JPH07224204A - Production of water-absorbing resin - Google Patents

Production of water-absorbing resin

Info

Publication number
JPH07224204A
JPH07224204A JP3785294A JP3785294A JPH07224204A JP H07224204 A JPH07224204 A JP H07224204A JP 3785294 A JP3785294 A JP 3785294A JP 3785294 A JP3785294 A JP 3785294A JP H07224204 A JPH07224204 A JP H07224204A
Authority
JP
Japan
Prior art keywords
water
absorbent resin
particles
resin powder
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3785294A
Other languages
Japanese (ja)
Inventor
Juichi Goto
寿一 後藤
Hidenori Sakakibara
秀紀 榊原
Takashi Aoyama
青山  隆
Minoru Okada
岡田  稔
Yasutaro Yasuda
保太郎 安田
Yoshikazu Mori
義和 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP3785294A priority Critical patent/JPH07224204A/en
Publication of JPH07224204A publication Critical patent/JPH07224204A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

PURPOSE:To produce easily and inexpensively a water-absorbing resin modified by surface treatment and having high water absorption capacity even under elevated pressure while reducing the loss due to the reaction for surface treatment. CONSTITUTION:Heated water-absorbing carboxylic resin powder having such a particle size that at least 90wt.% of the particles can pass a sieve mesh with an opening of 850mum but can not pass a sieve mesh with an opening of 250mum is mixed and reacted with a cross-linking agent, whereupon the formation of agglomerates of resin particles that interfere with the reaction during the surface treatment can be reduced, and the waterabsorbing resin having high water absorbing capacity even under elevated pressure and high water absorption rate can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は吸水性樹脂に表面処理を
施すことにより改質された吸水性樹脂の製造方法に関す
るものである。さらに詳しく述べれば、本発明は表面処
理時の反応ロスを減少し、加圧下でも高い吸水能力を有
する吸水性樹脂を容易に且つ安価に製造できるであり、
本発明で得られる特性の改質された樹脂はサニタリー用
品、土木薬剤さらには農業用薬剤として幅広く利用され
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a water absorbent resin modified by subjecting a water absorbent resin to a surface treatment. More specifically, the present invention reduces reaction loss during surface treatment, and can easily and inexpensively produce a water-absorbent resin having a high water-absorbing ability even under pressure,
The resin with modified properties obtained by the present invention is widely used as a sanitary product, a civil engineering chemical, and an agricultural chemical.

【0002】[0002]

【従来の技術】近年、吸水性樹脂は、生理用ナプキン、
紙オムツ、母乳パッドなどのサニタリー用薬剤や農園芸
用保水剤などの農業用薬剤さらには汚泥固化剤、掘削泥
水用などの土木薬剤として使用されている。このような
吸水性樹脂の具体的なものとしては、例えばデンプン−
アクリロニトリルグラフト共重合体の加水分解物、デン
プン−アクリル酸グラフト共重合体の中和物、ポリビニ
ルアルコール架橋重合体、酢ビ−アクリル酸エステル共
重合体の加水分解物、またはそれらの架橋体、ポリアク
リル酸塩系の架橋体、無水マレイン酸系共重合体の架橋
物などが知られている。
2. Description of the Related Art In recent years, water absorbent resins have been used for sanitary napkins,
It is used as a sanitary agent such as paper diapers and breast milk pads, an agricultural agent such as a water retention agent for agricultural and horticultural purposes, a sludge solidifying agent, and a civil engineering agent for drilling mud. Specific examples of such a water absorbent resin include starch-
Hydrolyzate of acrylonitrile graft copolymer, neutralized product of starch-acrylic acid graft copolymer, polyvinyl alcohol crosslinked polymer, hydrolyzate of vinyl acetate-acrylic acid ester copolymer, or crosslinked product thereof, poly Acrylate-based crosslinked products and maleic anhydride-based crosslinked products are known.

【0003】吸水性樹脂の用途の中で、現在、特に幅広
く該樹脂が使用されているのは紙オムツ等のサニタリ−
用品であり、この用途で特に該樹脂に期待される性能に
は、加圧下でも体液を吸いあげる吸水能力とその体液を
多量に吸うことのできる高い吸水倍率、そして吸水した
体液を逆戻りさせない保水能力等が挙げられる。しかし
ながら、吸水倍率と加圧下での吸水能力は、相反する関
係、すなわち加圧下での吸水能力を良くすると吸水倍率
が低くなり、逆に、吸水倍率を高くすると加圧下での吸
水能力が低下するという関係にある。また、保水能力
は、吸水倍率と加圧下での吸水能力の両物性が高くなけ
れば、充分に性能を発揮しないというものである。
Among the applications of the water-absorbent resin, the one that is widely used at present is the sanitary paper diapers and the like.
It is a product, and the performance that is particularly expected for this resin in this application includes a water absorption capacity that absorbs body fluid even under pressure, a high water absorption capacity that can absorb a large amount of the body fluid, and a water retention capacity that does not reverse the absorbed body fluid. Etc. However, the water absorption capacity and the water absorption capacity under pressure have a contradictory relationship, that is, if the water absorption capacity under pressure is improved, the water absorption capacity decreases, and conversely, if the water absorption capacity is increased, the water absorption capacity under pressure decreases. There is a relationship. Further, the water retention capacity is such that the performance is not sufficiently exhibited unless both physical properties of the water absorption capacity and the water absorption capacity under pressure are high.

【0004】吸水倍率を維持して加圧下での吸水能力を
改良する方法としては、吸水倍率の高い吸水性樹脂の表
面近傍のみを均一に架橋し、表面と内部に架橋勾配差を
つける方法が知られている。例えば、吸水性樹脂を親水
性有機溶媒中または水と親水性有機溶媒の混合溶媒中に
分散させ、架橋剤で架橋させる方法(特開昭57−44
627、特開昭58−42602)、吸水性樹脂粉末に
架橋剤または架橋剤水溶液を直接混合させ、必要に応じ
加熱処理して表面を架橋させる方法(特開昭58−18
0233、特開昭59−62665、特開昭61−46
241)等が知られている。
As a method for maintaining the water absorption capacity and improving the water absorption capacity under pressure, there is a method in which only the vicinity of the surface of the water absorbent resin having a high water absorption capacity is uniformly crosslinked, and a difference in the crosslinking gradient between the surface and the inside is provided. Are known. For example, a method of dispersing a water-absorbent resin in a hydrophilic organic solvent or a mixed solvent of water and a hydrophilic organic solvent and crosslinking with a crosslinking agent (JP-A-57-44).
627, JP-A-58-42602), a method in which a water-absorbent resin powder is directly mixed with a cross-linking agent or an aqueous solution of the cross-linking agent, and heat-treated as necessary to cross-link the surface (JP-A-58-18).
0233, JP-A-59-62665, JP-A-61-46.
241) and the like are known.

【0005】しかしながら、親水性有機溶媒と水の混合
溶媒を使用した前記方法では、確かに架橋剤が該溶媒に
溶解して、該吸水性樹脂表面を均一に架橋できる可能性
は高いが、反応工程および有機溶剤を除去する乾燥工程
での加熱により、爆発、火災を招く危険性が高く、廃ガ
スによる環境衛生等の安全性に対する問題等のため工業
的に実施するには好ましい方法とは言えないものであ
る。そのうえ高価な有機溶媒を使用するという経済性の
点からも問題があるものである。また、直接、吸水性樹
脂に架橋剤を混合する、後者の方法では、安価に工業的
に実施できるが、該架橋剤だけでは吸水性樹脂に対して
均等に浸透させることが困難であることと、効果的な架
橋剤には粘性な液体が多く均一に混合することも困難で
あるため、十分に樹脂表面近傍を架橋することが出来な
いという問題点を有している。さらに、架橋剤水溶液と
して樹脂表面に散布する方法においては、該架橋剤が水
とともに吸水性樹脂表面全体に浸透し、十分に樹脂表面
を架橋する可能性は高くなるが、一方で水により吸水膨
潤した樹脂粒子相互での凝集を生じ、この凝集塊が均一
な混合を阻害するので、すべての樹脂粒子表面を均一に
架橋することが困難であり、問題点を有する方法と言わ
ざるを得ない方法である。そのうえ、この架橋反応中に
生成した凝集塊の吸水性樹脂は、架橋剤水溶液が樹脂間
に取り込まれているため、粒子表面に架橋剤の濃度勾配
を生じさせ、極度に架橋した吸水倍率の低位の部分と逆
に架橋不十分で加圧下での吸水能力の低位の部分が混在
した不均一なものに成りやすく、吸水能力が十分と言え
るものを得るのが困難である。さらに、これらの凝集塊
は、粒径が1000μmを越えている場合がほとんど
で、その様なものは吸水速度が十分なものとは言い難い
ものであり、このような凝集塊が製品中に残留するの
は、吸水能力、吸水速度の点から好ましくない。この問
題点を解消するために、これらの凝集塊を分級除去した
り、分級除去したものを再解砕して製品中に戻すという
ことが行われるが、それらの操作は経済性、作業性の点
で大きな問題となるものである。
However, in the above method using a mixed solvent of a hydrophilic organic solvent and water, there is a high possibility that the cross-linking agent will be dissolved in the solvent and the surface of the water-absorbent resin can be uniformly cross-linked. Due to heating in the process and the drying process for removing the organic solvent, there is a high risk of causing an explosion and a fire, and it can be said that it is a preferable method for industrial implementation due to safety problems such as environmental hygiene due to waste gas. There is no such thing. In addition, there is a problem from the economical point of view that an expensive organic solvent is used. Further, directly mixing the cross-linking agent to the water-absorbent resin, the latter method can be industrially implemented at low cost, but it is difficult to uniformly permeate the water-absorbent resin only with the cross-linking agent. However, since there are many viscous liquids in the effective crosslinking agent and it is difficult to mix them uniformly, there is a problem that the vicinity of the resin surface cannot be sufficiently crosslinked. Further, in the method of spraying on the resin surface as an aqueous solution of the crosslinking agent, the possibility that the crosslinking agent permeates the entire surface of the water-absorbent resin together with water, and the possibility of sufficiently crosslinking the resin surface increases, while swelling due to water absorption swells. Agglomeration of the resin particles caused by the agglomeration occurs, and since this agglomerate hinders uniform mixing, it is difficult to uniformly cross-link all the resin particle surfaces, which is a method having problems. Is. In addition, the water-absorbent resin of the agglomerates generated during this crosslinking reaction causes the concentration gradient of the crosslinking agent on the particle surface because the aqueous solution of the crosslinking agent is taken in between the resins, and the extremely low water absorption capacity due to crosslinking is obtained. Contrary to the part (1), the cross-linking is insufficient and a part having a low water absorption capacity under pressure is likely to be mixed, and it is difficult to obtain a product having sufficient water absorption capacity. Furthermore, these agglomerates almost always have a particle size of more than 1000 μm, and it is difficult to say that such particles have a sufficient water absorption rate, and such agglomerates remain in the product. Doing so is not preferable in terms of water absorption capacity and water absorption speed. In order to solve this problem, these agglomerates are classified and removed, or the classified and removed ones are re-crushed and returned to the product, but those operations are economical and workable. This is a big problem in terms of points.

【0006】これに対し、不活性な無機質粉末やショ糖
脂肪酸エステル存在下で吸水性樹脂粉末に架橋剤水溶液
を混合して反応させる方法(特開昭60−16395
6、特開昭60−255814、特開平3−2820
3)が知られているが、この方法では、確かに無機質粉
末やショ糖脂肪酸エステルの効果により樹脂粒子間の凝
集は抑制されて架橋剤水溶液が均一に混合される可能性
は高いが、前者の場合、樹脂粒子間の凝集を抑制するの
に必要量の無機質粉末が反応以前に存在すると無機質粉
末にも架橋剤水溶液が吸収され架橋反応を阻害すること
になり、十分な性能を有した吸水性樹脂を得ることを困
難にし、また、樹脂粒子間の凝集を抑制するのに必要量
の無機質粉末を使用すると、得られる吸水性樹脂から粉
塵が発生しやすくなり環境衛生面での問題点を生じる。
後者の場合は高価なショ糖脂肪酸エステルを用いなけれ
ばならず、工業的実施に適したとは言えないものであ
る。
On the other hand, a method in which an aqueous solution of a cross-linking agent is mixed with a water-absorbent resin powder in the presence of an inert inorganic powder or sucrose fatty acid ester to carry out a reaction (JP-A-60-16395).
6, JP-A-60-255814, JP-A-3-2820
Although 3) is known, this method certainly suppresses agglomeration between resin particles due to the effect of the inorganic powder and the sucrose fatty acid ester, and it is highly possible that the aqueous solution of the crosslinking agent is uniformly mixed. In the case of, if the amount of the inorganic powder required to suppress the agglomeration between the resin particles is present before the reaction, the crosslinking agent aqueous solution is also absorbed in the inorganic powder to inhibit the crosslinking reaction, and the water absorption with sufficient performance is obtained. It is difficult to obtain a water-soluble resin, and if the required amount of inorganic powder is used to suppress the agglomeration of resin particles, dust is likely to be generated from the water-absorbent resin obtained, which causes environmental problems. Occurs.
In the latter case, expensive sucrose fatty acid ester must be used, which is not suitable for industrial practice.

【0007】さらに、無機質粉末を使用せず、吸水性樹
脂を連続的に気中に分散させ、架橋剤水溶液を500μ
m以下の液滴にして混合する方法(特開平3−8400
4)が知られているが、液滴を200μm未満の細かい
粒子径にすると該吸水性樹脂を連続的に気中に分散させ
る際に発生する風力で、架橋剤と樹脂との接触が不十分
となる恐れがあり、とくに、工業的なスケールで実施す
る場合、樹脂粉末を分散させるには、大量の気体と動力
を必要とするが、その様な状態では微細な液滴を吸水性
樹脂に均一に接触させるのは不可能に近い。また、加熱
下で実施する場合、微細液滴では、樹脂表面に到達する
前に水分が蒸発してしまい十分な架橋を行うことを困難
にする。また、液滴の粒子径が200〜500μmの範
囲の場合では、吸水性樹脂の形状や架橋剤水溶液の添加
の際の状態によっては、樹脂粒子間に凝集が生じてしま
い、十分に目的を達成することが困難である。
Further, the water absorbent resin is continuously dispersed in the air without using the inorganic powder, and the cross-linking agent aqueous solution is 500 μm.
A method of forming droplets of m or less and mixing them (Japanese Patent Laid-Open No. 3-8400
4) is known, the contact force between the cross-linking agent and the resin is insufficient due to the wind force generated when the water-absorbent resin is continuously dispersed in the air when the droplet has a fine particle size of less than 200 μm. In particular, when it is carried out on an industrial scale, a large amount of gas and power are required to disperse the resin powder, but in such a state fine droplets can be absorbed by the water-absorbent resin. It is almost impossible to make uniform contact. Further, when the heating is carried out under heating, the fine droplets evaporate the water before reaching the resin surface, which makes it difficult to perform sufficient crosslinking. Further, in the case where the particle diameter of the droplet is in the range of 200 to 500 μm, agglomeration occurs between the resin particles depending on the shape of the water absorbent resin and the state at the time of adding the aqueous solution of the cross-linking agent, so that the object is sufficiently achieved. Difficult to do.

【0008】[0008]

【発明が解決しようとする課題】このように、吸水性樹
脂の表面近傍を架橋して相反する特性をバランス良く改
良する方法が種々試みられているが、いずれも上記した
ような問題点を有しており、十分な改良効果を示す吸水
性樹脂を得るには困難な方法である。
As described above, various methods of cross-linking the vicinity of the surface of the water-absorbent resin to improve the contradictory properties in a well-balanced manner have been tried, but all have the above-mentioned problems. Therefore, it is a difficult method to obtain a water-absorbent resin exhibiting a sufficient improvement effect.

【0009】本発明の目的は、上記の問題点を改良し
て、高い吸水倍率を維持しつつ、加圧下でも高い吸水能
力を有する吸水性樹脂を得るための有効な方法を提供す
ることにある。さらに、本発明は、吸水性樹脂の表面処
理時に副生成していた粒子の凝集物を低減して、前記凝
集物の処理工程を省略し得る、工業的に経済性に優れ
た、特性の改質された吸水性樹脂の製造方法を提供する
ことにある。本発明のさらなる目的は、表面処理工程に
おいて親水性有機溶媒や粉塵の原因となる流動助剤の微
粒子を使用しない場合でも効果的に実施し得る、工業的
に安全性の優れた、また環境衛生的にも問題ない改質さ
れた吸水性樹脂の製造方法を提供することにある。
An object of the present invention is to improve the above problems and provide an effective method for obtaining a water-absorbent resin having a high water-absorption capacity even under pressure while maintaining a high water-absorption capacity. . Further, the present invention reduces the agglomerates of particles that were by-produced during the surface treatment of the water-absorbent resin and can omit the treatment step of the agglomerates, which is industrially economical and has improved properties. It is an object of the present invention to provide a method for producing a quality water absorbent resin. A further object of the present invention is that it can be effectively carried out even in the case where a hydrophilic organic solvent or a flow aid fine particle that causes dust is not used in the surface treatment step, has excellent industrial safety, and is environmentally friendly. Another object of the present invention is to provide a method for producing a modified water-absorbent resin that does not have any problems.

【0010】[0010]

【課題を解決する為の手段】前記課題を解決する為、本
発明者等は鋭意研究を重ね、吸水性樹脂粉末の表面処理
反応時の樹脂粒子間の凝集が粉温が常温付近、すなわち
20〜30℃付近の粒子で、その粒子径が目開き250
μmの振るい網を通過する粒子に発生しやすいことを見
出し、該吸水性樹脂粉末中に目開き250μmの振るい
網を通過する粒子が10重量%以上存在しないように粒
度調整し、さらに該吸水性樹脂を高温にして表面架橋剤
と反応させることで、前記問題点を解決し、目的とする
吸水性樹脂が得られることを見いだして本発明を完成し
た。
In order to solve the above-mentioned problems, the inventors of the present invention have conducted extensive studies and found that the agglomeration between resin particles during the surface treatment reaction of the water-absorbent resin powder has a powder temperature near room temperature, that is, 20. Particles around -30 ° C with a particle size of 250
It was found that particles easily pass through a sieve net of μm, and the particle size is adjusted so that 10 wt% or more of particles passing through the sieve of 250 μm mesh do not exist in the water absorbent resin powder. The present invention has been completed by finding that the above-mentioned problems can be solved and a desired water-absorbent resin can be obtained by reacting the resin with a surface cross-linking agent at a high temperature.

【0011】すなわち、本発明は、分子構造中にカルボ
キシル基を有し、目開き850μmの篩網は通過する
が、目開き250μmの篩網は通過しない粒子が90重
量%である加熱された吸水性樹脂粉末と架橋剤を混合し
反応させることを特徴とする改質された吸水性樹脂の製
造方法に関するものである。
That is, according to the present invention, 90% by weight of particles having a carboxyl group in the molecular structure and passing through a sieve mesh having an opening of 850 μm but not passing through a sieve mesh having an opening of 250 μm is heated water absorption. The present invention relates to a method for producing a modified water absorbent resin, which comprises mixing a reactive resin powder and a cross-linking agent and reacting them.

【0012】以下、本発明をさらに詳細に説明する。本
発明に適用される吸水性樹脂は、分子構造中にカルボキ
シル基を有するもので、例えば、デンプン−アクリロニ
トリルグラフト共重合体の加水分解物、デンプン−アク
リル酸グラフト共重合体の中和物、アクリロニトリル共
重合体もしくはアクリルアミド共重合体の加水分解物、
酢酸ビニル−アクリル酸エステル共重合体の加水分解
物、またはこれらの架橋体、ポリアクリル酸塩系の架橋
体、無水マレイン酸系共重合体の架橋物などが挙げられ
る。
The present invention will be described in more detail below. The water-absorbent resin applied to the present invention has a carboxyl group in its molecular structure, and is, for example, a hydrolyzate of starch-acrylonitrile graft copolymer, a neutralized product of starch-acrylic acid graft copolymer, acrylonitrile. Hydrolyzate of copolymer or acrylamide copolymer,
Examples thereof include hydrolysates of vinyl acetate-acrylic acid ester copolymers, crosslinked products thereof, polyacrylic acid salt-based crosslinked products, and maleic anhydride-based copolymer crosslinked products.

【0013】この様な吸水性樹脂のうち本発明にとり好
ましいものは、不飽和カルボン酸またはその塩のモノマ
ー単独または2種以上あるいは他の不飽和モノマ−と
(共)重合することにより得られる重合体からなるもので
あり、不飽和カルボン酸塩系のモノマーとしては、アク
リル酸、メタクリル酸、イタコン酸、マレイン酸または
そのナトリウム、カリウム等の金属塩が挙げられる。他
の不飽和モノマ−としては、2-アクリルアミド-2-メチ
ルプロパンスルホン酸;(メタ)アクリルアミド、アクリ
ルニトリル、(メタ)アクリル酸メチル等の(メタ)アクリ
ル酸エステル類;酢酸ビニル;ジエチルアミノエチル
(メタ)アクリレート等のアルキルアミノアルキル(メタ)
アクリレート類およびそれらを塩化メチル等のハロゲン
化アルキルにより4級化した第4級アンモニウム塩、ま
たは塩酸、硫酸等で処理した第3級アミン塩等を挙げる
ことができるが、吸水能力の点から不飽和カルボン酸塩
系モノマーどうしを(共)重合したものがより好ましく、
特に好ましくは、アクリル酸とアクリル酸塩の割合が0
〜80:100〜20モル%からなるアクリル酸塩系モ
ノマ−を共重合したものである。もちろん、アクリル酸
を重合して得られるポリアクリル酸を部分中和して、前
記モル比となるようにしたものでもよい。
Among such water-absorbent resins, preferred for the present invention are unsaturated carboxylic acid or its salt monomer alone or in combination of two or more kinds or other unsaturated monomers.
(Co) is a polymer obtained by polymerizing, unsaturated carboxylic acid salt-based monomer, acrylic acid, methacrylic acid, itaconic acid, maleic acid or its metal salts such as sodium, potassium. To be Other unsaturated monomers include 2-acrylamido-2-methylpropanesulfonic acid; (meth) acrylic acid esters such as (meth) acrylamide, acrylonitrile, methyl (meth) acrylate; vinyl acetate; diethylaminoethyl
Alkylaminoalkyl (meth) such as (meth) acrylate
Examples thereof include acrylates and quaternary ammonium salts obtained by quaternizing them with an alkyl halide such as methyl chloride, or tertiary amine salts treated with hydrochloric acid, sulfuric acid, etc. It is more preferable that the saturated carboxylic acid salt-based monomers are (co) polymerized,
Particularly preferably, the ratio of acrylic acid and acrylate is 0.
-80: 100 to 20 mol% of an acrylate monomer. Of course, polyacrylic acid obtained by polymerizing acrylic acid may be partially neutralized so that the above molar ratio is obtained.

【0014】また、本発明に適用される吸水性樹脂とし
て、架橋構造を持たない重合体でも効果的に使用できる
が、前記のモノマーを重合する際に2個以上の不飽和基
や反応性官能基を有する架橋剤を少量反応させて、架橋
構造を有している架橋体としたものがより好ましい。こ
の重合時に用いられる架橋剤としては、例えば、N,N'-
メチレンビス(メタ)アクリルアミド、N-メチロール(メ
タ)アクリルアミド、(ポリ)エチレングリコールジ(メ
タ)アクリレート、(ポリ)プロピレングリコールジ(メ
タ)アクリレート、グリセリントリ(メタ)アクリレー
ト、グリセリンジ(メタ)アクリレート、(メタ)アクリル
酸多価金属塩レート、トリメチロールプロパントリ(メ
タ)アクリレート、トリアリルアミン、トリアリルホス
フェ−ト、グリシジル(メタ)アクリレート、(ポリ)エチ
レングリコールジグリシジルエーテル、グリセリントリ
(ジ)グリシジルエーテル等を挙げることができる。ま
た、これら架橋剤は2種以上混合して使用してもよい。
これらの架橋剤の使用量は、一般にモノマーに対して
0.001重量%〜0.5重量%、好ましくは、0.01
〜0.3重量%程度である。
Further, as the water-absorbent resin applied to the present invention, a polymer having no cross-linking structure can be effectively used, but when polymerizing the above-mentioned monomer, two or more unsaturated groups or reactive functional groups are used. It is more preferable that a small amount of a crosslinking agent having a group is reacted to form a crosslinked body having a crosslinked structure. Examples of the cross-linking agent used during this polymerization include N, N'-
Methylene bis (meth) acrylamide, N-methylol (meth) acrylamide, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, glycerin tri (meth) acrylate, glycerin di (meth) acrylate, (Meth) acrylic acid polyvalent metal salt rate, trimethylolpropane tri (meth) acrylate, triallylamine, triallyl phosphate, glycidyl (meth) acrylate, (poly) ethylene glycol diglycidyl ether, glycerin tri
(Di) glycidyl ether etc. can be mentioned. Moreover, you may use these crosslinking agents in mixture of 2 or more types.
The amount of these cross-linking agents used is generally 0.001 to 0.5% by weight, preferably 0.01.
It is about 0.3% by weight.

【0015】重合の際に用いられる重合開始剤として
は、一般に使用される水溶性ラジカル開始剤、例えば過
硫酸ナトリウム、過硫酸アンモニウム等の過酸化物、過
酸化水素、t-ブチルハイドロパーオキサイド等のハイド
ロパーオキサイド、2,2'-アゾビス-2-アミジノプロパン
塩酸塩等のアゾ化合物が挙げられる。これらの重合開始
剤は、2種以上混合して使用することも可能であり、さ
らには、亜硫酸ナトリウム等の亜硫酸塩、L-アスコルビ
ン酸、エリソルビン酸およびその塩の還元剤とを併用す
るレドックス開始剤系も用いることができる。重合開始
剤の添加量は、一般にモノマーに対して、0.005〜
0.5重量%である。
The polymerization initiator used in the polymerization includes water-soluble radical initiators generally used, such as peroxides such as sodium persulfate and ammonium persulfate, hydrogen peroxide, t-butyl hydroperoxide and the like. Examples thereof include azo compounds such as hydroperoxide and 2,2′-azobis-2-amidinopropane hydrochloride. These polymerization initiators can be used as a mixture of two or more kinds, and further, redox initiation using a sulfite such as sodium sulfite, L-ascorbic acid, erythorbic acid and a reducing agent for the salt in combination. Agent systems can also be used. The amount of the polymerization initiator added is generally 0.005 to the monomer.
It is 0.5% by weight.

【0016】本発明において使用される吸水性樹脂粉末
は、その粒子径が目開き850μmの篩網は通過する
が、目開き250μmの篩網は通過しない粒子を90重
量%以上含有する粒度分布を有するものである。目開き
250μmの篩網を通過する粒子径の粒子が10重量%
より多く存在すると、表面処理反応の際に樹脂粒子間の
凝集を促進するため、樹脂表面近傍の架橋を阻害した
り、不均一な状態で架橋することになり十分な効果を示
さず、本発明の特徴である、吸水性樹脂粉末の粒径を調
整することにより、全く無機質粉末等の凝集防止剤を使
用しなくても、表面処理反応を均一に実施できるという
特徴を損なうようになる。反対に目開き850μmの篩
網を通過しない粒子径の粒子が10重量%より多く存在
すると、得られた吸水性樹脂の吸水速度が遅くなり、吸
水倍率と加圧下での吸水能力は問題なくても、サニタリ
−用品として使用するに好ましいものは得られない。
The water-absorbent resin powder used in the present invention has a particle size distribution containing 90% by weight or more of particles which pass through a sieve mesh having a particle size of 850 μm but do not pass through a sieve mesh having a mesh size of 250 μm. I have. 10% by weight of particles having a particle size that passes through a sieve mesh of 250 μm
When present in a larger amount, it promotes agglomeration between resin particles during the surface treatment reaction, which hinders cross-linking in the vicinity of the resin surface or cross-links in a non-uniform state, thus exhibiting no sufficient effect. By adjusting the particle size of the water-absorbent resin powder, which is a characteristic of the above, the characteristic that the surface treatment reaction can be carried out uniformly without using an aggregation inhibitor such as an inorganic powder is impaired. On the other hand, if more than 10% by weight of particles having a particle size that does not pass through the sieve mesh with an opening of 850 μm are present, the water absorption rate of the resulting water-absorbent resin will be slow, and the water absorption capacity and the water absorption capacity under pressure will not be a problem. However, a preferable product for use as a sanitary article cannot be obtained.

【0017】本発明で使用される粒子径が目開き850
μmの篩網は通過するが、目開き250μmの篩網は通
過しない粒子を90重量%以上含有する粒度分布で構成
された吸水性樹脂粉末は、水溶液重合、逆相懸濁重合、
沈澱重合、塊状重合等の各種重合方法で調製されたもの
のいずれでも良く、また得られる吸水性樹脂の粒子形状
も、例えば、逆相懸濁重合によって得られるビーズ状、
高含水の吸水性ゲルをドラム乾燥することにより得られ
るフレーク状、また塊状の吸水性樹脂を粉砕して得られ
る不定形状等と特に制限はないが、水溶液重合は粒子形
250μm以上の粒子を製造しやすく、作業性や経済性
の良い不定形のものが調製されるため本発明に適用され
る吸水性樹脂の製造方法として好ましい方法である。
The particle size used in the present invention is 850 mesh.
A water-absorbent resin powder having a particle size distribution containing 90% by weight or more of particles that pass through a sieve mesh of μm but not through a sieve mesh of 250 μm is aqueous solution polymerization, reverse phase suspension polymerization,
Any of those prepared by various polymerization methods such as precipitation polymerization and bulk polymerization may be used, and the particle shape of the water-absorbent resin obtained is, for example, a bead shape obtained by reverse phase suspension polymerization,
There is no particular limitation such as flakes obtained by drum-drying a highly water-containing water-absorbent gel, and indefinite shapes obtained by pulverizing massive water-absorbent resin, but aqueous solution polymerization produces particles having a particle size of 250 μm or more. It is a preferable method as a method for producing the water-absorbent resin applied to the present invention, since an indefinite shape having good workability and economy is prepared.

【0018】水溶液重合で吸水性樹脂を製造する際の水
溶液中のモノマー濃度は、モノマーの飽和濃度までの範
囲で任意に可能であるが、一般に20重量%以上、好ま
しくは25重量%以上であり、より好ましくは30重量
%以上である。モノマー濃度が高い方が重合後の含水ゲ
ル(含水状態の架橋重合体)の細断や脱水操作が容易に
なるので経済的に有利である。常圧で35重量%以上の
モノマー濃度で重合すると突発重合が生じやすく危険で
あり、また、得られる含水ゲルも蒸気圧で自己破壊を起
こし、理由は不明であるが、得られた吸水性樹脂の性能
が不均一になるため、35重量%以上のモノマー濃度で
重合を実施する場合は、耐圧の容器でモノマー中の水の
沸騰を防止可能な圧力をかけて行うのが好ましい。
The concentration of the monomer in the aqueous solution when the water-absorbent resin is produced by the aqueous solution polymerization can be arbitrarily set up to the saturated concentration of the monomer, but is generally 20% by weight or more, preferably 25% by weight or more. , And more preferably 30% by weight or more. A higher monomer concentration is economically advantageous because the hydrogel (crosslinked polymer in a water-containing state) after polymerization can be easily chopped and dehydrated. Polymerization at a monomer concentration of 35% by weight or more at atmospheric pressure is apt to cause sudden polymerization, which is dangerous, and the resulting hydrogel also self-destructs due to vapor pressure. The reason is unknown, but the obtained water-absorbent resin Therefore, when the polymerization is carried out at a monomer concentration of 35% by weight or more, it is preferable to apply a pressure capable of preventing boiling of water in the monomer in a pressure-resistant container.

【0019】水溶液重合で得られた吸水性樹脂の含水ゲ
ルは、これを細断した後、通常の方法で乾燥され、長径
で5mm以上の塊状の粗砕粉末となる。細断方法として
は、ゴム状弾性体を切断、押出しできる装置を用いるこ
とができ、たとえば、カッター型細断機、チョッパー型
細断機、ニーダー型細断機等が例示できる。乾燥方法と
しては、通常の乾燥器や加熱炉を用いることができ、た
とえば、熱風乾燥器、流動層乾燥器、気流乾燥器、赤外
線乾燥器、誘電加熱乾燥器等が用いられる。
The hydrogel of the water-absorbent resin obtained by the aqueous solution polymerization is shredded and then dried by an ordinary method to form a lumpy crushed powder having a major axis of 5 mm or more. As a shredding method, a device capable of cutting and extruding a rubber-like elastic body can be used, and examples thereof include a cutter type shredder, a chopper type shredder, and a kneader type shredder. As a drying method, an ordinary dryer or a heating furnace can be used, and for example, a hot air dryer, a fluidized bed dryer, a gas stream dryer, an infrared dryer, a dielectric heating dryer or the like is used.

【0020】乾燥された塊状の吸水性樹脂粉末はさらに
粉砕、必要により分級して、粒子径が目開き850μm
の篩網は通過するが、目開き250μmの篩網は通過し
ない粒子を90重量%以上含有する粒度分布で構成され
る吸水性樹脂粉末とする。粉砕方法としては、通常の鉱
石等の粗砕粒を粉砕する装置を用いることができ、たと
えば、ジョークラッシャー、コーンクラッシャー等の直
圧式粉砕機、ロータリークラッシャー、アトリッション
ミル等の円板型粉砕機、ハンマーミル、パルベライザー
等の衝撃型粉砕機、リングローラーミル、リングロール
ミル、ボールローラーミル等のローラー型粉砕機、ボー
ルミル、ロッドミル等のシリンダー型粉砕機を挙げるこ
とができる。中でも、粒子径250μm以下の微粉が発
生しにくく、作業性が良く、連続的に操作し易い直圧式
粉砕機、ローラー型粉砕機が好ましい。さらにこれらの
粉砕機は、単独でなく、2台以上組み合わせて使用する
方が、粒子径250μm以下の微粉をほとんど発生させ
ずに粉砕できるので、経済性や作業性の点からより好ま
しい。
The dried lumpy water-absorbent resin powder is further pulverized, and if necessary, classified to have a particle size of 850 μm.
The water-absorbent resin powder has a particle size distribution containing 90% by weight or more of particles that pass through the sieve net of No. 1 but do not pass through the sieve net of 250 μm. As the crushing method, a device for crushing coarsely crushed particles such as ordinary ores can be used, and for example, a direct pressure crusher such as a jaw crusher or a cone crusher, a disk crusher such as a rotary crusher or an attrition mill. Examples thereof include impact crushers such as hammer mills and pulverizers, roller type crushers such as ring roller mills, ring roll mills and ball roller mills, and cylinder type crushers such as ball mills and rod mills. Of these, a direct pressure type crusher and a roller type crusher are preferable because they are less likely to generate fine powder having a particle size of 250 μm or less, have good workability, and are easy to operate continuously. Further, it is more preferable to use two or more of these pulverizers in combination without being crushed, because the pulverizers can be pulverized with almost no generation of fine powder having a particle diameter of 250 μm or less, and therefore from the viewpoint of economy and workability.

【0021】本発明で吸水性樹脂粉末と反応させる架橋
剤(前記重合時の架橋剤と区別して以下表面架橋剤とい
う)としては、親水性であるものが好ましく、より好ま
しくは水溶性の化合物であり、水溶性の化合物であれば
特にその種類に制限はなく、例えば、(ポリ)エチレング
リコールジグリシジルエーテル、(ポリ)グリセロールポ
リグリシジルエーテル、ジグリセロールポリグリシジル
エーテル、(ポリ)プロピレングリコールジグリシジルエ
ーテル、ペンタエリスリトールポリグリシジルエーテル
等の多価グリシジルエーテル類;(ポリ)エチレングリコ
ール、ジエチレングリコール、(ポリ)グリセリン、ジエ
タノールアミン、ポリオキシプロピレン、ペンタエリス
リトール、ソルビトール等の多価アルコール類;エピク
ロルヒドリン、α−メチルクロルヒドリン等のハロエポ
キシ化合物類;エチレンジアミン、ジエチレントリアミ
ン、ポリエチレンイミン、トリエチレンテトラミン等の
多価アミン類;塩化アルミニウム、塩化マグネシウム、
硫酸アルミニウム、硫酸マグネシウム等の多価金属塩
類;2,4-トルイレンジイソシアネート、ヘキサメチレン
ジイソシアネート等の多価イソシアネート類;グルタル
アルデヒド、グリオキサール等の多価アルデヒド類など
を例示することができる。なかでも特に好ましいのは、
多価グリシジルエーテル類、多価アルコール類である。
In the present invention, the cross-linking agent to be reacted with the water absorbent resin powder (hereinafter referred to as a surface cross-linking agent in distinction from the cross-linking agent at the time of polymerization) is preferably hydrophilic, and more preferably a water-soluble compound. There is no particular limitation as long as it is a water-soluble compound, and examples thereof include (poly) ethylene glycol diglycidyl ether, (poly) glycerol polyglycidyl ether, diglycerol polyglycidyl ether, and (poly) propylene glycol diglycidyl ether. , Polyhydric glycidyl ethers such as pentaerythritol polyglycidyl ether; polyhydric alcohols such as (poly) ethylene glycol, diethylene glycol, (poly) glycerin, diethanolamine, polyoxypropylene, pentaerythritol, sorbitol; epichlorohydrin, α-meth Haloepoxy compounds such as Rukuroruhidorin ethylenediamine, diethylenetriamine, polyethyleneimine, polyamines such as triethylenetetramine; aluminum chloride, magnesium chloride,
Examples thereof include polyvalent metal salts such as aluminum sulfate and magnesium sulfate; polyvalent isocyanates such as 2,4-toluylene diisocyanate and hexamethylene diisocyanate; and polyvalent aldehydes such as glutaraldehyde and glyoxal. Among them, especially preferred is
They are polyhydric glycidyl ethers and polyhydric alcohols.

【0022】これらの表面架橋剤の使用量は、種類によ
り変化するが、通常、吸水性樹脂に対して0.01〜2
0重量%が適当であり、好ましくは0.05〜10重量
%である。この量が0.01重量%未満の場合には、本
発明の効果が十分に発揮できず、また20重量%を越え
て使用すると吸水倍率が著しく低下することがある。
The amount of these surface-crosslinking agents used varies depending on the type, but is usually 0.01 to 2 with respect to the water-absorbent resin.
0% by weight is suitable, preferably 0.05 to 10% by weight. If this amount is less than 0.01% by weight, the effect of the present invention cannot be sufficiently exhibited, and if it is used in excess of 20% by weight, the water absorption capacity may be significantly reduced.

【0023】本発明で使用される前記表面架橋剤と前記
吸水性樹脂との混合方法については、反応系内におい
て、どこでサンプリングしても表面架橋剤と樹脂粉末が
均一な比率で混合し得るものなら、どのような方法をも
採用できる。たとえば、 (A)不活性な親水性有機溶媒中に該表面架橋剤と該吸水
性樹脂を同時に分散させる方法 (B)該表面架橋剤を定量的に噴霧した液流中に定量的に
流下させた前記吸水性樹脂粉末を並流または向流状態で
接触させる方法 (C)流動している一定量の前記吸水性樹脂粉末に一定量
の前記表面架橋剤を接触させる方法 (D)ベルト上に敷き積められ、振動している一定量の前
記吸水性樹脂粉末に一定量の前記表面架橋剤を上からシ
ャワリングする方法 などが挙げられる。しかしながら、本発明は高価で引
火、爆発の危険性のある有機溶媒を使用しないで表面処
理できることに特徴があるので、(A)の不活性な親水性
有機溶媒中に該表面架橋剤と該吸水性樹脂を同時に分散
させる方法は避けたほうが好ましく、有機溶媒を使用し
ない(B)、(C)、(D)等の方法で実施するのが効果的で
あり好ましい。
Regarding the method for mixing the surface-crosslinking agent and the water-absorbent resin used in the present invention, the surface-crosslinking agent and the resin powder can be mixed in a uniform ratio regardless of where they are sampled in the reaction system. Then, any method can be adopted. For example, (A) a method of simultaneously dispersing the surface-crosslinking agent and the water-absorbent resin in an inert hydrophilic organic solvent, (B) quantitatively flowing the surface-crosslinking agent into a liquid stream in which the surface-crosslinking agent is quantitatively sprayed. Method of contacting the water-absorbent resin powder in parallel or countercurrent state (C) Method of contacting a certain amount of the water-absorbent resin powder flowing with a certain amount of the surface cross-linking agent (D) On a belt Examples include a method of showering a certain amount of the surface-crosslinking agent on a certain amount of the water-absorbent resin powder that is laid and vibrated. However, since the present invention is characterized in that the surface treatment can be carried out without using an expensive organic solvent having a risk of ignition and explosion, the surface cross-linking agent and the water-absorbing agent are mixed in the inert hydrophilic organic solvent (A). It is preferable to avoid the method of simultaneously dispersing the organic resin, and it is effective and preferable to carry out the method (B), (C), (D) or the like without using an organic solvent.

【0024】このような(B)、(C)、(D)等の方法で
は、通常、表面架橋剤と吸水性樹脂の混合あるいは表面
架橋反応を均一に実施するために、該表面架橋剤を液滴
状態で該吸水性樹脂粉末に添加する。この混合と表面架
橋反応をさらに効果的に実施するため、通常は、前記表
面架橋剤は希釈な溶液として用いられる。希釈するのに
使用される溶媒としては、前記表面架橋剤を溶解するも
のであって、吸水性樹脂の性能に影響を及ぼさないもの
であれば制限なく用いることができる。溶媒としては例
えば、水、メチルアルコール、エチルアルコール等の低
級アルコール類;アセトン、メチルエチルケトン等のケ
トン類;ジオキサン、テトラヒドロフラン等のエーテル
類等を挙げることができる。これらは単独または2種以
上混合して使用しても良いが、この場合も前節同様、経
済性や安全性を考えると、高価で引火、爆発しやすい有
機溶剤を使用するよりは、水を単独で使用するのが好ま
しい。
In the methods (B), (C), (D), etc., the surface cross-linking agent is usually added in order to uniformly mix the surface cross-linking agent and the water absorbent resin or carry out the surface cross-linking reaction. It is added to the water-absorbent resin powder in a droplet state. In order to carry out the mixing and the surface crosslinking reaction more effectively, the surface crosslinking agent is usually used as a dilute solution. The solvent used for diluting can be used without limitation as long as it dissolves the surface cross-linking agent and does not affect the performance of the water absorbent resin. Examples of the solvent include water, lower alcohols such as methyl alcohol and ethyl alcohol; ketones such as acetone and methyl ethyl ketone; ethers such as dioxane and tetrahydrofuran. These may be used alone or as a mixture of two or more, but in this case as well, considering the economical efficiency and safety, water alone should be used rather than using an expensive organic solvent that easily catches fire or explodes. It is preferable to use.

【0025】水を使用する際の使用量は、表面架橋剤の
使用量により変化するが、通常,吸水性樹脂に対して1
〜30重量%が適当であり、好ましくは5〜30重量%
である。この量が1重量%未満の場合には、希釈の効果
があらわれず、また30重量%を越えて使用すると吸水
性樹脂粉末の粒子径を調製しても表面処理反応の際に樹
脂粒子間の凝集が進行してしまい、発明の効果があらわ
れなくなる。
The amount of water used varies depending on the amount of the surface cross-linking agent used.
-30% by weight is suitable, preferably 5-30% by weight
Is. When this amount is less than 1% by weight, the effect of dilution does not appear, and when it is used in excess of 30% by weight, even if the particle diameter of the water-absorbent resin powder is adjusted, the amount of resin particles between the resin particles during the surface treatment reaction is increased. Aggregation proceeds and the effect of the invention is not exhibited.

【0026】また、この場合の表面架橋剤水溶液の液滴
は、その平均径を200〜600μmの範囲にするのが
好ましく、さらに好ましくは平均径300〜500μm
の範囲にすることである。この液滴の平均径が200μ
m未満になると、吸水性樹脂粉末を分散、混合する際に
発生する風力で混合装置壁や系外に飛ばされたり、ある
いは、加熱状態にある反応系内で吸水性樹脂粉末に混合
する場合、吸水性樹脂粉末に到達する以前に溶媒の水が
蒸発して表面架橋を阻害する恐れがあり好ましくない。
逆にこの液滴の平均径が600μm以上になると樹脂粒
子間の凝集を促進したり、樹脂表面の均一な架橋を阻害
する恐れがあり好ましくない。平均径200〜600μ
mの範囲の液滴を生成させる方法としては、液体を霧状
にできるものなら特に制限はないが、通常は、スプレー
タイプやシャワーリングタイプのものが好ましい。
In this case, the droplets of the surface-crosslinking agent aqueous solution preferably have an average diameter in the range of 200 to 600 μm, more preferably 300 to 500 μm.
It is to be in the range of. The average diameter of this droplet is 200μ
When it is less than m, the wind force generated during dispersion and mixing of the water-absorbent resin powder causes the water-absorbent resin powder to fly to the outside of the mixing device wall or the system, or when mixed with the water-absorbent resin powder in the heated reaction system, The solvent water may evaporate before reaching the water-absorbent resin powder and hinder surface cross-linking, which is not preferable.
On the other hand, if the average diameter of the liquid droplets is 600 μm or more, it is not preferable because it may promote aggregation between resin particles or inhibit uniform cross-linking of the resin surface. Average diameter 200-600μ
There are no particular restrictions on the method of forming droplets in the range of m as long as the liquid can be atomized, but in general, a spray type or shower ring type is preferable.

【0027】本発明では、前記表面架橋剤を加熱状態に
ある吸水性樹脂粉末に混合する。好ましくは、前記表面
架橋剤を水溶液として液滴状態で加熱状態にある該吸水
性樹脂粉末に混合する方法である。この加熱状態にある
吸水性樹脂粉末は、粉末自身の温度で50℃以上が好ま
しく、より好ましくは80〜150℃である。この吸水
性樹脂粉末の温度が50℃未満であると、表面架橋剤あ
るいは表面架橋剤水溶液を液滴として吸水性樹脂粉末と
混合する場合、吸水性樹脂粒子間の凝集を促進し、円滑
な表面架橋反応を阻害する恐れがある。
In the present invention, the surface cross-linking agent is mixed with the water-absorbent resin powder in a heated state. A preferred method is to mix the surface cross-linking agent as an aqueous solution with the water-absorbent resin powder in a heated state in a droplet state. The temperature of the water-absorbent resin powder in this heated state is preferably 50 ° C. or higher at the temperature of the powder itself, and more preferably 80 to 150 ° C. When the temperature of the water-absorbent resin powder is lower than 50 ° C., when the surface-crosslinking agent or the surface-crosslinking agent aqueous solution is mixed with the water-absorbent resin powder in the form of droplets, the water-absorbent resin particles are promoted to agglomerate to form a smooth surface. It may interfere with the crosslinking reaction.

【0028】本発明で得られた吸水性樹脂は、このまま
でも粉体として取扱いが容易であるが、さらに粉体流動
性を調整するために、流動助剤として働く微粒子を本発
明における表面処理終了後に混合することも適宜行われ
る。使用される微粒子としては、添加後に吸湿してべと
つかないような物質なら、特に制限はなく、例えば、ポ
リメチルメタクリレート、ポリ塩化ビニル、ポリスチレ
ン、ポリエチレン、ABS樹脂、ポリカーボネート、ポ
リプロピレン等の有機化合物系の微粒子、あるいは二酸
化ケイ素(シリカ)、アルミナ、酸化チタン、酸化マグネ
シウム、珪酸アルミニウム、珪酸マグネシウム等の無機
物系の微粒子が挙げられる。さらには、吸水性樹脂の粉
体流動性だけでなく、樹脂中の残留モノマーの溶出を抑
制するハイドロタルサイトのような層状構造を有する結
晶の微粒子も挙げられる。
The water-absorbent resin obtained in the present invention is easy to handle as a powder as it is, but in order to adjust the powder fluidity, fine particles acting as a flow aid are added to the surface treatment in the present invention. Mixing afterwards is also appropriately performed. The fine particles to be used are not particularly limited as long as they are substances that absorb moisture after addition and are not sticky, for example, polymethylmethacrylate, polyvinyl chloride, polystyrene, polyethylene, ABS resin, polycarbonate, polypropylene, and other organic compound-based substances. Examples thereof include fine particles, or inorganic fine particles such as silicon dioxide (silica), alumina, titanium oxide, magnesium oxide, aluminum silicate, and magnesium silicate. Furthermore, not only the powder fluidity of the water-absorbent resin, but also crystalline fine particles having a layered structure such as hydrotalcite that suppresses the elution of residual monomers in the resin can be mentioned.

【0029】これらの微粒子の粒子径は、100μm以
下が好ましく、さらに好ましくは、50μm以下であ
る。また、これらの微粒子の添加量は、微粒子の粒径、
比表面積により変化するが、通常、得られた吸水性樹脂
に対して0.01〜10重量%、好ましくは、0.1〜5
重量%の範囲である。使用される微粒子がその範囲内に
あれば、本発明で得られた吸水性樹脂の加圧下での吸水
能力や吸水倍率を減少させることなく、粉体流動性や添
加する微粒子によっては吸水性樹脂中の残留モノマーの
溶出を抑制する安全性の優れた吸水性樹脂を得ることが
できる。この量が10重量%を越えて使用すると、加圧
下での吸水能力や吸水倍率が減少するばかりか、これら
の微粒子が粉体の取扱中に粉塵として、飛散するように
なり環境衛生上好ましくない。
The particle size of these fine particles is preferably 100 μm or less, and more preferably 50 μm or less. Further, the addition amount of these fine particles, the particle size of the fine particles,
Although it varies depending on the specific surface area, it is usually 0.01 to 10% by weight, preferably 0.1 to 5% by weight based on the obtained water absorbent resin.
It is in the range of% by weight. If the fine particles used are within the range, without decreasing the water absorption capacity and the water absorption capacity under pressure of the water absorbent resin obtained in the present invention, depending on the powder fluidity and the added fine particles, the water absorbent resin It is possible to obtain a water-absorbent resin having excellent safety that suppresses elution of residual monomers therein. If this amount exceeds 10% by weight, not only the water absorption capacity under pressure and the water absorption capacity will decrease, but also these fine particles will scatter as dust during handling of the powder, which is not preferable for environmental hygiene. .

【0030】[0030]

【作用】常温近辺の温度の粒子が凝集し易く、加熱され
た吸水性樹脂粒子が何故凝集し難いか、また、粒子径が
目開き250μmの振るい網を通過する粒子が凝集し易
い理由は不明であるが、加熱した特定の粒径を有する吸
水性樹脂粒子を用いるという本発明によれば吸水性樹脂
の改質、すなわち特性の向上を容易に達成することがで
きるのである。
[Function] Particles at a temperature near room temperature are likely to aggregate, why heated water-absorbent resin particles are difficult to aggregate, and why particles passing through a sieving net having a particle size of 250 μm are likely to aggregate. However, according to the present invention in which the water-absorbent resin particles having a specific heated particle diameter are used, the water-absorbent resin can be easily modified, that is, the characteristics can be improved.

【0031】[0031]

【実施例】以下、実施例により本発明を詳細に説明する
が、本発明の範囲がこれらの実施例のみに限定されるも
のではない。なお、下記実施例においてことわりがない
かぎり、重量%は「%」と記す。 実施例1 内容量が10Lの温度調整可能な耐圧容器に36%のア
クリル酸ナトリウム水溶液4574g、98%のアクリ
ル酸425gからなるアクリル酸塩系モノマー水溶液と
N,N'-メチレンビスアクリルアミド2.1gを入れ、窒素
ガスを吹き込みながら、モノマー温度を20℃に調節し
た。窒素置換が終了したところで、重合開始剤として過
硫酸アンモニウム1.0g、L-アスコルビン酸0.2gを
添加し、それと同時に容器内を5kg/cm2に加圧した。重
合開始剤添加後、3分で重合を開始し、30分で反応系
の温度が最高に達した。得られた含水ゲル状重合体をを
容器から取り出し、はじめにカッターにて約5cm角に粗
断して、それらをさらにミートチョッパーにて約5mmの
径に細断した。この細断した含水ゲルを熱風乾燥機で温
度130℃の熱風で60分乾燥して、約2mm角の吸水性
樹脂粉末(A−1)を得た。これを、ロール型粉砕機を組
み合わせ粉砕することで粒子径が150μm〜1000
μmの範囲である吸水性樹脂粉末(B−1)を得た。
The present invention will be described in detail below with reference to examples, but the scope of the present invention is not limited to these examples. In the following examples, weight% will be referred to as "%" unless otherwise specified. Example 1 An aqueous acrylate monomer solution composed of 4574 g of 36% sodium acrylate aqueous solution and 98% of 425 g acrylic acid was placed in a temperature-adjustable pressure-resistant container having an internal volume of 10 L.
2.1 g of N, N′-methylenebisacrylamide was added, and the monomer temperature was adjusted to 20 ° C. while blowing nitrogen gas. When nitrogen substitution was completed, 1.0 g of ammonium persulfate and 0.2 g of L-ascorbic acid were added as polymerization initiators, and at the same time, the pressure in the container was increased to 5 kg / cm 2 . Polymerization was started in 3 minutes after the addition of the polymerization initiator, and the temperature of the reaction system reached the maximum in 30 minutes. The obtained water-containing gel polymer was taken out of the container, firstly roughly cut into about 5 cm square with a cutter, and further cut into about 5 mm diameter with a meat chopper. The shredded hydrogel was dried with a hot air dryer at a temperature of 130 ° C. for 60 minutes to obtain a water-absorbent resin powder (A-1) of about 2 mm square. By crushing this with a roll crusher, the particle size is 150 μm to 1000 μm.
Water-absorbent resin powder (B-1) having a range of μm was obtained.

【0032】図1に示される内径20cm、高さ40cmの
原料投入口3と熱風空気吹込口4を有した、すべてステ
ンレス製の円柱状容器1で、円柱まわりには加熱できる
ようにジャケット2が取り付けられ、内部には表面架橋
剤水溶液を噴霧する加圧スプレーノズル5と吸水性樹脂
を通さない網6が取り付けられた流動乾燥型の装置を表
面反応用に用いた。この装置内に先で得られた吸水性樹
脂粉末(B−1)1000gを投入し、120℃に加熱し
たジャケットと120℃の微量の熱風で振動する程度に
流動させながら吸水性樹脂粉末(B−1)を加熱した。吸
水性樹脂粉末(B−1)の温度が80℃に達したら、吸水
性樹脂を振動流動させたままポリエチリングリコールジ
グリシジルエーテル(n=9)3gと水150gからなる
水溶液を加圧スプレーノズルから10分間で噴霧し、該
吸水性樹脂粉末(B−1)と混合した。噴霧後、表面架橋
剤と吸水性樹脂粉末(B−1)は、瞬時に反応し、水分を
含んだまま、5分以内に反応は終了した。
A cylindrical container 1 made of all stainless steel, having a raw material inlet 3 with an inner diameter of 20 cm and a height of 40 cm shown in FIG. 1 and a hot air blowing inlet 4, and a jacket 2 around the cylinder for heating. A fluidized-drying type apparatus, which was attached and equipped with a pressure spray nozzle 5 for spraying the surface cross-linking agent aqueous solution and a net 6 impervious to the water absorbent resin, was used for the surface reaction. 1000 g of the water-absorbent resin powder (B-1) obtained above was put into this apparatus, and the water-absorbent resin powder (B-1) was made to flow while vibrating with a jacket heated to 120 ° C. and a slight amount of hot air at 120 ° C. to vibrate. -1) was heated. When the temperature of the water absorbent resin powder (B-1) reaches 80 ° C., an aqueous solution consisting of 3 g of polyethylene glycol diglycidyl ether (n = 9) and 150 g of water is pressurized and spray nozzle while the water absorbent resin is vibrating and flowing. The mixture was sprayed for 10 minutes and mixed with the water absorbent resin powder (B-1). After spraying, the surface cross-linking agent and the water-absorbent resin powder (B-1) reacted instantly, and the reaction was completed within 5 minutes while containing water.

【0033】その後、引き続き、水分を除去するために
120℃の熱風を4Nm3/Hrまで増加して吸水性樹脂を激
しく流動させながら、表面架橋剤水溶液を吸収した吸水
性樹脂粉末(B−1)を乾燥して、表面処理された吸水性
樹脂(1)を得た。
Then, subsequently, in order to remove water, hot air at 120 ° C. was increased to 4 Nm 3 / Hr to vigorously flow the water-absorbent resin, while absorbing the surface-crosslinking agent aqueous solution (B-1). ) Was dried to obtain a surface-treated water absorbent resin (1).

【0034】前記の吸水性樹脂粉末(B−1)と表面処理
された吸水性樹脂(1)は、(a)粒度分布、(b)塩水吸水
倍率、(c)30分後の加圧下吸水量について以下の方法
で評価し、その結果を表1に示す。 (a)粒度分布:目開き1000μm(16メッシュ)、850
μm(18メッシュ)、500μm(30メッシュ)、355μm
(42メッシュ)、250μm(60メッシュ)、150μm(10
0メッシュ)および100μm(149メッシュ)の大きさの直径
20cmのJIS標準篩および受け皿を重ね、最上段の篩
に100gの吸水性樹脂粉末(B−1)あるいは表面処理
された吸水性樹脂(1)を置き、10分間分級機で振動さ
れた。各篩に集められた重量を計量して、重量%により
示した。 (b)塩水吸収倍率:吸水性樹脂粉末(B−1)あるいは
表面処理された吸水性樹脂(1)を0.5g精秤し、20
0メッシュのナイロン製のろ布で作成した10cm×10cmの
ティーバック型の袋に入れ、200mlの0.9%の塩化
ナトリウム水溶液(生理食塩水)に60分間浸漬した。そ
の後、ティーバック袋を引き上げ、10分間水切りした
後、ティーバック袋のフランク補正をして、膨潤ゲルの
重量を測定し、下記の数式1により算出した。
The water-absorbent resin powder (B-1) and the surface-treated water-absorbent resin (1) have the following properties: (a) particle size distribution, (b) salt water absorption capacity, (c) water absorption under pressure after 30 minutes. The amount was evaluated by the following method, and the results are shown in Table 1. (a) Particle size distribution: Opening 1000 μm (16 mesh), 850
μm (18 mesh), 500 μm (30 mesh), 355 μm
(42 mesh), 250 μm (60 mesh), 150 μm (10
0 mesh) and 100 μm (149 mesh) size JIS standard sieve and pan of 20 cm in diameter are stacked, and 100 g of water-absorbent resin powder (B-1) or surface-treated water-absorbent resin (1) is placed on the uppermost sieve. ) Was placed and vibrated with a classifier for 10 minutes. The weight collected on each sieve was weighed and expressed in% by weight. (B) Absorption capacity of salt water: 0.5 g of water-absorbent resin powder (B-1) or surface-treated water-absorbent resin (1) was precisely weighed, 20
The mixture was placed in a 10 cm × 10 cm tea bag type bag made of a 0 mesh nylon filter cloth, and immersed in 200 ml of a 0.9% sodium chloride aqueous solution (physiological saline) for 60 minutes. After that, the teabag bag was pulled up, drained for 10 minutes, flank correction of the teabag bag was performed, and the weight of the swollen gel was measured and calculated by the following formula 1.

【0035】[0035]

【数1】 [Equation 1]

【0036】(c)加圧下吸水量:加圧下吸水量は、図2
に示す装置を用いて測定した。測管付きビュレット10
において、測管11には、図のように内径2mmの細管1
2をビュレット中心まで空気を小さい気泡として取入る
ために挿入し、ビュレットの先端14にはテフロンチュ
ーブ15を接続して、直径60mmのガラスフィルター1
6を取り付けた。ビュレット中に人工尿(2%尿素、0.
9%塩化ナトリウム、500ppm 塩化カルシウムおよび
1000ppm 硫酸マグネシウム)を満たし、ビュレット
上部17に栓をしてガラスフィルターのフィルター板1
9上面と空気取入用細管12を同一平面に固定した。フ
ィルター板19上面に、ろ紙、0.2gの吸水性樹脂粉
末(B−1)あるいは表面処理された吸水性樹脂(1)のサ
ンプル、さらにその上にろ紙を置き、底面の直径が60
mmで圧力が20g/cm2となる重り21を同時に置き、こ
れらを置いてから30分後に吸水性樹脂(1)が吸水した
容量を計量し、下記の数式2により算出した。
(C) Water absorption under pressure: The water absorption under pressure is shown in FIG.
It measured using the apparatus shown in. Burette with measuring tube 10
At the measuring tube 11, the thin tube 1 with an inner diameter of 2 mm
2 is inserted to the center of the buret to take in air as small air bubbles, and a Teflon tube 15 is connected to the tip 14 of the buret to make a glass filter 1 having a diameter of 60 mm.
6 was attached. Artificial urine (2% urea, 0.
Fill 9% sodium chloride, 500ppm calcium chloride and 1000ppm magnesium sulfate), plug the top of the buret 17 and filter plate 1 of the glass filter.
9 The upper surface and the air intake thin tube 12 were fixed on the same plane. A filter paper, a sample of 0.2 g of the water-absorbent resin powder (B-1) or the surface-treated water-absorbent resin (1) is placed on the upper surface of the filter plate 19, and a filter paper is placed on the sample, and the diameter of the bottom surface is 60.
A weight 21 having a pressure of 20 g / cm 2 in mm was placed at the same time, and 30 minutes after placing these weights, the volume of water absorbed by the water absorbent resin (1) was measured and calculated by the following mathematical formula 2.

【0037】[0037]

【数2】 [Equation 2]

【0038】実施例2 実施例1において乾燥後の約2mm角の吸水性樹脂粉末
(A−1)を、ロール型粉砕機を組み合わせ粉砕して、粒
子径が150μm〜1000μmの範囲である吸水性樹
脂粉末(B−2)を得た以外は、実施例1と同様の操作を
繰り返し、吸水性樹脂(2)を得た。これを実施例1と同
様の評価を行い、結果を表1に示した。
Example 2 Water-absorbent resin powder of about 2 mm square after drying in Example 1
The same operation as in Example 1 was carried out except that (A-1) was pulverized in combination with a roll pulverizer to obtain a water absorbent resin powder (B-2) having a particle diameter in the range of 150 μm to 1000 μm. Repeatedly, a water absorbent resin (2) was obtained. This was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

【0039】実施例3 実施例1において乾燥後の約2mm角の吸水性樹脂粉末
(A−1)を、ロール型粉砕機を組み合わせ粉砕して、粒
子径が150μm〜1000μmの範囲である吸水性樹
脂粉末(B−3)を得た以外は、実施例1と同様の操作を
繰り返し、吸水性樹脂(3)を得た。これを実施例1と同
様の評価を行い、結果を表1に示した。
Example 3 Water-absorbent resin powder of about 2 mm square after drying in Example 1
The same operation as in Example 1 was carried out except that (A-1) was pulverized in combination with a roll pulverizer to obtain a water absorbent resin powder (B-3) having a particle diameter in the range of 150 μm to 1000 μm. Repeatedly, a water absorbent resin (3) was obtained. This was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

【0040】実施例4 実施例2において得られた吸水性樹脂粉末(B−2)をふ
るい分けして500μm以上と150μm未満の粒子径
の粒子を除去して、150μm〜500μmの範囲であ
る吸水性樹脂粉末(B−4)を得た以外は、実施例1と同
様の操作を繰り返し吸水性樹脂(4)を得た。これを実施
例1と同様の評価を行い、その結果を表1に示した。
Example 4 The water-absorbent resin powder (B-2) obtained in Example 2 was sieved to remove particles having a particle size of 500 μm or more and less than 150 μm to obtain a water-absorbing resin in the range of 150 μm to 500 μm. The same operation as in Example 1 was repeated except that the resin powder (B-4) was obtained to obtain a water absorbent resin (4). This was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

【0041】実施例5 実施例3において得られた吸水性樹脂粉末(B−3)を吸
水性樹脂粉末の温度が100℃に達した所で架橋剤水溶
液を噴霧混合した以外は、実施例1と同様の操作を繰り
返し、吸水性樹脂(5)を得た。これを実施例1と同様の
評価を行い、その結果を表1に示した。
Example 5 Example 1 was repeated except that the water absorbent resin powder (B-3) obtained in Example 3 was spray mixed with the aqueous solution of the crosslinking agent when the temperature of the water absorbent resin powder reached 100 ° C. The same operation as above was repeated to obtain a water absorbent resin (5). This was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

【0042】実施例6 実施例3において得られた吸水性樹脂粉末(B−3)を吸
水性樹脂粉末の温度が40℃に達した所で架橋剤水溶液
を噴霧混合した以外は、実施例1と同様の操作を繰り返
し、吸水性樹脂(6)を得た。これを実施例1と同様の評
価を行い、その結果を表1に示した。
Example 6 Example 1 was repeated except that the water absorbent resin powder (B-3) obtained in Example 3 was spray mixed with the aqueous solution of the crosslinking agent when the temperature of the water absorbent resin powder reached 40 ° C. The same operation as above was repeated to obtain a water absorbent resin (6). This was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

【0043】実施例7 実施例1において得られた吸水性樹脂粉末(1)に粉体流
動性調整のためにシリカ(トクシール 徳山曹達株式会
社製)を0.5%添加混合して、吸水性樹脂(7)を、これ
を実施例1と同様の評価を行い、その結果を表1に示し
た。
Example 7 To the water-absorbent resin powder (1) obtained in Example 1, 0.5% of silica (Tokusil Tokuyama Soda Co., Ltd.) was added and mixed to adjust the powder fluidity, and the water-absorbent property was obtained. The resin (7) was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

【0044】比較例1 実施例1において乾燥後の約2mm角の吸水性樹脂粉末
(A−1)を、ロール型粉砕機を組み合わせ粉砕して粒子
径が数10μm〜850μmの範囲である吸水性樹脂粉
末(C−1)を得た以外は、実施例1と同様の操作を繰り
返し、吸水性樹脂(比較1)を得た。これを実施例1と同
様の評価を行い、結果を表1に示した。
Comparative Example 1 Water-absorbent resin powder of about 2 mm square after drying in Example 1
The same operation as in Example 1 was carried out except that (A-1) was pulverized in combination with a roll pulverizer to obtain a water-absorbent resin powder (C-1) having a particle size in the range of several tens of μm to 850 μm. Repeatedly, a water absorbent resin (Comparative 1) was obtained. This was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

【0045】比較例2 実施例1において乾燥後の約2mm角の吸水性樹脂粉末
(A−1)を、ミル型粉砕機で粉砕して粒子径が500μ
m以下である吸水性樹脂粉末を得た。これをふるい分け
して355μm以上と100μm未満の粒子径の粒子を
除去して、100μm〜355μmの範囲である吸水性
樹脂粉末(C−2)得た以外は、実施例1と同様の操作を
繰り返し、吸水性樹脂(比較2)を得た。これを実施例1
と同様の評価を行い、その結果を表1に示した。
Comparative Example 2 About 2 mm square water-absorbent resin powder after drying in Example 1
(A-1) is crushed with a mill-type crusher to obtain a particle size of 500μ.
A water-absorbent resin powder having a particle size of m or less was obtained. The same operation as in Example 1 was repeated except that the water-absorbent resin powder (C-2) having a particle size of 355 μm or more and less than 100 μm was removed by sieving to remove particles having a particle size of 355 μm or more and less than 100 μm. , A water absorbent resin (Comparative 2) was obtained. This is Example 1
The same evaluation as above was performed, and the results are shown in Table 1.

【0046】比較例3 実施例1において乾燥後の約2mm角の吸水性樹脂粉末
(A−1)を、ロール型粉砕機を組み合わせ粉砕して粒子
径850μm以上の粒子を10%以上含む吸水性樹脂粉
末(C−3)を得た以外は、実施例1と同様の操作を繰り
返し、吸水性樹脂(比較3)を得た。これを実施例1と同
様の評価を行い、結果を表1に示した。
Comparative Example 3 Water-absorbent resin powder of about 2 mm square after drying in Example 1
The same operation as in Example 1 was carried out except that (A-1) was pulverized in combination with a roll pulverizer to obtain a water-absorbent resin powder (C-3) containing 10% or more of particles having a particle diameter of 850 μm or more. Repeatedly, a water absorbent resin (Comparative 3) was obtained. This was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

【0047】比較例4 比較例1において表面架橋剤水溶液を噴霧混合する以前
に吸水性樹脂粉末(C−1)にシリカ(トクシール 徳山
曹達株式会社製)を0.5%添加混合した以外は、比較例
1と同様の操作を繰り返し、吸水性樹脂(比較4)を得
た。これを実施例1と同様の評価を行い、その結果を表
1に示した。
Comparative Example 4 In Comparative Example 1, 0.5% of silica (Tokushiru Tokuyama Soda Co., Ltd.) was added to and mixed with the water-absorbent resin powder (C-1) before spray mixing the surface-crosslinking agent aqueous solution. The same operation as in Comparative Example 1 was repeated to obtain a water absorbent resin (Comparative 4). This was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

【0048】[0048]

【表1】 [Table 1]

【0049】[0049]

【発明の効果】本発明の方法によれば。吸水性樹脂表面
反応時に反応を阻害する樹脂粒子間の凝集物の生成量を
低減し、高い吸水倍率を維持しつつ、加圧下でも高い吸
水能力を有する吸水性樹脂を得ることができる。また本
発明方法は、親水性有機溶媒や粉塵の原因となる流動助
剤の微粒子を使用しない場合でも実施できるため、工業
的に安全かつ経済性の優れた、また環境衛生的にも問題
ない方法である。したがって、本発明により得られた吸
水性樹脂は、高性能で安全性の高い紙オムツや生理用ナ
プキン等のサニタリ−用品の原料ばかりでなく、農業用
分野、土木分野、医療分野等にも広く使用できるもので
ある。
According to the method of the present invention. It is possible to reduce the amount of aggregates formed between resin particles that inhibit the reaction during surface reaction of the water-absorbent resin, and to obtain a water-absorbent resin having a high water-absorbing capacity even under pressure while maintaining a high water-absorption capacity. Further, the method of the present invention can be carried out even without using fine particles of a flow aid which causes a hydrophilic organic solvent or dust, so that it is industrially safe and excellent in economic efficiency, and there is no problem in environmental hygiene. Is. Therefore, the water-absorbent resin obtained by the present invention is widely used not only as a raw material for sanitary products such as high-performance and highly safe paper diapers and sanitary napkins, but also in the agricultural field, civil engineering field, medical field, etc. It can be used.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明において使用した表面架橋反応装置の断
面図である。
FIG. 1 is a cross-sectional view of a surface crosslinking reaction device used in the present invention.

【図2】本発明において使用した加圧下吸水量測定装置
の断面図である。
FIG. 2 is a cross-sectional view of a water absorption measuring device under pressure used in the present invention.

【番号の説明】[Explanation of numbers]

1・・・表面反応装置 2・・・ジャケット 3・・・原料投入口 4・・・加熱空気吹込口 5・・・スプレーノズル 6・・・網 10・・・測管付きビュレット 11・・・ビュレット測管 12・・・空気取入用細管 13・・・空気取入口 14・・・ビュレット先端 15・・・テフロンチューブ 16・・・ガラスフィルター 17・・・ビュレット上部 18・・・栓 19・・・ガラスフィルター板 20・・・ろ紙、サンプル、ろ紙からなる層 21・・・おもり DESCRIPTION OF SYMBOLS 1 ... Surface reaction apparatus 2 ... Jacket 3 ... Raw material input port 4 ... Heated air injection port 5 ... Spray nozzle 6 ... Net 10 ... Burette with measuring tube 11 ... Burette measuring pipe 12 ... Air intake thin tube 13 ... Air intake 14 ... Bullet tip 15 ... Teflon tube 16 ... Glass filter 17 ... Burette upper part 18 ... Plug 19 ... ..Glass filter plate 20 ... Layer consisting of filter paper, sample, filter paper 21 ... Weight

───────────────────────────────────────────────────── フロントページの続き (72)発明者 青山 隆 愛知県名古屋市港区船見町1番地の1 東 亞合成化学工業株式会社名古屋総合研究所 内 (72)発明者 岡田 稔 愛知県名古屋市港区船見町1番地の1 東 亞合成化学工業株式会社名古屋総合研究所 内 (72)発明者 安田 保太郎 愛知県名古屋市港区昭和町17番地の23 東 亞合成化学工業株式会社名古屋工場内 (72)発明者 森 義和 愛知県名古屋市港区昭和町17番地の23 東 亞合成化学工業株式会社名古屋工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Aoyama 1-1 Funami-cho, Minato-ku, Nagoya-shi, Aichi Toagosei Chemical Industry Co., Ltd. Nagoya Research Institute (72) Inventor Minoru Okada Minato-shi, Aichi Prefecture 1 of Funami-cho, Ward-ward Toagosei Chemical Industry Co., Ltd. Nagoya Research Institute (72) Inventor, Hotaro Yasuda 23, 23, Showa-cho, Minato-ku, Nagoya, Aichi Prefecture Toagosei Chemical Industry Co., Ltd. Nagoya Plant (72 ) Inventor Yoshikazu Mori 23 Toagosei Synthetic Chemical Industry Co., Ltd.Nagoya factory at 17 Showa-cho, Minato-ku, Nagoya city, Aichi prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】分子構造中にカルボキシル基を有し、目開
き850μmの篩網は通過するが、目開き250μmの
篩網は通過しない粒子が90重量%以上である加熱され
た吸水性樹脂粉末と架橋剤を混合し反応させることを特
徴とする改質された吸水性樹脂の製造方法。
1. A heated water-absorbent resin powder having 90% by weight or more of particles having a carboxyl group in its molecular structure and passing through a sieve mesh having an opening of 850 μm, but not passing through a sieve mesh having an opening of 250 μm. A method for producing a modified water-absorbent resin, comprising:
【請求項2】請求項1において吸水性樹脂粉末が50℃
以上に加熱されていることを特徴とする改質された吸水
性樹脂の製造方法。
2. The water absorbent resin powder according to claim 1, wherein the water absorbent resin powder is 50.degree.
A method for producing a modified water-absorbent resin, which is heated as described above.
JP3785294A 1994-02-10 1994-02-10 Production of water-absorbing resin Pending JPH07224204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3785294A JPH07224204A (en) 1994-02-10 1994-02-10 Production of water-absorbing resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3785294A JPH07224204A (en) 1994-02-10 1994-02-10 Production of water-absorbing resin

Publications (1)

Publication Number Publication Date
JPH07224204A true JPH07224204A (en) 1995-08-22

Family

ID=12509078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3785294A Pending JPH07224204A (en) 1994-02-10 1994-02-10 Production of water-absorbing resin

Country Status (1)

Country Link
JP (1) JPH07224204A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5981070A (en) * 1995-07-07 1999-11-09 Nippon Shokubai Co., Ltd Water-absorbent agent powders and manufacturing method of the same
US6576713B2 (en) 2000-02-29 2003-06-10 Nippon Shokubai Co., Ltd. Water-absorbent resin powder and production process therefor
WO2004069936A1 (en) 2003-02-10 2004-08-19 Nippon Shokubai Co., Ltd. Particulate water absorbent containing water absorbent resin as a main component
US7009010B2 (en) 2001-12-19 2006-03-07 Nippon Shokubai Co., Ltd. Water-absorbent resin and production process therefor
JP2008142714A (en) * 2003-02-10 2008-06-26 Nippon Shokubai Co Ltd Water-absorbing agent
US7473739B2 (en) 2004-02-05 2009-01-06 Nippon Shokubai Co., Ltd. Particulate water absorbent agent and production method thereof, and water absorbent article
WO2009028568A1 (en) 2007-08-28 2009-03-05 Nippon Shokubai Co., Ltd. Process for producing water-absorbing resin
WO2010100936A1 (en) 2009-03-04 2010-09-10 株式会社日本触媒 Process for producing water-absorbing resin
WO2011090130A1 (en) 2010-01-20 2011-07-28 株式会社日本触媒 Method for producing water absorbent resin
WO2011090129A1 (en) 2010-01-20 2011-07-28 株式会社日本触媒 Method for producing water absorbent resin
US8598254B2 (en) 2007-09-07 2013-12-03 Nippon Shokubai Co., Ltd. Binding method of water absorbent resin
WO2014196594A1 (en) * 2013-06-07 2014-12-11 株式会社細川洋行 Infusion bag film and infusion bag using infusion bag film
US8952116B2 (en) 2009-09-29 2015-02-10 Nippon Shokubai Co., Ltd. Particulate water absorbent and process for production thereof
EP2673011B1 (en) 2011-02-07 2015-04-08 Basf Se Procedure for preparing water absorbing polymer particles having high free swell rate
US9062140B2 (en) 2005-04-07 2015-06-23 Nippon Shokubai Co., Ltd. Polyacrylic acid (salt) water-absorbent resin, production process thereof, and acrylic acid used in polymerization for production of water-absorbent resin
US9090718B2 (en) 2006-03-24 2015-07-28 Nippon Shokubai Co., Ltd. Water-absorbing resin and method for manufacturing the same
US9517446B2 (en) 2012-04-25 2016-12-13 Lg Chem, Ltd. Super absorbent polymer and a preparation method thereof
US9926449B2 (en) 2005-12-22 2018-03-27 Nippon Shokubai Co., Ltd. Water-absorbent resin composition, method of manufacturing the same, and absorbent article
KR20210041070A (en) 2018-09-28 2021-04-14 가부시키가이샤 닛폰 쇼쿠바이 Method for producing water absorbent resin powder and water absorbent resin powder

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5981070A (en) * 1995-07-07 1999-11-09 Nippon Shokubai Co., Ltd Water-absorbent agent powders and manufacturing method of the same
US6576713B2 (en) 2000-02-29 2003-06-10 Nippon Shokubai Co., Ltd. Water-absorbent resin powder and production process therefor
US7009010B2 (en) 2001-12-19 2006-03-07 Nippon Shokubai Co., Ltd. Water-absorbent resin and production process therefor
WO2004069936A1 (en) 2003-02-10 2004-08-19 Nippon Shokubai Co., Ltd. Particulate water absorbent containing water absorbent resin as a main component
US7282262B2 (en) 2003-02-10 2007-10-16 Nippon Shokubai Co., Ltd. Particulate water absorbent containing water absorbent resin as a main component
JP2008142714A (en) * 2003-02-10 2008-06-26 Nippon Shokubai Co Ltd Water-absorbing agent
EP2650025A1 (en) 2003-02-10 2013-10-16 Nippon Shokubai Co., Ltd. Particulate water absorbent containing water absorbent resin as a main component
US7473739B2 (en) 2004-02-05 2009-01-06 Nippon Shokubai Co., Ltd. Particulate water absorbent agent and production method thereof, and water absorbent article
US7582705B2 (en) 2004-02-05 2009-09-01 Nippon Shokubai Co., Ltd. Particulate water absorbent agent and production method thereof, and water absorbent article
US9062140B2 (en) 2005-04-07 2015-06-23 Nippon Shokubai Co., Ltd. Polyacrylic acid (salt) water-absorbent resin, production process thereof, and acrylic acid used in polymerization for production of water-absorbent resin
US10358558B2 (en) 2005-12-22 2019-07-23 Nippon Shokubai Co., Ltd. Water-absorbent resin composition, method of manufacturing the same, and absorbent article
US9926449B2 (en) 2005-12-22 2018-03-27 Nippon Shokubai Co., Ltd. Water-absorbent resin composition, method of manufacturing the same, and absorbent article
US9090718B2 (en) 2006-03-24 2015-07-28 Nippon Shokubai Co., Ltd. Water-absorbing resin and method for manufacturing the same
WO2009028568A1 (en) 2007-08-28 2009-03-05 Nippon Shokubai Co., Ltd. Process for producing water-absorbing resin
EP2690114A1 (en) 2007-08-28 2014-01-29 Nippon Shokubai Co., Ltd. Process for producing water-absorbing resin
US8188163B2 (en) 2007-08-28 2012-05-29 Nippon Shokubai Co., Ltd. Process for producing water-absorbing resin
US8598254B2 (en) 2007-09-07 2013-12-03 Nippon Shokubai Co., Ltd. Binding method of water absorbent resin
US8648150B2 (en) 2009-03-04 2014-02-11 Nippon Shokubai Co., Ltd. Method for producing water absorbent resin
WO2010100936A1 (en) 2009-03-04 2010-09-10 株式会社日本触媒 Process for producing water-absorbing resin
US9796820B2 (en) 2009-03-04 2017-10-24 Nippon Shokubai Co., Ltd. Method for producing water absorbent resin
US9775927B2 (en) 2009-09-29 2017-10-03 Nippon Shokubai Co., Ltd. Particulate water absorbent and process for production thereof
US8952116B2 (en) 2009-09-29 2015-02-10 Nippon Shokubai Co., Ltd. Particulate water absorbent and process for production thereof
WO2011090130A1 (en) 2010-01-20 2011-07-28 株式会社日本触媒 Method for producing water absorbent resin
WO2011090129A1 (en) 2010-01-20 2011-07-28 株式会社日本触媒 Method for producing water absorbent resin
EP2673011B1 (en) 2011-02-07 2015-04-08 Basf Se Procedure for preparing water absorbing polymer particles having high free swell rate
US9517446B2 (en) 2012-04-25 2016-12-13 Lg Chem, Ltd. Super absorbent polymer and a preparation method thereof
JPWO2014196594A1 (en) * 2013-06-07 2017-02-23 株式会社細川洋行 Infusion bag film and infusion bag film using infusion bag film
US10172764B2 (en) 2013-06-07 2019-01-08 Hosokawa Yoko Co., Ltd. Infusion bag film and infusion bag using infusion bag film
WO2014196594A1 (en) * 2013-06-07 2014-12-11 株式会社細川洋行 Infusion bag film and infusion bag using infusion bag film
KR20210041070A (en) 2018-09-28 2021-04-14 가부시키가이샤 닛폰 쇼쿠바이 Method for producing water absorbent resin powder and water absorbent resin powder

Similar Documents

Publication Publication Date Title
JPH07242709A (en) Preparation of water-absorbent resin
JPH07224204A (en) Production of water-absorbing resin
EP0516925B1 (en) Wrinkled absorbent particles of high effective surface area having fast absorption rate
TWI302541B (en) Water-absorbent resin and its production process
JP5342726B2 (en) Powdered cross-linked absorbent polymer that absorbs aqueous liquids and blood, its production method and use
JP3175791B2 (en) Manufacturing method of water absorbing agent
KR102195097B1 (en) Polyacrylate super-absorbent polymer and manufacturing method therefor
JP5587348B2 (en) Method for producing water absorbent resin
WO2001098382A1 (en) Process for production of water-absorbent resin
EP2546286A1 (en) Method for manufacturing a water-absorbing resin
JP6577572B2 (en) Method for producing particulate water-absorbing agent mainly composed of polyacrylic acid (salt) water-absorbing resin
CN110372891B (en) Method for producing polyacrylic acid water-absorbent resin
JP2001079829A (en) Water absorbing resin and its preparation
KR20190069101A (en) Super absorbent polymer and preparation method for the same
CN111116947A (en) Method for producing polyacrylic acid water-absorbent resin
JP3005124B2 (en) Method for producing amorphous polymer particles
CN111655763B (en) Superabsorbent polymer and method for producing the same
CN109071831B (en) Method for producing superabsorbent polymers
JP2005081204A (en) Method for manufacturing water absorbing resin composition
JP2020505477A (en) Super water absorbent resin and method for producing the same
JP2022175089A (en) Poly(meth)acrylic acid (salt)-based water-absorbing resin, and absorber
JP4097754B2 (en) Method for producing water absorbent resin
WO2009048157A1 (en) Surface treatment method for water-absorbent resin
WO2019190120A1 (en) Super absorbent polymer and method for preparing same
JP7078778B1 (en) Poly (meth) acrylic acid (salt) -based water-absorbent resin and absorber