water-soluble chelating agents that dissolve in an amount of 1 g or more, more preferably 10 g or more in 100 g (25 ° C.) of water.
 上記アミノ多価カルボン酸としては、イミノ2酢酸、ヒドロキシエチルイミノ2酢酸、ニトリロ3酢酸、ニトリロ3プロピオン酸、エチレンジアミン4酢酸、ジエチレントリアミン5酢酸、トリエチレンテトラミン6酢酸、trans-1,2-ジアミノシクロヘキサン4酢酸、N,N-ビス(2-ヒドロキシエチル)グリシン、ジアミノプロパノール4酢酸、エチレンジアミン2プロピオン酸、ヒドロキシエチレンジアミン3酢酸、グリコールエーテルジアミン4酢酸、ジアミノプロパン4酢酸、N,N’-ビス(2-ヒドロキシベンジル)エチレンジアミン-N,N’-2酢酸、1,6-ヘキサメチレンジアミン-N,N,N’,N’-4酢酸およびそれらの塩等が挙げられ、中でもジエチレントリアミン5酢酸(塩)、または、トリエチレンテトラミン6酢酸(塩)がより好ましく、ジエチレントリアミン5酢酸(塩)がさらに好ましい。 Examples of the amino polycarboxylic acid include imino diacetic acid, hydroxyethyl imino diacetic acid, nitrilotriacetic acid, nitrilotripropionic acid, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraminehexaacetic acid, trans-1,2-diaminocyclohexane. Tetraacetic acid, N, N-bis (2-hydroxyethyl) glycine, diaminopropanol tetraacetic acid, ethylenediamine dipropionic acid, hydroxyethylenediamine triacetic acid, glycol ether diamine tetraacetic acid, diaminopropane tetraacetic acid, N, N'-bis (2 -Hydroxybenzyl) ethylenediamine-N, N'-diacetic acid, 1,6-hexamethylenediamine-N, N, N ', N'-4acetic acid and salts thereof, among which diethylenetriaminepentaacetic acid (salt) Or or trietile Tetramine 6 acetate (salt) are more preferable, diethylenetriaminepentaacetic acid (salt) is more preferable.
 上記有機多価燐酸としては、エチレンジアミン-N,N’-ジ(メチレンホスフィン酸)、エチレンジアミンテトラ(メチレンホスフィン酸)、シクロヘキサンジアミンテトラ(メチレンホスホン酸)、エチレンジアミン-N,N’-ジ酢酸-N,N’-ジ(メチレンホスホン酸)、エチレンジアミン-N,N’-ジ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ポリメチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)およびこれらの塩等の上記アミノ多価燐酸や、 ニトリロ酢酸-ジ(メチレンホスフィン酸)、ニトリロジ酢酸-(メチレンホスフィン酸)、ニトリロ酢酸-β-プロピオン酸-メチレンホスホン酸、ニトリロトリス(メチレンホスホン酸)、1-ヒドロキシエチリデンジホスホン酸、等が挙げられる。また、上記無機多価燐酸としては、ピロ燐酸、トリポリ燐酸およびそれらの塩等が挙げられる。本発明のキレート剤としては、エチレンジアミンテトラ(メチレンホスホン酸)(塩)が好ましい。 Examples of the organic polyvalent phosphoric acid include ethylenediamine-N, N'-di (methylenephosphinic acid), ethylenediaminetetra (methylenephosphinic acid), cyclohexanediaminetetra (methylenephosphonic acid), ethylenediamine-N, N'-diacetate-N , N'-di (methylenephosphonic acid), ethylenediamine-N, N'-di (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), polymethylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid) And the above-mentioned amino polyvalent phosphoric acids, such as dinitrometic acid-di (methylenephosphinic acid), nitriloacetic acid- (methylenephosphinic acid), nitriloacetic acid-β-propionic acid-methylenephosphonic acid, and nitrilotris (methylenephosphonic acid). ), 1-hydroxyethylidene diphosphonic acid, and the like. In addition, examples of the inorganic polyvalent phosphoric acid include pyrophosphoric acid, tripolyphosphoric acid, and salts thereof. As the chelating agent of the present invention, ethylenediaminetetra (methylenephosphonic acid) (salt) is preferable.
 また、キレート剤、特に上記の好ましいキレート剤の使用量は、吸水性樹脂100重量部に対して、0.0001重量部以上、0.001重量部以上、0.01重量部以上、0.02重量部以上、0.03重量部以上、0.05重量部以上、0.06重量部以上の順に好ましく、1重量部以下、0.5重量部以下、0.2重量部以下、0.15重量部以下の順に好ましい。それにより経時着色防止、尿劣化防止、耐熱性、耐光性、抗菌性、安全性、取扱性等に優れる。 The amount of the chelating agent, particularly the above-mentioned preferable chelating agent, is 0.0001 part by weight or more, 0.001 part by weight or more, 0.01 part by weight or more, and 0.02 part by weight or more with respect to 100 parts by weight of the water absorbent resin. Preferably at least 1 part by weight, at most 0.03 parts by weight, at least 0.05 parts by weight, at least 0.06 parts by weight, preferably at most 1 part by weight, at most 0.5 parts by weight, at most 0.2 parts by weight, at most 0.15 parts by weight. It is preferred in the order of parts by weight or less. Thereby, it is excellent in prevention of coloring with time, prevention of deterioration of urine, heat resistance, light resistance, antibacterial property, safety, handling property and the like.
 上記添加剤の中でも、本発明の吸水性樹脂は、残存モノマーの低減や着色防止等の観点から、重合工程以降で、酸化剤および/または還元剤を用いることが好ましい。本発明の酸化剤としては、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム等の過硫酸塩、t-ブチルパーオキサイド、過酸化ベンゾイル等の有機過酸化物、過酸化水素、塩素酸塩、臭素酸塩、亜塩素酸塩、次亜塩素酸塩等が挙げられる。中でも残存モノマーの低減の観点から過硫酸塩が好ましい。これらの酸化剤は1種のみであってもよいし、2種以上であってもよい。 中 で も Among the above-mentioned additives, it is preferable to use an oxidizing agent and / or a reducing agent in the water-absorbent resin of the present invention after the polymerization step from the viewpoints of reducing residual monomers and preventing coloring. Examples of the oxidizing agent of the present invention include persulfates such as ammonium persulfate, sodium persulfate and potassium persulfate; organic peroxides such as t-butyl peroxide and benzoyl peroxide; hydrogen peroxide; chlorate; Salt, chlorite, hypochlorite and the like can be mentioned. Of these, persulfates are preferred from the viewpoint of reducing residual monomers. These oxidizing agents may be used alone or in combination of two or more.
 また、本発明の還元剤としては、特に、イオウ系、リン系、窒素系還元剤が好適である。具体的には、例えば、亜硫酸塩(例えば、亜硫酸ナトリウム、亜硫酸カリウム、亜硫酸アンモニウム等)、亜硫酸水素塩(例えば、亜硫酸水素ナトリウム、亜硫酸水素カリウム、亜硫酸水素アンモニウム等)、ピロ亜硫酸塩、亜二チオン酸塩、三チオン酸塩、四チオン酸塩、チオ硫酸塩、2-ヒドロキシ-2-スルフィナト酢酸などのスルフィナト酢酸誘導体、ジメチルスルホキサイド、二酸化チオ尿素、亜硝酸塩、アミノ酸やエタノールアミン等の窒素含有有機化合物、亜リン酸塩、次亜リン酸塩、などが挙げられる。これらの中でも、イオウ系無機還元剤、特に、亜硫酸塩、亜硫酸水素塩、ピロ亜硫酸塩、亜二チオン酸塩が好ましく、それらの塩としては、ナトリウム塩、カリウム塩、アンモニウム塩が好ましく挙げられる。中でも、亜硫酸ナトリウム、亜硫酸水素ナトリウムが特に好ましい。これら還元剤は1種のみであってもよいし、2種以上であってもよい。 イ オ Sulfur-based, phosphorus-based, and nitrogen-based reducing agents are particularly preferred as the reducing agent of the present invention. Specifically, for example, sulfites (eg, sodium sulfite, potassium sulfite, ammonium sulfite, etc.), bisulfites (eg, sodium bisulfite, potassium bisulfite, ammonium bisulfite, etc.), pyrosulfite, dithionite Acid, trithionate, tetrathionate, thiosulfate, sulfinatoacetic acid derivatives such as 2-hydroxy-2-sulfinatoacetic acid, dimethyl sulfoxide, thiourea dioxide, nitrite, nitrogen such as amino acids and ethanolamine Organic compounds, phosphites, hypophosphites, and the like. Among these, a sulfur-based inorganic reducing agent, particularly, a sulfite, a hydrogen sulfite, a pyrosulfite, and a dithionite are preferable, and as such salts, a sodium salt, a potassium salt, and an ammonium salt are preferable. Among them, sodium sulfite and sodium hydrogen sulfite are particularly preferable. These reducing agents may be used alone or in combination of two or more.
 また、酸化剤または還元剤の使用量は、吸水性樹脂100重量部に対して、0.0001重量部以上、0.001重量部以上、0.01重量部以上、0.02重量部以上、0.03重量部以上、0.05重量部以上、0.06重量部以上の順に好ましく、3重量部以下、1重量部以下、0.7重量部以下、0.5重量部以下の順に好ましい。 Further, the amount of the oxidizing agent or the reducing agent is 0.0001 parts by weight or more, 0.001 parts by weight or more, 0.01 parts by weight or more, 0.02 parts by weight or more with respect to 100 parts by weight of the water absorbent resin. 0.03 parts by weight or more, 0.05 parts by weight or more, preferably 0.06 parts by weight or more, preferably 3 parts by weight or less, 1 part by weight or less, 0.7 parts by weight or less, and preferably 0.5 parts by weight or less. .
 (2-9)その他の工程
 本発明の一実施形態においては、上述した工程以外にも、整粒工程、微粉除去工程、微粉の再利用工程等を必要に応じて設けることができる。また、輸送工程、貯蔵工程、梱包工程、保管工程等の1種または2種以上の工程をさらに含んでもよい。なお、整粒工程には、加熱処理工程以降で微粉を分級して除去する工程や吸水性樹脂が凝集し、所望の大きさを超えた場合に分級、粉砕を行う工程を含む。また、微粉の再利用工程は微粉をそのまま、または微粉造粒工程で大きな含水ゲルにして、吸水性樹脂の製造工程の何れかの工程で添加する工程を含む。
(2-9) Other Steps In one embodiment of the present invention, in addition to the above-described steps, a sizing step, a fine powder removing step, a fine powder reusing step, and the like can be provided as necessary. Further, one or more steps such as a transport step, a storage step, a packing step, and a storage step may be further included. Note that the sizing step includes a step of classifying and removing the fine powder after the heat treatment step and a step of classifying and pulverizing when the water-absorbent resin aggregates and exceeds a desired size. In addition, the step of reusing the fine powder includes a step of adding the fine powder as it is or a large hydrogel in the fine powder granulation step and adding it in any step of the process of producing the water absorbent resin.
 〔3〕吸水性樹脂粉末の特性
 また、本願発明は、有機表面架橋剤で表面架橋され且つ水溶性多価金属塩を含む吸水性樹脂粉末であって、吸水性樹脂粉末の表面に数平均粒子径0.3~15μm(SEM画像分析)の水溶性多価金属塩粒子が付着した吸水性樹脂粉末を提供する。「水溶性多価金属塩粒子の付着」とは、吸水性樹脂の表面に立体的に水溶性多価金属塩粒子の固体が存在する状態であり、略球状、瘤状、塊状など厚みをもって多価金属塩が吸水性樹脂粉末の表面に存在する。数平均粒子径0.3~15μm(SEM画像分析)の多価金属塩粒子が吸水性樹脂の一粒につき平均して1個以上付着していればよく、好ましくは10個以上、さらには100個以上付着していることが好ましい。
[3] Characteristics of Water Absorbent Resin Powder The present invention also relates to a water absorbent resin powder which is surface-crosslinked with an organic surface crosslinking agent and contains a water-soluble polyvalent metal salt. Provided is a water-absorbent resin powder to which water-soluble polyvalent metal salt particles having a diameter of 0.3 to 15 μm (SEM image analysis) are attached. "Adhesion of water-soluble polyvalent metal salt particles" refers to a state in which solids of water-soluble polyvalent metal salt particles are three-dimensionally present on the surface of a water-absorbent resin. The valent metal salt is present on the surface of the water-absorbent resin powder. It suffices that at least one polyvalent metal salt particle having a number average particle diameter of 0.3 to 15 μm (SEM image analysis) adheres to one water-absorbent resin on average, preferably 10 or more, and more preferably 100 or more. It is preferred that more than one are attached.
 SEM画像分析とは、走査電子顕微鏡を用いて取得した画像での分析を意味する。水溶性多価金属塩粒子の数平均粒子径は、走査電子顕微鏡下2000倍で観察した水溶性多価金属粒子を無作為に20個選択し、この20個の水溶性多価金属塩粒子の直径を定規にて測定し、当該測定値を、顕微鏡の観察倍率にて補正し、補正した測定値の平均値を計算することによって決定する。なお、水溶性多価金属塩粒子が真円でない場合は、平行な2本の接線間の距離のうち最小のもの、即ち最小フェレー径を粒子径とみなす。 SEM image analysis means analysis on an image acquired using a scanning electron microscope. The number average particle size of the water-soluble polyvalent metal salt particles was randomly selected from 20 water-soluble polyvalent metal particles observed at a magnification of 2,000 under a scanning electron microscope. The diameter is measured with a ruler, the measured value is corrected by the observation magnification of a microscope, and the average value of the corrected measured values is calculated. When the water-soluble polyvalent metal salt particles are not perfect circles, the smallest one of the distances between two parallel tangents, that is, the minimum Feret diameter is regarded as the particle diameter.
 水溶性多価金属塩粒子の数平均粒子径は0.3~15μmであり、0.3~10μmが好ましく、0.3~5μmがより好ましい。 (4) The number average particle diameter of the water-soluble polyvalent metal salt particles is 0.3 to 15 μm, preferably 0.3 to 10 μm, more preferably 0.3 to 5 μm.
 また、付着した水溶性多価金属塩粒子の粒子径を直径とする球を想定したとき、体積平均粒子径は0.3~15μmが好ましく、0.3~10μmがより好ましく、0.3~5μmがさらに好ましい。 Further, assuming a sphere having the diameter of the attached water-soluble polyvalent metal salt particles as a diameter, the volume average particle diameter is preferably 0.3 to 15 μm, more preferably 0.3 to 10 μm, and 0.3 to 10 μm. 5 μm is more preferred.
 水溶性多価金属塩粒子は、SEM画像において円形に近いことが好ましく、円形であることがより好ましい。上記水溶性多価金属塩粒子は、SEM画像において円形に近づくにつれて、粉体流動性が向上する。円形とは、円形度が0.8以上の図形を意図する。円形度とは、個々の水溶性多価金属塩粒子において、ある一つの方向から水溶性多価金属塩粒子を観察した際の形状での外周の全長をLとし、当該形状での面積をSとした場合に、下記式(2)により求められる値である。
円形度=4π・S/L …式(2)
 SEM画像分析における、水溶性多価金属塩粒子の被覆面積は、吸水性樹脂粉末の面積に対して、0.1~50%であることが好ましく、0.5~20%であることがより好ましく、1~10%であることがさらに好ましい。水溶性多価金属塩粒子の被覆面積は、2000倍で取得したSEM画像において、吸水性樹脂粉末上で確認できる全ての水溶性多価金属塩粒子の面積を合計した面積を、吸水性樹脂粉末の面積で割ることにより求められる値である。
The water-soluble polyvalent metal salt particles are preferably close to a circle in an SEM image, and more preferably a circle. The powder flowability of the water-soluble polyvalent metal salt particles is improved as the particles become closer to a circle in the SEM image. The circular shape means a graphic having a circularity of 0.8 or more. The degree of circularity means that in each of the water-soluble polyvalent metal salt particles, the total length of the outer periphery in the shape when the water-soluble polyvalent metal salt particles are observed from a certain direction is L, and the area in the shape is S. Is a value obtained by the following equation (2).
Circularity = 4π · S / L 2 Equation (2)
In the SEM image analysis, the coating area of the water-soluble polyvalent metal salt particles is preferably from 0.1 to 50%, more preferably from 0.5 to 20%, based on the area of the water-absorbing resin powder. More preferably, it is 1 to 10%. The coverage area of the water-soluble polyvalent metal salt particles is the total area of all the water-soluble polyvalent metal salt particles that can be confirmed on the water-absorbent resin powder in the SEM image obtained at 2000 times, Is a value obtained by dividing by the area of.
 水溶性多価金属塩粒子がSEM画像上で他の添加剤と区別が付きにくい場合は、各種元素マッピング手法とSEMとを併用して確認することができる。元素マッピング手法としては、例えば、エネルギー分散型X線分光器(EDS)、電子プローブマイクロアナライザー(EPMA)等が挙げられる。 場合 If the water-soluble polyvalent metal salt particles are difficult to distinguish from other additives on the SEM image, it can be confirmed by using SEM together with various element mapping techniques. Examples of the element mapping method include an energy dispersive X-ray spectrometer (EDS) and an electron probe microanalyzer (EPMA).
 本発明の一実施形態に係る吸水性樹脂粉末のSFCは、10[10-7・cm・s・g-1]以上が好ましく、30[10-7・cm・s・g-1]以上がより好ましい。上限値は、高値ほど好ましく特に限定されないが、他の物性とのバランスの観点から、好ましくは500[10-7・cm・s・g-1]以下、より好ましくは200[10-7・cm・s・g-1]以下である。 The SFC of the water-absorbent resin powder according to one embodiment of the present invention is preferably 10 [10 −7 · cm 3 · s · g −1 ] or more, and 30 [10 −7 · cm 3 · s · g −1 ]. The above is more preferable. Although the upper limit is not particularly limited as the higher value, it is preferably 500 [10 −7 · cm 3 · s · g −1 ] or less, more preferably 200 [10 −7 ·) from the viewpoint of balance with other physical properties. cm 3 · s · g −1 ] or less.
 本発明の一実施形態に係る吸水性樹脂粉末のCRCは、25g/g以上が好ましく、27g/g以上がより好ましい。上限値は、高値ほど好ましく特に限定されないが、他の物性とのバランスの観点から、好ましくは50g/g以下、より好ましくは40g/gである。 CR The CRC of the water-absorbent resin powder according to one embodiment of the present invention is preferably 25 g / g or more, and more preferably 27 g / g or more. The upper limit is not particularly limited as the higher value, but is preferably 50 g / g or less, more preferably 40 g / g, from the viewpoint of balance with other physical properties.
 本発明の一実施形態に係る吸水性樹脂粉末のAAP(0.7psi)は、15g/g以上が好ましく、20g/g以上がより好ましく、24g/g以上がさらに好ましい。上限値は、高値ほど好ましく特に限定されないが、他の物性、特にSFCとのバランスの観点から、好ましくは30g/g以下、より好ましくは28g/g以下である。なお、AAP(0.7psi)は、後述の実施例のように、荷重条件を4.83kPa(0.7psi)に変更し、EDANA法(ERT442.2-02)に準拠して測定される。 A The AAP (0.7 psi) of the water-absorbent resin powder according to one embodiment of the present invention is preferably 15 g / g or more, more preferably 20 g / g or more, and even more preferably 24 g / g or more. The upper limit is not particularly limited as the upper limit, but is preferably 30 g / g or less, more preferably 28 g / g or less, from the viewpoint of balance with other physical properties, particularly SFC. The AAP (0.7 psi) is measured according to the EDANA method (ERT442.2-02) by changing the load condition to 4.83 kPa (0.7 psi) as in the examples described later.
 本発明の一実施形態に係る吸水性樹脂粉末の吸湿流動性は、25℃、相対湿度70%で1時間保管したとき、吸湿ブロッキング率が50重量%以下であることが好ましく、30重量%以下であることがより好ましく、10重量%以下であることがさらに好ましい。 The moisture-absorbing fluidity of the water-absorbent resin powder according to one embodiment of the present invention is preferably such that when stored at 25 ° C. and a relative humidity of 70% for 1 hour, the moisture-absorbing blocking ratio is 50% by weight or less, and 30% by weight or less. Is more preferable, and the content is more preferably 10% by weight or less.
 本発明の一実施形態に係る吸水性樹脂粉末の成分を0.9重量%食塩水で抽出したときの表面張力は、好ましくは60~72mN/mの範囲であり、より好ましくは65~72mN/mの範囲である。 The surface tension when the components of the water-absorbent resin powder according to one embodiment of the present invention are extracted with 0.9% by weight saline is preferably in the range of 60 to 72 mN / m, more preferably 65 to 72 mN / m. m.
 本発明の一実施形態に係る吸水性樹脂粉末の含水率(吸水性樹脂粉末1.0gを180℃3時間乾燥させた際の乾燥減量で規定)は、0.1~15重量%であることが好ましく、1~12重量%であることがより好ましく、3~10重量%であることがさらに好ましい。含水率の制御により、吸水性樹脂粉末の耐衝撃性や吸水速度が向上する。含水率は乾燥工程や表面架橋工程で蒸発させる水の量、噴霧する多価金属塩水溶液の水の量および流動層での乾燥(特に噴霧乾燥)の温度や時間、その他、水の添加により制御できる。本発明の一実施形態では、流動層混合機内で多価金属塩水溶液を噴霧するため、通常は添加した水の全量が吸水性樹脂粒子の含水率に反映されない。噴霧される多価金属塩水溶液中の水の少なくとも一部が乾燥された結果、噴霧される多価金属塩水溶液中の水の80重量%以下、さらに1~70重量%、特に5~60重量%が吸水性樹脂粒子に吸収され、結果として、吸水性樹脂粉末の含水率が向上されることが好ましい。 The water content of the water-absorbent resin powder according to one embodiment of the present invention (defined by the loss on drying when 1.0 g of the water-absorbent resin powder is dried at 180 ° C. for 3 hours) is 0.1 to 15% by weight. Is preferably 1 to 12% by weight, more preferably 3 to 10% by weight. By controlling the water content, the impact resistance and the water absorption rate of the water-absorbent resin powder are improved. The water content is controlled by the amount of water evaporated in the drying process and the surface crosslinking process, the amount of water of the aqueous solution of the polyvalent metal salt to be sprayed, the temperature and time of drying (particularly spray drying) in the fluidized bed, and the addition of water. it can. In one embodiment of the present invention, since the aqueous solution of the polyvalent metal salt is sprayed in the fluidized-bed mixer, the total amount of the added water is not usually reflected in the water content of the water-absorbing resin particles. As a result of drying at least a part of the water in the aqueous solution of the polyvalent metal salt to be sprayed, 80% by weight or less, more preferably 1 to 70% by weight, particularly 5 to 60% by weight of the water in the aqueous solution of the polyvalent metal salt to be sprayed % Is absorbed by the water-absorbent resin particles, and as a result, the water content of the water-absorbent resin powder is preferably improved.
 本発明の一実施形態に係る吸水性樹脂粉末のExt(水可溶分)は、50重量%以下であり、好ましくは35重量%以下、より好ましくは25重量%以下、さらに好ましくは15重量%以下である。下限値については特に限定されないが、好ましくは0重量%、より好ましくは0.1重量%程度である。上記Extが50重量%以下である場合、ゲル強度が弱くならず、液透過性に優れた吸水性樹脂粉末となる。さらに、リウェットが少ないため、紙オムツ等の衛生用品の吸収体として適する。なお、Extは、内部架橋剤等で制御することができる。 The Ext (water-soluble content) of the water-absorbent resin powder according to one embodiment of the present invention is 50% by weight or less, preferably 35% by weight or less, more preferably 25% by weight or less, and still more preferably 15% by weight. It is as follows. The lower limit is not particularly limited, but is preferably about 0% by weight, more preferably about 0.1% by weight. When the Ext is 50% by weight or less, the gel strength does not decrease and the water-absorbing resin powder having excellent liquid permeability is obtained. Furthermore, since it has little rewet, it is suitable as an absorbent for sanitary articles such as paper diapers. Note that Ext can be controlled with an internal crosslinking agent or the like.
 本発明の一実施形態に係る吸水性樹脂粉末の初期色調は、ハンターLab表色系において、L値が好ましくは85以上、より好ましくは88以上、さらに好ましくは90以上である。上限値は100であるが、少なくとも80を示せば色調による問題は発生しない。また、a値は好ましくは-3~3、より好ましくは-2~2、さらに好ましくは-1~1である。さらに、b値は好ましくは0~10、より好ましくは0~7、さらに好ましくは0~5である。なお、上記L値は100に近づくほど白色度が増し、a値およびb値は0に近づくほど低着色で実質的に白色となる。 初期 In the initial color tone of the water-absorbent resin powder according to one embodiment of the present invention, the L value is preferably 85 or more, more preferably 88 or more, and further preferably 90 or more in the Hunter Lab color system. The upper limit is 100, but if the value is at least 80, no problem occurs due to the color tone. The a value is preferably -3 to 3, more preferably -2 to 2, and even more preferably -1 to 1. Further, the b value is preferably from 0 to 10, more preferably from 0 to 7, and even more preferably from 0 to 5. As the L value approaches 100, the whiteness increases, and as the a value and the b value approach 0, the color becomes low and substantially white.
 本発明の一実施形態に係る吸水性樹脂粉末の経時色調は、ハンターLab表色系において、L値が好ましくは70以上、より好ましくは75以上、さらに好ましくは80以上、特に好ましくは83以上である。上限値は100であるが、少なくとも80を示せば色調による問題は発生しない。また、a値は好ましくは-3~3、より好ましくは-2~2、さらに好ましくは-1~1である。さらに、b値は好ましくは0~15、より好ましくは0~12、さらに好ましくは0~10である。なお、上記L値は100に近づくほど白色度が増し、a値およびb値は0に近づくほど低着色で実質的に白色となる。本発明の一実施形態に係る吸水性樹脂粉末は、従来の多価金属塩を添加した吸水性樹脂に比べて初期色調に対する経時色調の変化が小さい、即ち着色しにくい傾向にある。 
 なお、初期色調および経時色調は、WO2009/005114に記載の着色促進試験前および着色促進試験後の着色評価に準拠して測定される。
The temporal color tone of the water-absorbent resin powder according to one embodiment of the present invention is, in the Hunter Lab color system, the L value is preferably 70 or more, more preferably 75 or more, still more preferably 80 or more, and particularly preferably 83 or more. is there. The upper limit is 100, but if the value is at least 80, no problem occurs due to the color tone. The a value is preferably -3 to 3, more preferably -2 to 2, and even more preferably -1 to 1. Further, the b value is preferably from 0 to 15, more preferably from 0 to 12, and even more preferably from 0 to 10. As the L value approaches 100, the whiteness increases, and as the a value and the b value approach 0, the color becomes low and substantially white. The water-absorbent resin powder according to one embodiment of the present invention has a smaller change in the color tone over time with respect to the initial color tone, that is, is less likely to be colored, as compared with a conventional water-absorbent resin to which a polyvalent metal salt is added.
The initial color tone and the color tone over time are measured in accordance with the color evaluation before and after the color acceleration test described in WO2009 / 005114.
 吸水性樹脂粉末の粒度や高分子構造は上記の通りである。 粒度 The particle size and polymer structure of the water-absorbent resin powder are as described above.
 〔4〕本発明の態様
 すなわち、本発明は以下の態様であり得る。
[4] Aspect of the present invention That is, the present invention may be the following aspects.
 (吸水性樹脂粉末の製造方法)
 1.有機表面架橋剤で表面架橋され且つ水溶性多価金属塩を含む吸水性樹脂粉末の製造方法であって、多価金属塩の濃度が5重量%以上の多価金属塩水溶液を、流動層混合機内で表面架橋時または表面架橋後の吸水性樹脂粒子に噴霧する噴霧工程を有し、上記多価金属塩水溶液の噴霧位置での風温が50℃以上である、吸水性樹脂粉末の製造方法。
(Method for producing water-absorbent resin powder)
1. A method for producing a water-absorbent resin powder surface-crosslinked with an organic surface crosslinker and containing a water-soluble polyvalent metal salt, wherein a polyvalent metal salt aqueous solution having a polyvalent metal salt concentration of 5% by weight or more is mixed with a fluidized bed. A method for producing a water-absorbent resin powder, comprising: a spraying step of spraying water-absorbent resin particles at the time of surface cross-linking or after surface cross-linking in an machine, wherein the air temperature at the spray position of the aqueous solution of the polyvalent metal salt is 50 ° C or higher. .
 2.上記多価金属塩水溶液を、上記流動層混合機内で表面架橋後の吸水性樹脂粒子に噴霧する、1に記載の吸水性樹脂粉末の製造方法。かかる構成により、得られる吸水性樹脂の物性が向上する。 {2. 2. The method for producing a water-absorbent resin powder according to 1, wherein the aqueous polyvalent metal salt solution is sprayed on the water-absorbent resin particles after surface crosslinking in the fluidized bed mixer. With such a configuration, the physical properties of the obtained water-absorbent resin are improved.
 3.上記流動層混合機内において表面架橋後の吸水性樹脂粒子の冷却が上記噴霧工程と同時に行われる、1または2に記載の吸水性樹脂粉末の製造方法。かかる構成により、得られる吸水性樹脂の物性よりが向上するとともに冷却と同時に噴霧するため、工程が簡略化される。 {3. 3. The method for producing a water-absorbent resin powder according to 1 or 2, wherein cooling of the water-absorbent resin particles after surface crosslinking is performed simultaneously with the spraying step in the fluidized bed mixer. With such a configuration, the physical properties of the obtained water-absorbing resin are improved, and the water-absorbing resin is sprayed at the same time as cooling, so that the process is simplified.
 4.上記噴霧工程において、導入される吸水性樹脂粒子の温度が50~250℃である、1~3のいずれかに記載の吸水性樹脂粉末の製造方法。かかる構成により、吸水性樹脂の物性が向上する。 4. 4. The method for producing a water-absorbent resin powder according to any one of 1 to 3, wherein the temperature of the water-absorbent resin particles introduced in the spraying step is 50 to 250 ° C. With such a configuration, the physical properties of the water-absorbing resin are improved.
 5.上記噴霧工程において、上記流動層混合機の上部から上記多価金属塩水溶液を噴霧する、1~4のいずれかに記載の吸水性樹脂粉末の製造方法。かかる構成により、得られる吸水性樹脂の物性が向上するともに、製造上のトラブルが低減する。 5. 5. The method for producing a water-absorbent resin powder according to any one of 1 to 4, wherein in the spraying step, the polyvalent metal salt aqueous solution is sprayed from above the fluidized bed mixer. With such a configuration, the physical properties of the obtained water-absorbent resin are improved, and troubles in production are reduced.
 6.噴霧される多価金属塩水溶液中の水の少なくとも一部が乾燥され、噴霧される多価金属塩水溶液の水の80重量%以下が吸水性樹脂粒子に吸収される、1~5のいずれかに記載の吸水性樹脂粉末の製造方法。 6. At least a portion of the water in the sprayed aqueous polyvalent metal salt solution is dried, and 80% by weight or less of the sprayed water of the aqueous polyvalent metal salt solution is absorbed by the water-absorbent resin particles. 3. The method for producing a water-absorbent resin powder according to item 1.
 7.有機表面架橋剤で表面架橋され且つ水溶性多価金属塩を含む吸水性樹脂粉末の製造方法であって、有機表面架橋剤で表面架橋された吸水性樹脂に対し、レーザ回折・散乱法で測定される体積平均粒子径が0.3~15μmの水溶性多価金属塩粒子を添加する、吸水性樹脂粉末の製造方法。 7. A method for producing a water-absorbent resin powder surface-crosslinked with an organic surface crosslinker and containing a water-soluble polyvalent metal salt, wherein the water-absorbent resin surface-crosslinked with the organic surface crosslinker is subjected to a laser diffraction / scattering method. A method for producing a water-absorbent resin powder, which comprises adding water-soluble polyvalent metal salt particles having a volume average particle diameter of 0.3 to 15 μm measured in the step.
 8.上記水溶性多価金属塩が、上記吸水性樹脂粒子100重量部に対して、0.01~1重量部である、1~7のいずれかに記載の吸水性樹脂粉末の製造方法。かかる構成により、得られる吸水性樹脂の物性が向上する。 8. 8. The method for producing a water-absorbent resin powder according to any one of 1 to 7, wherein the water-soluble polyvalent metal salt is 0.01 to 1 part by weight based on 100 parts by weight of the water-absorbent resin particles. With such a configuration, the physical properties of the obtained water-absorbent resin are improved.
 9.上記水溶性多価金属塩が水溶性アルミニウム塩である、1~8のいずれかに記載の吸水性樹脂粉末の製造方法。かかる構成により、得られる吸水性樹脂の物性が向上する。 9. 9. The method for producing a water-absorbent resin powder according to any one of 1 to 8, wherein the water-soluble polyvalent metal salt is a water-soluble aluminum salt. With such a configuration, the physical properties of the obtained water-absorbent resin are improved.
 (吸水性樹脂粉末)
 10.有機表面架橋剤で表面架橋され且つ水溶性多価金属塩を含む吸水性樹脂粉末であって、吸水性樹脂粉末の表面に水溶性多価金属塩粒子が付着し、SEM画像分析による水溶性多価金属塩粒子の数平均粒子径が0.3~15μmである吸水性樹脂粉末。かかる構成により、吸水性樹脂の物性が向上する。
(Water absorbent resin powder)
10. A water-absorbing resin powder surface-crosslinked with an organic surface cross-linking agent and containing a water-soluble polyvalent metal salt, wherein water-soluble polyvalent metal salt particles adhere to the surface of the water-absorbing resin powder, and A water-absorbent resin powder having a number average particle diameter of the valent metal salt particles of 0.3 to 15 μm. With such a configuration, the physical properties of the water-absorbing resin are improved.
 11.SEM画像分析による水溶性多価金属塩粒子の下記式で規定される円形度が0.8以上である、10に記載の吸水性樹脂粉末。 {11. 11. The water-absorbent resin powder according to 10, wherein the circularity of the water-soluble polyvalent metal salt particles as determined by SEM image analysis is 0.8 or more.
 (円形度)=4π・S/L
 (式中、付着した水溶性多価金属塩粒子の外周をL、付着した水溶性多価金属塩粒子の面積をSとする)
 12.SEM画像分析による水溶性多価金属塩粒子の被覆面積が、吸水性樹脂粉末の面積に対して、0.1~50%である、10または11に記載の吸水性樹脂粉末。かかる構成により、吸水性樹脂の物性が向上する。
(Circularity) = 4π · S / L 2
(In the formula, L is the outer circumference of the attached water-soluble polyvalent metal salt particles, and S is the area of the attached water-soluble polyvalent metal salt particles.)
12. 12. The water-absorbent resin powder according to 10 or 11, wherein the coverage area of the water-soluble polyvalent metal salt particles by SEM image analysis is 0.1 to 50% based on the area of the water-absorbent resin powder. With such a configuration, the physical properties of the water-absorbing resin are improved.
 13.CRCが25g/g以上、AAP(0.7psi)が15g/g以上である、10~12のいずれに記載の吸水性樹脂粉末。かかる構成により、吸水性樹脂の物性が向上する。 {13. 13. The water-absorbent resin powder according to any one of 10 to 12, which has a CRC of 25 g / g or more and an AAP (0.7 psi) of 15 g / g or more. With such a configuration, the physical properties of the water-absorbing resin are improved.
 14.重量平均粒子径が100~2000μmである、10~13のいずれかに記載の吸水性樹脂粉末。かかる構成により、吸水性樹脂の物性が向上する。 {14. 14. The water-absorbent resin powder according to any one of 10 to 13, which has a weight average particle size of 100 to 2000 μm. With such a configuration, the physical properties of the water-absorbing resin are improved.
 〔5〕従来技術との相違
 上記特許文献1~22に記載の発明に対して、本発明の一実施形態は、加熱下で多価金属塩の濃度が5重量%以上の多価金属塩水溶液を流動層混合機内において表面架橋時または表面架橋後の吸水性樹脂粒子に噴霧する、吸水性樹脂粉末の製造方法に関する発明である。
[5] Difference from Conventional Technique In contrast to the inventions described in Patent Documents 1 to 22, one embodiment of the present invention provides a polyvalent metal salt aqueous solution having a polyvalent metal salt concentration of 5% by weight or more under heating. The present invention relates to a method for producing a water-absorbent resin powder by spraying water-absorbent resin particles onto or after surface cross-linking in a fluidized bed mixer.
 反応機構に限定されるものではないが、本発明の一実施形態では、加熱下で流動層混合機において多価金属塩の濃度が5重量%以上の多価金属塩水溶液を噴霧することによって、多価金属塩水溶液は噴霧乾燥状態となり、水溶性多価金属塩が平均粒子径0.3~15μmの微細な塊状となって吸水性樹脂の表面に付着することによって、吸水性樹脂の通液性が向上すると推定される。すなわち、加熱下の流動層で多価金属塩水溶液を噴霧添加することで、多価金属塩水溶液の液滴が気層または気層で流動する吸水性樹脂の表面で乾燥して固体の多価金属塩が付着した状態となると推定される。 Although not limited to the reaction mechanism, in one embodiment of the present invention, by spraying a polyvalent metal salt aqueous solution having a polyvalent metal salt concentration of 5% by weight or more in a fluidized bed mixer under heating, The aqueous solution of the polyvalent metal salt is in a spray-dried state, and the water-soluble polyvalent metal salt is formed into fine aggregates having an average particle diameter of 0.3 to 15 μm and adheres to the surface of the water-absorbent resin. It is estimated that the property is improved. That is, by spraying and adding an aqueous solution of a polyvalent metal salt in a fluidized bed under heating, droplets of the aqueous solution of a polyvalent metal salt are dried on the surface of the gas-absorbing resin or the water-absorbing resin flowing in the gas layer, and the solid polyvalent metal salt is dried. It is estimated that the metal salt is attached.
 従来の攪拌下の多価金属塩水溶液の添加では、撹拌された吸水性樹脂粒子の層に多価金属塩水溶液が添加されるため、多価金属塩は吸水性樹脂に吸収されるか、あるいは吸水性樹脂どうしの接触により薄く伸ばされることにより吸水性樹脂を被覆する。これに対して、本発明の一実施形態では、図1に示すような略球状/塊状で固体の多価金属塩が吸水性樹脂の表面に点状に非連続的に付着する。従来の多価金属塩水溶液での吸水性樹脂の表面処理では、吸水性樹脂が多価金属塩で被覆されるのに対して、本発明の一実施形態は図1のような新たな形状の吸水性樹脂を与える。 In the conventional addition of a polyvalent metal salt aqueous solution with stirring, the polyvalent metal salt aqueous solution is added to the layer of the stirred water-absorbent resin particles, so that the polyvalent metal salt is absorbed by the water-absorbent resin, or The water-absorbent resin is coated by being thinly stretched by contact between the water-absorbent resins. On the other hand, in an embodiment of the present invention, a substantially spherical / lumped solid polyvalent metal salt as shown in FIG. 1 is discontinuously attached to the surface of the water-absorbent resin in a dotted manner. In the conventional surface treatment of a water-absorbent resin with a polyvalent metal salt aqueous solution, the water-absorbent resin is coated with a polyvalent metal salt, whereas an embodiment of the present invention has a new shape as shown in FIG. Gives water absorbent resin.
 上記特許文献1~22は、本発明の一実施形態に係る吸水性樹脂粉末の製造方法および吸水性樹脂粉末を示唆しない。 Patent Documents 1 to 22 do not suggest a method for producing a water-absorbent resin powder and a water-absorbent resin powder according to an embodiment of the present invention.
 以下に、実施例によって本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。以下では、便宜上、「重量部」を単に「部」と、「リットル」を単に「L」と記すことがある。また、「重量%」を「wt%」と記すことがある。 本 Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited thereto. Hereinafter, “parts by weight” may be simply referred to as “parts” and “liter” may be simply referred to as “L” for convenience. Further, “wt%” may be described as “wt%”.
 吸水性樹脂粒子の諸性能は、以下の方法で測定した。特に記載が無い限り下記測定は室温(20~25℃)、湿度50RH%の条件下で行われたものとする。なお、測定対象物が吸水性樹脂粒子以外である場合には、特に断りのない限り、吸水性樹脂粒子を対象物に読み替えて適用する。 諸 Various properties of the water absorbent resin particles were measured by the following methods. Unless otherwise specified, the following measurements are performed at room temperature (20 to 25 ° C.) and a humidity of 50 RH%. When the object to be measured is other than the water-absorbing resin particles, the water-absorbing resin particles are replaced with the object and applied unless otherwise specified.
 <食塩水流れ誘導性(SFC)>
 本発明の一実施形態に係る吸水性樹脂粉末のSFCは、米国特許第5669894号に記載された測定方法に準拠して測定した。
<Saline flow conductivity (SFC)>
The SFC of the water-absorbent resin powder according to one embodiment of the present invention was measured according to the measurement method described in US Pat. No. 5,669,894.
 <遠心分離機保持容量(CRC)>
 本発明の一実施形態に係る吸水性樹脂粉末のCRCは、EDANA法(ERT441.2-02)に準拠して測定した。
<Centrifuge holding capacity (CRC)>
The CRC of the water-absorbent resin powder according to one embodiment of the present invention was measured according to the EDANA method (ERT441.2-02).
 <加圧下吸水倍率(AAP)>
 本発明の一実施形態に係る吸水性樹脂粉末のAAPは、EDANA法(ERT442.2-02)に準拠して測定した。なお、荷重条件を4.83kPa(0.7psi)に変更した。
<Water absorption capacity under pressure (AAP)>
AAP of the water-absorbent resin powder according to one embodiment of the present invention was measured in accordance with the EDANA method (ERT442.2-02). The load condition was changed to 4.83 kPa (0.7 psi).
 <粉体流動性(FLOWRATE(F.R.))>
 本発明の一実施形態に係る吸水性樹脂粉末のF.R.は、EDANA法(ERT450.2-02)に準拠して測定した。
<Powder fluidity (FLOWRATE (FR))>
The FR of the water-absorbent resin powder according to one embodiment of the present invention was measured in accordance with the EDANA method (ERT450.2-02).
 <吸湿ブロッキング率(Blocking Ratio(B.R.))>
 底面の直径52mmのアルミカップに、吸水性樹脂粉末約2gを均一に散布した後、温度25℃、相対湿度70%RH下の恒温恒湿機中で1時間放置した。1時間後、上記アルミカップに入った吸水性樹脂粉末を、目開き2000μmのJIS標準篩(The IIDA TESTING SIEVE:内径80mm)の上に静かに移し、ロータップ型篩振盪機(株式会社飯田製作所製ES-65型篩振盪機;回転数230rpm、衝撃数130rpm)を用いて8秒間分級し、上記篩上に残存した吸水性樹脂粉末の重量(i(g))および該篩を通過した吸水性樹脂粉末の重量(j(g))を測定した。そして、下記式(3)に従って、吸湿ブロッキング率を算出した。なお、吸湿ブロッキング率が0重量%に近いほど、吸湿流動性が高いことを示す。
吸湿ブロッキング率(重量%)=((i(g))/(i(g)+j(g)))×100 …式(3)
 <抽出液の表面張力>
 吸水性樹脂粉末の抽出液の表面張力は、吸水性樹脂粉末から0.9重量%塩化ナトリウム水溶液で抽出した抽出液について測定した値である。具体的には十分に洗浄された容量100mLのビーカーに、23℃~25℃に調温された0.9質量%の塩化ナトリウム水溶液(生理食塩水)50mLを投入し、該生理食塩水の表面張力を、表面張力計(自動表面張力計K11、クルス社製)を用いて測定し、表面張力の測定値が71mN/m~75mN/mの範囲内であることを確認する。続いて、該生理食塩水に、十分に洗浄された25mm長のフッ素樹脂製の回転子と吸水性樹脂0.5gとを投入し、500rpmで4分間攪拌する。その後、攪拌を停止して膨潤した吸水性樹脂を沈降させ、上澄み液について上記と同様にして測定した値を表面張力とした。
<Blocking Ratio (BR)>
About 2 g of the water-absorbing resin powder was uniformly spread on an aluminum cup having a diameter of 52 mm on the bottom surface, and then left for 1 hour in a thermo-hygrostat at a temperature of 25 ° C. and a relative humidity of 70% RH. One hour later, the water-absorbent resin powder contained in the aluminum cup was gently transferred onto a JIS standard sieve (the inner diameter of 80 mm) having a mesh size of 2000 μm, and a low tap sieve shaker (manufactured by Iida Seisakusho Co., Ltd.) ES-65 sieve shaker; 230 rpm, impact 130 rpm), classified for 8 seconds, the weight (i (g)) of the water-absorbent resin powder remaining on the sieve and the water absorption passed through the sieve The weight (j (g)) of the resin powder was measured. Then, the moisture absorption blocking ratio was calculated according to the following equation (3). The closer the moisture absorption blocking rate is to 0% by weight, the higher the moisture absorption fluidity is.
Moisture absorption blocking ratio (% by weight) = ((i (g)) / (i (g) + j (g))) × 100 Formula (3)
<Surface tension of extract>
The surface tension of the extract of the water-absorbent resin powder is a value measured for an extract extracted from the water-absorbent resin powder with a 0.9% by weight aqueous sodium chloride solution. Specifically, 50 mL of a 0.9% by mass aqueous sodium chloride solution (physiological saline) adjusted to 23 ° C. to 25 ° C. is put into a well-washed 100 mL beaker, and the surface of the physiological saline is added. The tension is measured using a surface tensiometer (K11, an automatic surface tensiometer) to confirm that the measured value of the surface tension is in the range of 71 mN / m to 75 mN / m. Subsequently, a well-washed 25-mm-long rotor made of fluororesin and 0.5 g of water-absorbent resin are put into the physiological saline and stirred at 500 rpm for 4 minutes. Thereafter, the stirring was stopped to allow the swollen water-absorbent resin to settle, and the value measured for the supernatant liquid in the same manner as above was defined as the surface tension.
 <含水率>
 EDANA法(ERT430.2-02)において、吸水性樹脂の粒子または粉末1gを180℃で3時間(無風オーブン)乾燥させたときの乾燥減量に変更して測定した。
<Moisture content>
In the EDANA method (ERT430.2-02), the measurement was made by changing the loss on drying when 1 g of the water-absorbent resin particles or powder was dried at 180 ° C. for 3 hours (airless oven).
 <多価金属塩水溶液中の多価金属塩粒子の体積平均粒子径>
 試験管中にシクロヘキサンと多価金属塩粒子とを入れて、超音波洗浄機で多価金属塩粒子を分散させた。この分散液をレーザ回折・散乱法で分析して、多価金属塩粒子の体積平均粒子径を求めた。
<Volume average particle diameter of polyvalent metal salt particles in polyvalent metal salt aqueous solution>
Cyclohexane and polyvalent metal salt particles were placed in a test tube, and the polyvalent metal salt particles were dispersed by an ultrasonic cleaner. This dispersion was analyzed by a laser diffraction / scattering method to determine the volume average particle size of the polyvalent metal salt particles.
 〔製造例1:吸水性樹脂粒子の製造(重合・乾燥・粉砕・分級)〕
 シグマ型羽根を2本有する内容量10Lのジャケット付きニーダーに、中和率75%、単量体濃度38重量%のアクリル酸ナトリウム水溶液を5500g、ポリエチレングリコールジアクリレート(平均分子量523)を4.5g投入し、混合した後、窒素を吹き込んで脱気した。次いでニーダーの内容物を撹拌しながら30℃に調整し、10重量%過硫酸ナトリウム水溶液28.3g、その後1重量%L-アスコルビン酸2.0gを注入したところ、重合は速やかに始まり、40分後に粒子径が1~5mmの含水ゲルが得られた。この含水ゲルを目開き300μmのステンレスメッシュ上で50cm×70cmに広げて、熱風式乾燥機(製品名;71-6S 佐竹化学機械社製)で180℃40分乾燥した。得られた乾燥重合体をロールミル粉砕し、目開きが850μmと150μmの標準篩で分級して、粒子径が150~850μmの吸水性樹脂粒子(1)(重量平均粒子(D50)は370μm)を得た。
[Production Example 1: Production of water-absorbent resin particles (polymerization, drying, pulverization, classification)]
5500 g of an aqueous sodium acrylate solution having a neutralization ratio of 75% and a monomer concentration of 38% by weight, and 4.5 g of polyethylene glycol diacrylate (average molecular weight: 523) were placed in a jacketed kneader having a capacity of 10 L having two sigma-type blades. After charging and mixing, degassing was performed by blowing nitrogen. Next, the content of the kneader was adjusted to 30 ° C. while stirring, and 28.3 g of a 10% by weight aqueous sodium persulfate solution and then 2.0 g of 1% by weight L-ascorbic acid were injected. Later, a hydrogel having a particle size of 1 to 5 mm was obtained. The hydrogel was spread on a stainless mesh having a mesh size of 300 μm to a size of 50 cm × 70 cm, and dried at 180 ° C. for 40 minutes using a hot-air dryer (product name: 71-6S manufactured by Satake Chemical Machinery Co., Ltd.). The obtained dried polymer is pulverized by a roll mill and classified with a standard sieve having openings of 850 μm and 150 μm to obtain water-absorbent resin particles (1) having a particle diameter of 150 to 850 μm (weight average particle (D50) is 370 μm). Obtained.
 〔製造例2:吸水性樹脂粒子の表面架橋〕
 上記製造例1で得られた吸水性樹脂粒子(1)100重量部を高速撹拌しながら、ポリオキシエチレンソルビタンモノステアラート(TWEEN60)0.001重量部、エチレンカーボネート0.3重量部、プロピレングリコール0.6重量部、脱イオン水3重量部からなる表面架橋剤水溶液を噴霧添加し、パドルドライヤーで200℃、40分間撹拌しながら加熱した。さらに、表面架橋された吸水性樹脂粒子(1)を、凝集をほぐしながら目開き850μmの篩を通過させた。ここで上記表面架橋剤は吸水性樹脂粒子(1)の官能基であるカルボキシル基と共有結合(COOHとOHの脱水反応)で架橋する有機架橋剤である。
[Production Example 2: Surface crosslinking of water-absorbing resin particles]
While rapidly stirring 100 parts by weight of the water-absorbent resin particles (1) obtained in Production Example 1, 0.001 parts by weight of polyoxyethylene sorbitan monostearate (TWEEN60), 0.3 parts by weight of ethylene carbonate, and propylene glycol An aqueous solution of a surface cross-linking agent consisting of 0.6 part by weight and 3 parts by weight of deionized water was added by spraying, and heated with a paddle dryer at 200 ° C. for 40 minutes with stirring. Further, the surface-crosslinked water-absorbent resin particles (1) were passed through a sieve having an aperture of 850 μm while loosening aggregation. Here, the surface cross-linking agent is an organic cross-linking agent that cross-links with a carboxyl group, which is a functional group of the water-absorbent resin particles (1), by a covalent bond (a dehydration reaction between COOH and OH).
 こうして得られた表面架橋された吸水性樹脂粒子(1)は、重量平均粒子(D50)が380μmであった。得られた表面架橋された吸水性樹脂粒子(1)についての各種物性値の測定結果を表1に示す。また、表面架橋された吸水性樹脂粒子(1)の抽出液の表面張力は70mN/mであった。なお、製造例1に引き続き行われた実施例、比較例で得られた吸水性樹脂粉末の表面張力はいずれも70mN/m程度であった。 表面 The surface-crosslinked water-absorbent resin particles (1) thus obtained had a weight average particle (D50) of 380 μm. Table 1 shows the measurement results of various physical properties of the obtained surface-crosslinked water-absorbent resin particles (1). The surface tension of the extract of the surface-crosslinked water-absorbent resin particles (1) was 70 mN / m. The surface tension of the water-absorbent resin powders obtained in Examples and Comparative Examples performed after Production Example 1 was about 70 mN / m.
 〔実施例1:多価金属塩の濃度が27重量%の多価金属塩水溶液の加熱下での添加〕
 製造例2で得られた表面架橋された吸水性樹脂粒子(1)に対して、加熱下で流動層混合機内において多価金属塩の濃度が27重量%の多価金属塩水溶液を噴霧した。
[Example 1: Addition of a polyvalent metal salt aqueous solution having a polyvalent metal salt concentration of 27% by weight under heating]
The surface-crosslinked water-absorbent resin particles (1) obtained in Production Example 2 were sprayed with a polyvalent metal salt aqueous solution having a polyvalent metal salt concentration of 27% by weight in a fluidized bed mixer under heating.
 具体的には、流動層を形成する流動層混合機(製品名;Pulvis GB22、ヤマト科学社製)に吸水性樹脂粒子(1)を500g仕込み、熱風;100℃、風量;0.2m/min(パンチング;8cmφ、風速;0.66m/s)の条件で吸水性樹脂粒子(1)を流動させながら温めた。吸水性樹脂粒子(1)の温度および流動層排気温度が80℃となった後、27重量%硫酸アルミニウム水溶液5g(吸水性樹脂粒子100重量%に対して1重量%)を15g/分の速さで噴霧した。さらに、硫酸アルミニウム水溶液を噴霧した吸水性樹脂粒子を5分間、流動層混合機内で混合させることにより、吸水性樹脂粉末(1)を得た。各種物性値の測定結果を表1に示す。 Specifically, 500 g of the water-absorbing resin particles (1) were charged into a fluidized bed mixer (product name; Pulvis GB22, manufactured by Yamato Scientific Co., Ltd.) for forming a fluidized bed, and hot air: 100 ° C., air volume: 0.2 m 3 / The water-absorbent resin particles (1) were heated while flowing under the conditions of min (punching: 8 cmφ, wind speed: 0.66 m / s). After the temperature of the water-absorbent resin particles (1) and the fluidized bed exhaust temperature reached 80 ° C., 5 g of a 27% by weight aqueous solution of aluminum sulfate (1% by weight based on 100% by weight of the water-absorbent resin particles) was added at a speed of 15 g / min. And sprayed. Furthermore, water-absorbent resin particles (1) were obtained by mixing the water-absorbent resin particles sprayed with the aluminum sulfate aqueous solution in a fluidized bed mixer for 5 minutes. Table 1 shows the measurement results of various physical property values.
 なお、硫酸アルミニウムの飽和水溶液濃度(20℃)は約50重量%であり、実施例1では硫酸アルミニウム水溶液の噴霧乾燥と同時に吸水性樹脂粒子への添加が行われると推定される。その結果、図1に示すように硫酸アルミニウム水和物の球状粒子の付着が観察された。取得したSEM画像に基づくと、硫酸アルミニウム水和物の数平均粒子径は3μm、被覆面積は吸水性樹脂粉末の面積に対して2%、円形度は0.85であった。さらに上記操作において、吸水性樹脂粒子に対して水73重量%および硫酸アルミニウム27重量%が添加され、吸水性樹脂の含水率の向上は約0.2%となっていた。すなわち、添加した水の27重量%が吸収された。 Note that the concentration of the saturated aqueous solution of aluminum sulfate (20 ° C.) is about 50% by weight. In Example 1, it is estimated that the aqueous solution of aluminum sulfate is added to the water-absorbent resin particles simultaneously with the spray drying. As a result, adhesion of spherical particles of aluminum sulfate hydrate was observed as shown in FIG. Based on the acquired SEM image, the number average particle diameter of aluminum sulfate hydrate was 3 μm, the coating area was 2% with respect to the area of the water-absorbent resin powder, and the circularity was 0.85. Further, in the above operation, 73% by weight of water and 27% by weight of aluminum sulfate were added to the water-absorbent resin particles, and the improvement of the water content of the water-absorbent resin was about 0.2%. That is, 27% by weight of the added water was absorbed.
 〔比較例1:多価金属塩の濃度が4重量%の多価金属塩水溶液の室温下での添加〕
 送風;24℃(吸水性樹脂温度;24℃)、風量;0.6m/min(パンチング;8cmφ、風速;2.0m/s)の条件で吸水性樹脂粒子を流動させながら、4重量%硫酸アルミニウム水溶液25g(吸水性樹脂粒子100重量%に対して5重量%)を用いた以外は、実施例1と同様にして吸水性樹脂粉末の製造を試みた。しかし、硫酸アルミニウム水溶液を噴霧した後、吸水性樹脂粒子はすぐに流動しなくなり、凝集体状になった。
[Comparative Example 1: Addition of a polyvalent metal salt aqueous solution having a polyvalent metal salt concentration of 4% by weight at room temperature]
4% by weight while flowing the water-absorbent resin particles under the conditions of blowing: 24 ° C. (water-absorbent resin temperature: 24 ° C.), air volume: 0.6 m 3 / min (punching: 8 cmφ, wind speed: 2.0 m / s) Production of a water-absorbent resin powder was attempted in the same manner as in Example 1 except that 25 g of an aqueous solution of aluminum sulfate (5% by weight with respect to 100% by weight of water-absorbent resin particles) was used. However, after spraying the aqueous solution of aluminum sulfate, the water-absorbent resin particles immediately stopped flowing and became aggregated.
 〔比較例2:多価金属塩の濃度が4重量%の多価金属塩水溶液の加熱下での添加〕
 4重量%硫酸アルミニウム水溶液25g(吸水性樹脂粒子100重量%に対して5重量%)を用いた以外は、実施例1と同様にして吸水性樹脂粉末の製造を試みた。しかし、硫酸アルミニウム水溶液を噴霧した後、吸水性樹脂粒子はすぐに流動しなくなり、凝集体状になった。
[Comparative Example 2: Addition of a polyvalent metal salt aqueous solution having a polyvalent metal salt concentration of 4% by weight under heating]
Production of a water-absorbent resin powder was attempted in the same manner as in Example 1 except that 25 g of a 4% by weight aqueous solution of aluminum sulfate (5% by weight based on 100% by weight of water-absorbent resin particles) was used. However, after spraying the aqueous solution of aluminum sulfate, the water-absorbent resin particles immediately stopped flowing and became aggregated.
 〔比較例3:多価金属塩の濃度が4重量%の多価金属塩水溶液の加熱下での添加(風量変更)〕
 風量を0.36m/min(パンチング;8cmφ、風速;1.2m/s)とした以外は比較例2と同様に吸水性樹脂粉末の製造を試みたところ、吸水性樹脂粒子の流動は止まらなかったが、流動層混合機内で吸水性樹脂粒子が飛散した。さらに硫酸アルミニウム水溶液を噴霧した吸水性樹脂粒子を5分間、流動層混合機内で混合させることにより、比較吸水性樹脂粉末(3)を得た。比較吸水性樹脂粉末(3)の各種物性値の測定結果を表1に示す。なお、SEMによる観察で、比較吸水性樹脂粉末(3)の表面に硫酸アルミニウム水和物の粒子や塊は見られなかった。
[Comparative Example 3: Addition of a polyvalent metal salt aqueous solution having a polyvalent metal salt concentration of 4% by weight under heating (air volume change)]
An attempt was made to produce a water-absorbent resin powder in the same manner as in Comparative Example 2 except that the air volume was changed to 0.36 m 3 / min (punching: 8 cmφ, wind speed: 1.2 m / s), but the flow of the water-absorbent resin particles stopped. However, water-absorbent resin particles scattered in the fluidized bed mixer. Furthermore, the water-absorbing resin particles sprayed with the aluminum sulfate aqueous solution were mixed in a fluidized bed mixer for 5 minutes to obtain a comparative water-absorbing resin powder (3). Table 1 shows the measurement results of various physical properties of the comparative water absorbent resin powder (3). Observation by SEM showed no particles or lumps of aluminum sulfate hydrate on the surface of the comparative water absorbent resin powder (3).
 〔比較例4:多価金属塩の濃度が4重量%の多価金属塩水溶液の室温下での添加(噴霧方向変更)〕
 硫酸アルミニウム水溶液の噴霧をパンチングメタル付近から上向きに行った以外は、比較例1と同様に吸水性樹脂粉末の製造を試みたところ、吸水性樹脂粒子の流動は止まらなかった。さらに硫酸アルミニウム水溶液を噴霧した吸水性樹脂粒子を5分間、流動層混合機内で混合させることにより、比較吸水性樹脂粉末(4)を得た。比較吸水性樹脂粉末(4)の各種物性値の測定結果を表1に示す。なお、SEMによる観察で、比較吸水性樹脂粉末(4)の表面に硫酸アルミニウム水和物の粒子や塊は見られなかった。
[Comparative Example 4: Addition of a polyvalent metal salt aqueous solution having a polyvalent metal salt concentration of 4% by weight at room temperature (change of spray direction)]
An attempt was made to produce a water-absorbing resin powder in the same manner as in Comparative Example 1 except that the aqueous solution of aluminum sulfate was sprayed upward from the vicinity of the punching metal, but the flow of the water-absorbing resin particles did not stop. Further, the water-absorbing resin particles sprayed with the aluminum sulfate aqueous solution were mixed for 5 minutes in a fluidized bed mixer to obtain a comparative water-absorbing resin powder (4). Table 1 shows the measurement results of various physical properties of the comparative water absorbent resin powder (4). Observation by SEM showed no particles or lumps of aluminum sulfate hydrate on the surface of the comparative water absorbent resin powder (4).
 〔参考例1〕
 実施例1において吸水性樹脂粒子を用いずに流動層混合機内で、多価金属塩の濃度が27重量%の硫酸アルミニウム水溶液を噴霧させたところ、硫酸アルミニウム水和物の微粉末が得られた。この微粉末を目開き45μmの篩で分級することにより大きな凝集物を除くと、レーザ回折・散乱法で測定した体積平均粒子径が4μmである硫酸アルミニウム水和物の微粒子が得られた。
[Reference Example 1]
In Example 1, an aqueous solution of aluminum sulfate having a polyvalent metal salt concentration of 27% by weight was sprayed in a fluidized bed mixer without using water-absorbing resin particles. As a result, a fine powder of aluminum sulfate hydrate was obtained. . When this fine powder was classified with a sieve having an opening of 45 μm to remove large aggregates, aluminum sulfate hydrate fine particles having a volume average particle diameter of 4 μm measured by a laser diffraction / scattering method were obtained.
 〔実施例2〕
 製造例2で得られた表面架橋された吸水性樹脂粒子(1)100重量部に参考例1で得られた硫酸アルミニウム水和物0.25重量部を添加、混合し、吸水性樹脂粉末(2)を得た。吸水性樹脂粉末(2)の各種物性値の測定結果を表1に示す。取得した吸水性樹脂粉末(2)のSEM画像に基づくと、硫酸アルミニウム水和物の数平均粒子径は2μmであった。
[Example 2]
To 100 parts by weight of the surface-crosslinked water-absorbent resin particles (1) obtained in Production Example 2, 0.25 part by weight of the aluminum sulfate hydrate obtained in Reference Example 1 was added and mixed. 2) was obtained. Table 1 shows the measurement results of various physical properties of the water-absorbent resin powder (2). Based on the SEM image of the obtained water-absorbent resin powder (2), the number average particle diameter of aluminum sulfate hydrate was 2 μm.
 〔実施例3〕
 上記実施例2において、参考例1で得られた硫酸アルミニウム水和物0.5重量部を添加、混合した以外は、実施例2と同様に操作して、吸水性樹脂粉末(3)を得た。吸水性樹脂粉末(3)の各種物性値の測定結果を表1に示す。
[Example 3]
A water-absorbent resin powder (3) was obtained in the same manner as in Example 2 except that 0.5 parts by weight of the aluminum sulfate hydrate obtained in Reference Example 1 was added and mixed. Was. Table 1 shows the measurement results of various physical properties of the water-absorbent resin powder (3).
 〔比較例5〕
 製造例2で得られた表面架橋された吸水性樹脂粒子(1)100重量部をプラスチック容器に入れ、スパチュラで撹拌しながら27重量%硫酸アルミニウム水溶液1重量部を注射器で添加、混合し、80℃の無風オーブンで30分間加熱した。さらに凝集物を崩しながら目開きが850μmの篩を通過させて、比較吸水性樹脂粉末(5)を得た。比較吸水性樹脂粉末(5)の各種物性値の測定結果を表1に示す。
[Comparative Example 5]
100 parts by weight of the surface-crosslinked water-absorbent resin particles (1) obtained in Production Example 2 were placed in a plastic container, and 1 part by weight of a 27% by weight aqueous aluminum sulfate solution was added and mixed with a syringe while stirring with a spatula. Heated in a windless oven at 30 ° C. for 30 minutes. Further, the powder was passed through a sieve having an opening of 850 μm while disintegrating aggregates to obtain a comparative water absorbent resin powder (5). Table 1 shows the measurement results of various physical properties of the comparative water absorbent resin powder (5).
 〔比較例6〕
 製造例2で得られた表面架橋された吸水性樹脂粒子(1)100重量部をプラスチック容器に入れ、スパチュラで撹拌しながら27重量%硫酸アルミニウム水溶液1重量部、60重量%乳酸ナトリウム0.3重量部、プロピレングリコール0.025重量部からなる液を注射器で添加、混合し、80℃の無風オーブンで30分間加熱した。さらに凝集物を崩しながら目開きが850μmの篩を通過させて、比較吸水性樹脂粉末(6)を得た。比較吸水性樹脂粉末(6)の各種物性値の測定結果を表1に示す。
[Comparative Example 6]
100 parts by weight of the surface-crosslinked water-absorbent resin particles (1) obtained in Production Example 2 are placed in a plastic container, and 1 part by weight of a 27% by weight aqueous solution of aluminum sulfate and 0.3% by weight of 60% by weight sodium lactate are stirred with a spatula. A liquid composed of 0.025 parts by weight of propylene glycol was added by a syringe, mixed, and heated in a windless oven at 80 ° C. for 30 minutes. Further, the powder was passed through a sieve having an opening of 850 μm while disintegrating aggregates to obtain a comparative water-absorbent resin powder (6). Table 1 shows the measurement results of various physical properties of the comparative water absorbent resin powder (6).
Figure JPOXMLDOC01-appb-T000001
 (まとめ)
 製造例2(表面架橋された吸水性樹脂粒子)を用いて、多価金属塩を添加する実施例1の吸水性樹脂粉末(1)(多価金属塩の濃度が27%の多価金属塩水溶液の加熱下での添加)と比較例1~4の比較吸水性樹脂粉末(1)~(4)(多価金属塩の濃度が4重量%の多価金属塩水溶液の加熱下または室温での添加)とを製造した。これらの対比により、多価金属塩の濃度が5重量%以上の多価金属塩を加熱下で噴霧する本発明の一実施形態の製造方法では、凝集もなく安定的に吸水性樹脂粉末が得られるとともに、吸水性樹脂粉末の通液性(SFC)および吸湿流動性が高いことが分かる。また流動層混合機を用いないで多価金属塩を添加する従来の高通液性、高吸湿流動性技術に相当する比較例5、6により得られた比較吸水性樹脂粉末と比べても実施例1~3で得られた吸水性樹脂粉末は通液性、吸湿流動性に優れていることが分かる。さらに、シリカ等を添加した吸水性樹脂と異なり、本発明の一実施形態の製造方法で得られた表面架橋された吸水性樹脂粒子は、加圧下吸水倍率(AAP)が製造例2の表面架橋された吸水性樹脂粒子とほぼ同等の加圧下吸水倍率を示す。実施例1の吸水性樹脂粉末は、図1に示すように、数平均粒子径3μm程度の球状の多価金属塩(硫酸アルミニウム)の粒子の付着がSEM画像で観察された。さらに実施例1で得られた吸水性樹脂粉末の含水率から噴霧した水溶液中の水が乾燥したことが示唆される。
Figure JPOXMLDOC01-appb-T000001
(Summary)
Water-absorbent resin powder (1) of Example 1 in which a polyvalent metal salt is added using Production Example 2 (surface-crosslinked water-absorbent resin particles) (a polyvalent metal salt having a polyvalent metal salt concentration of 27%) Water-absorbent resin powders (1) to (4) (addition of aqueous solution under heating) and Comparative Examples 1 to 4 (under heating or at room temperature of aqueous solution of polyvalent metal salt having a polyvalent metal salt concentration of 4% by weight) Was added. According to these comparisons, in the production method of one embodiment of the present invention in which a polyvalent metal salt having a polyvalent metal salt concentration of 5% by weight or more is sprayed under heating, a water-absorbent resin powder can be stably obtained without aggregation. It can be seen that the water-absorbent resin powder has high liquid permeability (SFC) and high hygroscopic fluidity. In addition, the comparative example was compared with the comparative water-absorbent resin powder obtained in Comparative Examples 5 and 6, which corresponded to the conventional high liquid permeability and high hygroscopic fluidity technology in which a polyvalent metal salt was added without using a fluidized bed mixer. It can be seen that the water-absorbent resin powders obtained in 1 to 3 are excellent in liquid permeability and hygroscopic fluidity. Furthermore, unlike the water-absorbent resin to which silica or the like is added, the surface-crosslinked water-absorbent resin particles obtained by the production method of one embodiment of the present invention have a water absorption under pressure (AAP) of the surface cross-linked of Production Example 2. It shows a water absorption capacity under pressure almost equivalent to that of the obtained water-absorbent resin particles. In the water-absorbent resin powder of Example 1, adhesion of spherical polyvalent metal salt (aluminum sulfate) particles having a number average particle diameter of about 3 μm was observed in the SEM image as shown in FIG. Furthermore, the water content of the water-absorbent resin powder obtained in Example 1 suggests that the water in the sprayed aqueous solution was dried.
 〔製造例3〕
 製造例1においてポリエチレングリコールジアクリレートの使用量を11.2重量部に変更した以外は製造例1と同様に操作して、吸水性樹脂粒子(3)を得た。
[Production Example 3]
Water-absorbing resin particles (3) were obtained in the same manner as in Production Example 1, except that the amount of polyethylene glycol diacrylate used was changed to 11.2 parts by weight.
 〔製造例4〕
 製造例2において、吸水性樹脂粒子(3)を用いた以外は製造例2と同様に操作して、表面架橋された吸水性樹脂粒子(4)を得た。表面架橋された吸水性樹脂粒子(4)の各種物性値の測定結果を表2に示す。
[Production Example 4]
The procedure of Production Example 2 was repeated, except that the water-absorbent resin particles (3) were used, to obtain surface-crosslinked water-absorbent resin particles (4). Table 2 shows the measurement results of various physical properties of the surface-crosslinked water-absorbent resin particles (4).
 〔実施例4〕
 実施例3において、表面架橋された吸水性樹脂粒子(4)を用いた以外は、実施例3と同様に操作して吸水性樹脂粉末(4)を得た。吸水性樹脂粉末(4)の各種物性値の測定結果を表2に示す。
[Example 4]
A water-absorbent resin powder (4) was obtained in the same manner as in Example 3, except that the surface-crosslinked water-absorbent resin particles (4) were used. Table 2 shows the measurement results of various physical properties of the water-absorbent resin powder (4).
 〔比較例7〕
 比較例5において、表面架橋された吸水性樹脂粒子(4)を用いた以外は、比較例5と同様に操作して比較吸水性樹脂粉末(7)を得た。比較吸水性樹脂粉末(7)の各種物性値の測定結果を表2に示す。
[Comparative Example 7]
A comparative water-absorbent resin powder (7) was obtained in the same manner as in Comparative Example 5 except that the surface-crosslinked water-absorbent resin particles (4) were used. Table 2 shows the measurement results of various physical properties of the comparative water absorbent resin powder (7).
 〔比較例8〕
 比較例6において、表面架橋された吸水性樹脂粒子(4)を用いた以外は、比較例6と同様に操作して比較吸水性樹脂粉末(8)を得た。比較吸水性樹脂粉末(8)の各種物性値の測定結果を表2に示す。
[Comparative Example 8]
A comparative water-absorbent resin powder (8) was obtained in the same manner as in Comparative Example 6, except that the surface-crosslinked water-absorbent resin particles (4) were used. Table 2 shows the measurement results of various physical properties of the comparative water absorbent resin powder (8).
Figure JPOXMLDOC01-appb-T000002
 (まとめ)
 内部架橋剤の使用量を変更して、表面架橋された吸水性樹脂粒子(1)よりもCRCの低い表面架橋された吸水性樹脂粒子(2)を作製し、実施例4、比較例7、8の吸水性樹脂粉末を製造した。これらについて各種物性値を測定したところ、SFCの違いがより明確になった。すなわち、実施例4の吸水性樹脂粉末(4)は比較例7の比較吸水性樹脂粉末(7)よりもSFCが高く、吸湿ブロッキング率が低く、0重量%に近いことから、通液性および吸湿流動性の面で明らかに優れている。また、実施例4の吸水性樹脂粉末(4)は比較例8の比較吸水性樹脂粉末(8)に対しても、吸湿ブロッキング率が低く、0重量%に近いことから、吸湿流動性の面で優れている。
Figure JPOXMLDOC01-appb-T000002
(Summary)
The amount of the internal crosslinking agent was changed to produce surface-crosslinked water-absorbent resin particles (2) having a lower CRC than the surface-crosslinked water-absorbent resin particles (1). 8 were produced. When various physical property values were measured for these, the difference in SFC became clearer. That is, the water-absorbent resin powder (4) of Example 4 has a higher SFC than the comparative water-absorbent resin powder (7) of Comparative Example 7, a low moisture absorption blocking ratio, and is close to 0% by weight. Clearly superior in terms of moisture absorption fluidity. Further, the water-absorbent resin powder (4) of Example 4 also has a low moisture-absorbing blocking ratio and is close to 0% by weight with respect to the comparative water-absorbent resin powder (8) of Comparative Example 8, so that the water-absorbent fluidity is low. Is excellent.
 〔参考例2〕
 ポリエチレングリコール(分子量200)4重量部に13.5重量%の硫酸アルミニウム水溶液2重量部を激しくかき混ぜながら添加することにより、硫酸アルミニウム水和物が析出、分散した分散液(1)を得た。
[Reference Example 2]
A dispersion (1) in which aluminum sulfate hydrate was precipitated and dispersed was obtained by adding 2 parts by weight of a 13.5% by weight aqueous solution of aluminum sulfate to 4 parts by weight of polyethylene glycol (molecular weight: 200) with vigorous stirring.
 〔実施例5〕
 製造例2で得られた、表面架橋された吸水性樹脂粒子(1)100重量部に、参考例2で得られた分散液(1)6重量部を、かき混ぜながら滴下した。さらに180℃のオーブンで30分間乾燥させ、目開きが850μmの篩を通過させることにより吸水性樹脂粉末(5)を得た。吸水性樹脂粉末(5)の各種物性値の測定結果を表3に示す。なお、SEM画像で観察したところ、硫酸アルミニウム水和物はやや細長い多面体で、数平均粒子径は1μmであった。粉立ち(ダスト)はなかった。
[Example 5]
To 100 parts by weight of the surface-crosslinked water-absorbent resin particles (1) obtained in Production Example 2, 6 parts by weight of the dispersion (1) obtained in Reference Example 2 was added dropwise while stirring. It was further dried in an oven at 180 ° C. for 30 minutes, and passed through a sieve having openings of 850 μm to obtain a water-absorbent resin powder (5). Table 3 shows the measurement results of various physical properties of the water-absorbent resin powder (5). In addition, when observed by the SEM image, the aluminum sulfate hydrate was a slightly elongated polyhedron, and the number average particle diameter was 1 μm. There was no dust.
 〔参考例3〕
 参考例1で得られた硫酸アルミニウム水和物0.5重量部をポリエチレングリコール(分子量200)4重量部および脱イオン水1.5重量部の混合液に分散させて、分散液(2)を得た。
[Reference Example 3]
0.5 parts by weight of the aluminum sulfate hydrate obtained in Reference Example 1 was dispersed in a mixture of 4 parts by weight of polyethylene glycol (molecular weight: 200) and 1.5 parts by weight of deionized water to obtain a dispersion (2). Obtained.
 〔実施例6〕
 実施例5において、分散液(1)の代わりに参考例3で得られた分散液(2)6重量部を添加した以外は同様に操作し、吸水性樹脂粉末(6)を得た。吸水性樹脂粉末(6)の各種物性値の測定結果を表3に示す。なお、SEM画像で観察したところ、硫酸アルミニウム水和物の形状は球状、多面体などが混在し、数平均粒子径は1μm、円形度は0.81であった。粉立ち(ダスト)はなかった。
[Example 6]
A water-absorbent resin powder (6) was obtained in the same manner as in Example 5, except that 6 parts by weight of the dispersion (2) obtained in Reference Example 3 was added instead of the dispersion (1). Table 3 shows the measurement results of various physical properties of the water-absorbent resin powder (6). In addition, when observed with a SEM image, the shape of aluminum sulfate hydrate was a mixture of spherical and polyhedral, the number average particle diameter was 1 μm, and the circularity was 0.81. There was no dust.
 〔比較例9〕
 実施例5において、分散液(1)の代わりにポリエチレングリコール(分子量200)4重量部、脱イオン水2重量部からなる水溶液を添加した以外は同様に操作し、比較吸水性樹脂(9)を得た。比較吸水性樹脂(9)の各種物性値の測定結果を表3に示す。
[Comparative Example 9]
A comparative water absorbent resin (9) was prepared in the same manner as in Example 5, except that an aqueous solution consisting of 4 parts by weight of polyethylene glycol (molecular weight: 200) and 2 parts by weight of deionized water was added instead of the dispersion liquid (1). Obtained. Table 3 shows the measurement results of various physical properties of the comparative water absorbent resin (9).
Figure JPOXMLDOC01-appb-T000003
 実施例5,6、比較例9におけるF.R.の比較から、硫酸アルミニウム粒子が含まれていることにより、吸水性樹脂のF.R.が向上していることがわかる。また、実施例5と実施例6を比較すると、球状の硫酸アルミニウム粒子が含まれていると、吸水性樹脂のF.R.とSFCが向上することが分かる。さらに、表1の記載と表3の記載との対比から、球状硫酸アルミニウムをポリエチレングリコールとともに添加すると、吸水性樹脂のSFCが大きく向上することが分かる。
Figure JPOXMLDOC01-appb-T000003
The comparison of FR in Examples 5 and 6 and Comparative Example 9 shows that the presence of the aluminum sulfate particles improves the FR of the water-absorbing resin. In addition, comparing Example 5 and Example 6, when spherical aluminum sulfate particles are contained, the F.C. R. It can be seen that SFC is improved. Further, from the comparison between the description in Table 1 and the description in Table 3, it can be seen that when spherical aluminum sulfate is added together with polyethylene glycol, the SFC of the water absorbent resin is greatly improved.
 〔実施例7〕
 乳酸アルミニウムを乳鉢ですりつぶし、体積平均粒子径4μmの乳酸アルミニウム粒子を得た。
[Example 7]
Aluminum lactate was ground in a mortar to obtain aluminum lactate particles having a volume average particle diameter of 4 μm.
 得られた乳酸アルミニウム0.5重量部を、表面架橋された吸水性樹脂(1)100重量部に添加、混合し、吸水性樹脂粉末(7)を得た。吸水性樹脂粉末(7)の各種物性値の測定結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
0.5 parts by weight of the obtained aluminum lactate was added to and mixed with 100 parts by weight of the surface-crosslinked water-absorbent resin (1) to obtain a water-absorbent resin powder (7). Table 4 shows the measurement results of various physical properties of the water-absorbent resin powder (7).
Figure JPOXMLDOC01-appb-T000004
 本発明を用いて製造される吸水性樹脂粉末は、通液性に優れるので、紙オムツや生理用ナプキンをはじめ各種衛生材料やその他、各種吸水性樹脂の用途に好適に使用することができる。 水性 The water-absorbent resin powder produced by using the present invention is excellent in liquid permeability, so that it can be suitably used for various sanitary materials such as disposable diapers and sanitary napkins, and other various water-absorbent resins.

Claims (14)

  1.  有機表面架橋剤で表面架橋され且つ水溶性多価金属塩を含む吸水性樹脂粉末の製造方法であって、多価金属塩の濃度が5重量%以上の多価金属塩水溶液を、流動層混合機内で表面架橋時または表面架橋後の吸水性樹脂粒子に噴霧する噴霧工程を有し、上記多価金属塩水溶液の噴霧位置での風温が50℃以上である、吸水性樹脂粉末の製造方法。 A method for producing a water-absorbent resin powder surface-crosslinked with an organic surface crosslinker and containing a water-soluble polyvalent metal salt, wherein a polyvalent metal salt aqueous solution having a polyvalent metal salt concentration of 5% by weight or more is mixed with a fluidized bed. A method for producing a water-absorbent resin powder, comprising: a spraying step of spraying water-absorbent resin particles at the time of surface cross-linking or after surface cross-linking in an machine, wherein the air temperature at the spray position of the aqueous solution of the polyvalent metal salt is 50 ° C or higher. .
  2.  上記流動層混合機内で、上記多価金属塩水溶液を表面架橋後の吸水性樹脂粒子に噴霧する、請求項1に記載の吸水性樹脂粉末の製造方法。 The method for producing a water-absorbent resin powder according to claim 1, wherein the aqueous polyvalent metal salt solution is sprayed on the water-absorbent resin particles after surface crosslinking in the fluidized bed mixer.
  3.  上記流動層混合機内において、表面架橋後の吸水性樹脂粒子の冷却が上記噴霧工程と同時に行われる、請求項1または2に記載の吸水性樹脂粉末の製造方法。 The method for producing a water-absorbent resin powder according to claim 1 or 2, wherein cooling of the water-absorbent resin particles after surface crosslinking is performed simultaneously with the spraying step in the fluidized bed mixer.
  4.  上記噴霧工程において、導入される吸水性樹脂粒子の温度が50~250℃である、請求項1~3のいずれか1項に記載の吸水性樹脂粉末の製造方法。 方法 The method for producing a water-absorbent resin powder according to any one of claims 1 to 3, wherein the temperature of the water-absorbent resin particles introduced in the spraying step is 50 to 250 ° C.
  5.  上記噴霧工程において、上記流動層混合機の上部から上記多価金属塩水溶液を噴霧する、請求項1~4のいずれか1項に記載の吸水性樹脂粉末の製造方法。 (5) The method for producing a water-absorbent resin powder according to any one of (1) to (4), wherein, in the spraying step, the polyvalent metal salt aqueous solution is sprayed from above the fluidized bed mixer.
  6.  噴霧される多価金属塩水溶液中の水の少なくとも一部が乾燥され、噴霧される多価金属塩水溶液の水の80重量%以下が吸水性樹脂粒子に吸収される、請求項1~5のいずれか1項に記載の吸水性樹脂粉末の製造方法。 6. The water-absorbent resin particles according to claim 1, wherein at least a part of the water in the sprayed polyvalent metal salt aqueous solution is dried, and 80% by weight or less of the water of the sprayed polyvalent metal salt aqueous solution is absorbed by the water-absorbing resin particles. A method for producing a water-absorbent resin powder according to any one of the preceding claims.
  7.  有機表面架橋剤で表面架橋され且つ水溶性多価金属塩を含む吸水性樹脂粉末の製造方法であって、有機表面架橋剤で表面架橋された吸水性樹脂粒子に対し、レーザ回折・散乱法で測定される体積平均粒子径が0.3~15μmの水溶性多価金属塩粒子を添加する、吸水性樹脂粉末の製造方法。 A method for producing a water-absorbent resin powder surface-crosslinked with an organic surface crosslinker and containing a water-soluble polyvalent metal salt, wherein a water-absorbent resin particle surface-crosslinked with an organic surface crosslinker is subjected to a laser diffraction / scattering method. A method for producing a water-absorbent resin powder, comprising adding water-soluble polyvalent metal salt particles having a measured volume average particle diameter of 0.3 to 15 μm.
  8.  上記水溶性多価金属塩が、上記吸水性樹脂粒子100重量部に対して、0.01~1重量部である、請求項1~7のいずれか1項に記載の吸水性樹脂粉末の製造方法。 The production of a water-absorbent resin powder according to any one of claims 1 to 7, wherein the water-soluble polyvalent metal salt is 0.01 to 1 part by weight based on 100 parts by weight of the water-absorbent resin particles. Method.
  9.  上記水溶性多価金属塩が水溶性アルミニウム塩である、請求項1~8のいずれか1項に記載の吸水性樹脂粉末の製造方法。 方法 The method for producing a water-absorbent resin powder according to any one of claims 1 to 8, wherein the water-soluble polyvalent metal salt is a water-soluble aluminum salt.
  10.  有機表面架橋剤で表面架橋され且つ水溶性多価金属塩を含む吸水性樹脂粉末であって、吸水性樹脂粉末の表面に水溶性多価金属塩粒子が付着し、SEM画像分析による水溶性多価金属塩粒子の数平均粒子径が0.3~15μmである吸水性樹脂粉末。 A water-absorbing resin powder surface-crosslinked with an organic surface cross-linking agent and containing a water-soluble polyvalent metal salt, wherein water-soluble polyvalent metal salt particles adhere to the surface of the water-absorbing resin powder, and A water-absorbent resin powder having a number average particle diameter of the valent metal salt particles of 0.3 to 15 μm.
  11.  SEM画像分析による水溶性多価金属塩粒子の下記式で規定される円形度が、0.8以上である、請求項10に記載の吸水性樹脂粉末。
     (円形度)=4π・S/L
     (式中、付着した水溶性多価金属塩粒子の外周をL、付着した水溶性多価金属塩粒子の面積をSとする)
    The water-absorbent resin powder according to claim 10, wherein the circularity of the water-soluble polyvalent metal salt particles determined by SEM image analysis is 0.8 or more as defined by the following equation.
    (Circularity) = 4π · S / L 2
    (In the formula, L is the outer circumference of the attached water-soluble polyvalent metal salt particles, and S is the area of the attached water-soluble polyvalent metal salt particles.)
  12.  SEM画像分析による水溶性多価金属塩粒子の被覆面積が、吸水性樹脂粉末の面積に対して、0.1~50%である、請求項10または11に記載の吸水性樹脂粉末。 12. The water-absorbent resin powder according to claim 10 or 11, wherein the coverage area of the water-soluble polyvalent metal salt particles by SEM image analysis is 0.1 to 50% with respect to the area of the water-absorbent resin powder.
  13.  CRCが25g/g以上、AAP(0.7psi)が15g/g以上である、請求項10~12のいずれか1項に記載の吸水性樹脂粉末。 The water-absorbent resin powder according to any one of claims 10 to 12, wherein CRC is 25 g / g or more and AAP (0.7 psi) is 15 g / g or more.
  14.  重量平均粒子径が100~2000μmである、請求項10~13のいずれか1項に記載の吸水性樹脂粉末。 The water-absorbent resin powder according to any one of claims 10 to 13, wherein the weight average particle diameter is 100 to 2000 μm.
PCT/JP2019/038462 2018-09-28 2019-09-30 Method for producing water-absorbing resin powder and water-absorbing resin powder WO2020067563A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020549511A JP7116796B2 (en) 2018-09-28 2019-09-30 Method for producing water absorbent resin powder and water absorbent resin powder
KR1020217007517A KR20210041070A (en) 2018-09-28 2019-09-30 Method for producing water absorbent resin powder and water absorbent resin powder
CN201980060648.9A CN112703053B (en) 2018-09-28 2019-09-30 Method for producing water-absorbent resin powder, and water-absorbent resin powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-185615 2018-09-28
JP2018185615 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020067563A1 true WO2020067563A1 (en) 2020-04-02

Family

ID=69951331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038462 WO2020067563A1 (en) 2018-09-28 2019-09-30 Method for producing water-absorbing resin powder and water-absorbing resin powder

Country Status (4)

Country Link
JP (2) JP7116796B2 (en)
KR (1) KR20210041070A (en)
CN (1) CN112703053B (en)
WO (1) WO2020067563A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116870232A (en) * 2023-07-14 2023-10-13 广东美登新材料科技有限公司 Integrated menstrual pants composite core and preparation method thereof
CN116870232B (en) * 2023-07-14 2024-04-16 广东美登新材料科技有限公司 Integrated menstrual pants composite core and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07242709A (en) * 1994-03-03 1995-09-19 Toagosei Co Ltd Preparation of water-absorbent resin
JP2004261797A (en) * 2003-02-10 2004-09-24 Nippon Shokubai Co Ltd Water absorbent
JP2004261796A (en) * 2003-02-10 2004-09-24 Nippon Shokubai Co Ltd Particulate water absorbent
JP2005344103A (en) * 2004-05-07 2005-12-15 Nippon Shokubai Co Ltd Water-absorbing agent and production method thereof
JP2009522387A (en) * 2005-12-28 2009-06-11 ビーエーエスエフ ソシエタス・ヨーロピア Manufacturing method of water-absorbing substances
JP2010502415A (en) * 2006-08-31 2010-01-28 株式会社日本触媒 Water absorbing agent and method for producing the same
JP2010094656A (en) * 2008-10-20 2010-04-30 Nippon Shokubai Co Ltd Water absorbing agent prepared by sticking fine particle
JP2013525592A (en) * 2010-05-07 2013-06-20 エボニック・ストックハウゼン・リミテッド・ライアビリティ・カンパニー Particulate superabsorbent polymer with increased capacity

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61257235A (en) 1985-05-08 1986-11-14 Sanyo Chem Ind Ltd Water absorbent resin composition, its preparation and water absorbent-water retention agent
DE3741158A1 (en) 1987-12-04 1989-06-15 Stockhausen Chem Fab Gmbh POLYMERISATES WITH HIGH ABSORPTION SPEED FOR WATER AND AQUEOUS LIQUIDS, METHOD FOR THE PRODUCTION THEREOF AND USE AS ABSORBENTS
JPH06313043A (en) 1993-04-30 1994-11-08 Kao Corp Production of resin having high water absorption property
JPH06313042A (en) 1993-04-30 1994-11-08 Kao Corp Production of resin having high water absorption property
JPH07224204A (en) 1994-02-10 1995-08-22 Toagosei Co Ltd Production of water-absorbing resin
JP3026080B2 (en) 1998-07-03 2000-03-27 三洋化成工業株式会社 Deodorant / antibacterial water-absorbing agent, its production method and absorbent article
DE19909653A1 (en) 1999-03-05 2000-09-07 Stockhausen Chem Fab Gmbh Powdery, crosslinked, aqueous liquids and blood-absorbing polymers, processes for their preparation and their use
DE19909838A1 (en) 1999-03-05 2000-09-07 Stockhausen Chem Fab Gmbh Powdery, crosslinked, aqueous liquids and blood-absorbing polymers, processes for their preparation and their use
DE10016041A1 (en) 2000-03-31 2001-10-04 Stockhausen Chem Fab Gmbh Powdery surface crosslinked polymers
DE10043706A1 (en) 2000-09-04 2002-04-25 Stockhausen Chem Fab Gmbh Powdery, crosslinked, aqueous liquids and blood-absorbing polymers, processes for their preparation and their use
JP4991084B2 (en) 2001-01-19 2012-08-01 ビーエーエスエフ ソシエタス・ヨーロピア Water absorbent, process for producing the same and use of the water absorbent
JP2003225565A (en) 2001-11-20 2003-08-12 San-Dia Polymer Ltd Water absorbent, manufacturing method therefor, and absorbing material and absorptive article using the water absorbent
CN100346843C (en) * 2003-02-10 2007-11-07 株式会社日本触媒 Water absorbent
JP4422509B2 (en) 2003-03-10 2010-02-24 株式会社日本触媒 Water-absorbent resin composition, use thereof and production method thereof
KR100709911B1 (en) 2003-06-24 2007-04-24 니폰 쇼쿠바이 컴파니 리미티드 Water absorbent resin composition and production method thereof
EP2260876B1 (en) 2003-09-19 2021-08-04 Nippon Shokubai Co., Ltd. Water absorbent product and method for producing the same
CN102875944B (en) * 2004-05-07 2015-07-08 株式会社日本触媒 Water absorbing agent and production method thereof
CN100372893C (en) * 2004-06-18 2008-03-05 株式会社日本触媒 Water absorbent resin composition and production method thereof
TW200720347A (en) 2005-09-30 2007-06-01 Nippon Catalytic Chem Ind Water-absorbent agent composition and method for manufacturing the same
DE102006019157A1 (en) 2006-04-21 2007-10-25 Stockhausen Gmbh Production of high-permeability, superabsorbent polymer structures
SA08290542B1 (en) 2007-08-28 2012-11-14 نيبون شوكوباي كو. ، ليمتد Method for Producing Water Absorbent Resin
JP2009142728A (en) 2007-12-12 2009-07-02 Procter & Gamble Co Water absorbing agent and its manufacturing method
JP2011517703A (en) * 2007-12-19 2011-06-16 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing surface-crosslinked superabsorbent material
US8952116B2 (en) * 2009-09-29 2015-02-10 Nippon Shokubai Co., Ltd. Particulate water absorbent and process for production thereof
CN102174207A (en) * 2010-12-13 2011-09-07 上海华谊丙烯酸有限公司 Method for continuously preparing absorbent resin particles with high saline flow conductivity
EP2620466B1 (en) 2012-01-27 2014-09-10 Evonik Degussa GmbH Heat-treatment of water-absorbing polymeric particles in a fluidized bed
EP2620465B2 (en) 2012-01-27 2018-03-28 Evonik Degussa GmbH Heat-treatment of water-absorbing polymeric particles in a fluidized bed at a fast heat-up rate
EP2905071B1 (en) 2012-10-01 2020-02-12 Nippon Shokubai Co., Ltd. Dust-reducing agent comprising multiple metal compound, water absorbent containing multiple metal compound and method for manufacturing same
CN103183842B (en) * 2013-03-29 2014-09-10 华南理工大学 Method for surface crosslinking of super absorbent resin
US9375507B2 (en) 2013-04-10 2016-06-28 Evonik Corporation Particulate superabsorbent polymer composition having improved stability
EP3279238B1 (en) * 2015-03-31 2021-07-14 Nippon Shokubai Co., Ltd. Super absorbent polyacrylic acid (salt)-based resin powder, method for manufacturing same, and method for evaluating same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07242709A (en) * 1994-03-03 1995-09-19 Toagosei Co Ltd Preparation of water-absorbent resin
JP2004261797A (en) * 2003-02-10 2004-09-24 Nippon Shokubai Co Ltd Water absorbent
JP2004261796A (en) * 2003-02-10 2004-09-24 Nippon Shokubai Co Ltd Particulate water absorbent
JP2005344103A (en) * 2004-05-07 2005-12-15 Nippon Shokubai Co Ltd Water-absorbing agent and production method thereof
JP2009522387A (en) * 2005-12-28 2009-06-11 ビーエーエスエフ ソシエタス・ヨーロピア Manufacturing method of water-absorbing substances
JP2010502415A (en) * 2006-08-31 2010-01-28 株式会社日本触媒 Water absorbing agent and method for producing the same
JP2010094656A (en) * 2008-10-20 2010-04-30 Nippon Shokubai Co Ltd Water absorbing agent prepared by sticking fine particle
JP2013525592A (en) * 2010-05-07 2013-06-20 エボニック・ストックハウゼン・リミテッド・ライアビリティ・カンパニー Particulate superabsorbent polymer with increased capacity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116870232A (en) * 2023-07-14 2023-10-13 广东美登新材料科技有限公司 Integrated menstrual pants composite core and preparation method thereof
CN116870232B (en) * 2023-07-14 2024-04-16 广东美登新材料科技有限公司 Integrated menstrual pants composite core and preparation method thereof

Also Published As

Publication number Publication date
JP7355900B2 (en) 2023-10-03
JPWO2020067563A1 (en) 2021-09-02
JP2022166050A (en) 2022-11-01
CN112703053B (en) 2024-02-27
CN112703053A (en) 2021-04-23
JP7116796B2 (en) 2022-08-10
KR20210041070A (en) 2021-04-14

Similar Documents

Publication Publication Date Title
CN109310986B (en) Particulate water absorbent
JP5972853B2 (en) Water absorbing agent and method for producing the same
JP5064032B2 (en) Method for producing water-absorbent resin granulated product and water-absorbent resin granulated product
US10646612B2 (en) Polyacrylic acid (salt) water absorbent, and method for producing same
JP5421243B2 (en) Method for producing particulate water-absorbing agent mainly composed of water-absorbing resin
JP5914677B2 (en) Method for producing polyacrylic acid (salt) water absorbent and water absorbent
WO2009113673A1 (en) Method for production of particulate water absorbent comprising water-absorbable resin as main ingredient
JP5840362B2 (en) Water absorbing agent and method for producing the same
JP5587348B2 (en) Method for producing water absorbent resin
JPWO2019221236A1 (en) Water-absorbent resin powder and its manufacturing method
EP2546286A1 (en) Method for manufacturing a water-absorbing resin
JP5977839B2 (en) Polyacrylic acid (salt) water-absorbing resin and method for producing the same
US10363544B2 (en) Particulate water-absorbing agent
KR102554051B1 (en) Water absorbing agent containing water absorbing resin as a main component and method for producing the same
JP6751582B2 (en) Manufacturing method of water absorbent
WO2021095806A1 (en) Particulate water absorbent and method for producing same
WO2020059762A1 (en) Method for producing particulate water-absorbing agent and particulate water-absorbing agent
JPWO2020145383A1 (en) Water-absorbing agent and manufacturing method of water-absorbing agent
JP7355900B2 (en) water absorbent resin powder
JPWO2019124536A1 (en) Water-absorbent resin powder for heating element composition, and heating element composition
WO2021201177A1 (en) Particulate water-absorbing agent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866759

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020549511

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19866759

Country of ref document: EP

Kind code of ref document: A1