JPH04246403A - Production of highly water-absorptive resin - Google Patents

Production of highly water-absorptive resin

Info

Publication number
JPH04246403A
JPH04246403A JP3011189A JP1118991A JPH04246403A JP H04246403 A JPH04246403 A JP H04246403A JP 3011189 A JP3011189 A JP 3011189A JP 1118991 A JP1118991 A JP 1118991A JP H04246403 A JPH04246403 A JP H04246403A
Authority
JP
Japan
Prior art keywords
resin powder
cylindrical body
super absorbent
absorbent resin
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3011189A
Other languages
Japanese (ja)
Other versions
JP3016879B2 (en
Inventor
Masa Takahashi
雅 高橋
Hiroyuki Kakita
柿田 洋幸
Yoshio Irie
好夫 入江
Teruaki Fujiwara
藤原 晃明
Kazumi Akihisa
秋久 和己
Shuji Kanzaki
神崎 修二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP3011189A priority Critical patent/JP3016879B2/en
Publication of JPH04246403A publication Critical patent/JPH04246403A/en
Application granted granted Critical
Publication of JP3016879B2 publication Critical patent/JP3016879B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Abstract

PURPOSE:To obtain the title resin with highly water-absorptive properties even under a compressed condition by a bringing a highly water-absorptive resin powder having functional groups into contact with a liq. product of a compd. having a group reactive with the above resin in a cylindrical body with a specified constitution under a specified condition, taking out the product, and heat- treating the product. CONSTITUTION:A highly water-absorptive resin powder A having functional groups (e.g. acrylic acid-sodium acrylate-trimethylolpropane triacrylate copolymer resin) is fed in a cylindrical body 10 wherein the lower end is opened from the top and a liq. product B (e.g. a watery soln.) of a compd. having a group reactive with two or more functional groups of the resin A (e.g. glycerol) is sprayed in a fine liq. droplet from the top of the cylindrical body 10 toward the lower part to bring the powder A flowing down toward the lower part of the cylindrical body 10 into contact with the liq. droplet B flowing down while it diffuses in the radial direction each other under a parallel flow condition. The powder A contg. absorbed liq. droplet B is taken out of the lower part of the cylindrical body 10 and heat-treated at 40 deg.C or higher.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、高吸水性樹脂の製造方
法に関するものである。詳しく述べると、加圧状態でも
高い吸水性を有する高吸水性樹脂の製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing superabsorbent resins. More specifically, the present invention relates to a method for producing a super absorbent resin that has high water absorbency even under pressure.

【0002】0002

【従来の技術】近年、高吸水性樹脂粉末は、生理綿、紙
オムツ等のように、体液を吸収する衛生材料や保水剤等
のさまざまな分野で利用されるようになってきた。この
ような高吸水性樹脂としては、例えば、デンプン−アク
リロニトリルグラフト重合体の加水分解物(特公昭49
−43,395号)、デンプン−アクリル酸グラフト重
合体の中和物(特開昭51−125,468号)、酢酸
ビニル−アクリル酸エステル共重合体のケン化物(特開
昭52−14,689号)、アクリロニトリル共重合体
もしくはアクリルアミド共重合体の加水分解物(特公昭
53−15,959号)、またはこれらの架橋体やポリ
アクリル酸部分中和物架橋体(特開昭55−84,30
4号)等が知られている。
BACKGROUND OF THE INVENTION In recent years, superabsorbent resin powders have come to be used in various fields such as sanitary materials that absorb body fluids and water retention agents, such as sanitary cotton and disposable diapers. Examples of such super absorbent resins include hydrolysates of starch-acrylonitrile graft polymers (Japanese Patent Publication No. 49
-43,395), neutralized product of starch-acrylic acid graft polymer (JP-A-51-125,468), saponified product of vinyl acetate-acrylic acid ester copolymer (JP-A-52-14, 689), hydrolysates of acrylonitrile copolymers or acrylamide copolymers (Japanese Patent Publication No. 53-15,959), crosslinked products thereof or partially neutralized polyacrylic acid crosslinked products (Japanese Patent Publication No. 55-84) ,30
No. 4) etc. are known.

【0003】高水性樹脂に望まれる特性としては、水性
液体に接した際の高い吸収倍率や優れた吸収速度、含水
膨潤ゲルの高いゲル強度、水性液体を含んだ基材から水
を吸いあげるための優れた吸引力等が挙げられる。しか
しながら、これらの特性間の関係は必ずしも正の相関を
示さず、特に吸収倍率と吸収速度、ゲル強度および吸引
力とは相反する関係にあり、吸収倍率の高いものほどこ
れらの物性は低下してしまう。また、吸収倍率の高いも
のの中には水性液体に接した場合にいわゆる「ママコ」
を形成してしまい、高吸水性樹脂粒子全体に水が拡散せ
ず、吸収速度の極端に低いものもある。
[0003] Desired properties of highly aqueous resins include high absorption capacity and excellent absorption rate when in contact with aqueous liquids, high gel strength of hydrous swelling gels, and ability to absorb water from base materials containing aqueous liquids. The excellent suction power, etc. However, the relationship between these properties does not necessarily show a positive correlation; in particular, absorption capacity and absorption rate, gel strength, and suction power have contradictory relationships, and the higher the absorption capacity, the lower these physical properties. Put it away. In addition, some substances with high absorption capacity may cause so-called "mamako" when they come into contact with aqueous liquids.
In some cases, water is not diffused throughout the superabsorbent resin particles, resulting in an extremely low absorption rate.

【0004】吸収倍率が高くかつ吸収速度等も比較的良
好な高吸水性樹脂を得るための方法としては、高吸水性
樹脂表面を界面活性剤や非揮発性炭化水素によりコーテ
ィングする方法が知られている。しかしながら、この方
法では、水性液体に対する高吸水性樹脂の分散性は改良
されるものの、高吸水性樹脂粒子一つ一つの吸収速度や
吸引力の向上という面では十分な効果が得られない。
[0004] As a method for obtaining a superabsorbent resin that has a high absorption capacity and a relatively good absorption rate, a method is known in which the surface of the superabsorbent resin is coated with a surfactant or a non-volatile hydrocarbon. ing. However, although this method improves the dispersibility of the superabsorbent resin in an aqueous liquid, a sufficient effect cannot be obtained in terms of improving the absorption rate and suction power of each superabsorbent resin particle.

【0005】また、上記特性をバランス良く改良する方
法としては、高吸水性樹脂表面を親水性架橋剤で架橋さ
せる方法も知られている。このような親水性架橋剤とし
ては、多価アルコール類、多価グリシジルエーテル類、
ハロエポキシ化合物類、多価アルデヒド類、多価アミン
類、多価金属塩類が用いられているが、この親水性架橋
剤を高吸水性樹脂の表面に均一に分布させて反応させる
ことが表面に均一な架橋層を形成して改良効果を高める
上で重要である。
[0005] Furthermore, as a method for improving the above-mentioned properties in a well-balanced manner, a method of crosslinking the surface of a superabsorbent resin with a hydrophilic crosslinking agent is also known. Such hydrophilic crosslinking agents include polyhydric alcohols, polyglycidyl ethers,
Haloepoxy compounds, polyvalent aldehydes, polyvalent amines, and polyvalent metal salts are used, but it is important to uniformly distribute and react this hydrophilic crosslinking agent on the surface of the superabsorbent resin. This is important in forming a crosslinked layer to enhance the improvement effect.

【0006】親水性架橋剤を高吸水性樹脂表面に均一に
分布させる方法としては、高吸水性樹脂粉末と親水性架
橋剤を直接混合し、必要により加熱処理を行なう方法(
特開昭58−180,233号、特開昭59−189,
103号、特開昭61−16,903号、特開昭61−
46,241号)、高吸水性樹脂をアルコールおよびケ
トン類の親水性有機分散媒または水とアルコール、ケト
ン類との混合物に分散させ、架橋剤を加えて反応させる
方法(特開昭58−42,602号)等が知られている
[0006] A method for uniformly distributing the hydrophilic crosslinking agent on the surface of the superabsorbent resin is to directly mix the superabsorbent resin powder and the hydrophilic crosslinking agent, and if necessary, heat treatment (
JP-A-58-180,233, JP-A-59-189,
No. 103, JP-A-61-16,903, JP-A-61-
46,241), a method in which a super absorbent resin is dispersed in a hydrophilic organic dispersion medium of alcohol and ketones, or a mixture of water, alcohol, and ketones, and a crosslinking agent is added and reacted (JP-A-58-42 , No. 602), etc. are known.

【0007】しかしながら、高吸水性樹脂粉末と架橋剤
とを直接混合する前者の方法では、樹脂粉末の表面に均
一に架橋剤を分布させることが難しく、得られた高吸水
性樹脂の表面架橋層が不均一になりやすい。
However, in the former method of directly mixing the superabsorbent resin powder and the crosslinking agent, it is difficult to uniformly distribute the crosslinking agent on the surface of the resin powder, and the surface crosslinked layer of the superabsorbent resin obtained tends to become uneven.

【0008】また後者の方法において、水と親水性有機
溶剤との混合物を用いた場合、親水性架橋剤が該分散媒
に可溶となり、それを高吸水性樹脂表面に均一に分布で
きる可能性は高いが、架橋時に加熱すると親水性有機溶
媒が留去される結果、装置内での火災の危険や、廃ガス
として大気へ放出することによる公害の問題回避の点か
ら好ましくない。さらに親水性有機溶剤が不純物として
高吸水性樹脂中に残存する可能性が高い。
In addition, in the latter method, when a mixture of water and a hydrophilic organic solvent is used, the hydrophilic crosslinking agent becomes soluble in the dispersion medium, and there is a possibility that it can be uniformly distributed on the surface of the superabsorbent resin. However, heating during crosslinking distills off the hydrophilic organic solvent, which is undesirable from the standpoint of risk of fire within the apparatus and avoidance of pollution problems caused by release into the atmosphere as waste gas. Furthermore, there is a high possibility that the hydrophilic organic solvent will remain as an impurity in the superabsorbent resin.

【0009】これに対し、高吸水性樹脂粉末に水および
不活性な無機質粉末の存在下で架橋剤を混合して反応さ
せる方法(特開昭60−163,956号および特開昭
60−255,814号)が知られているが、高価な無
機質粉末を用いることは経済性が悪く、工業的に困難で
ある。一方、極く少量の無機質粉末を、高吸水性樹脂粉
末に添加しようとすると、均一な混合物とすることが困
難であり、無機質粉末を用いる効果が得られない。
On the other hand, a method in which a crosslinking agent is mixed and reacted with a super absorbent resin powder in the presence of water and an inert inorganic powder (JP-A-60-163,956 and JP-A-60-255) , No. 814) is known, but the use of expensive inorganic powder is uneconomical and industrially difficult. On the other hand, if an extremely small amount of inorganic powder is added to superabsorbent resin powder, it is difficult to form a homogeneous mixture, and the effect of using inorganic powder cannot be obtained.

【0010】0010

【発明が解決しようとする課題】このように、高吸水性
樹脂の諸特性をバランス良く改良するために、高吸水性
樹脂に表面架橋層を形成させるなどの方法が試みられて
いるが、いずれも前記したごとき問題点を有しており、
十分な改良効果を示すものではなかった。
[Problems to be Solved by the Invention] As described above, in order to improve the various properties of superabsorbent resins in a well-balanced manner, methods such as forming a surface crosslinked layer on superabsorbent resins have been attempted, but none of them have been successful. It also has the problems mentioned above,
It did not show sufficient improvement effect.

【0011】したがって、本発明の目的は、新規な高吸
水性樹脂の製造方法を提供することにある。本発明の他
の目的は、加圧状態でも高い吸水性を有する高吸水性樹
脂の製造方法を提供することにある。
[0011] Therefore, an object of the present invention is to provide a novel method for producing a super absorbent resin. Another object of the present invention is to provide a method for producing a super absorbent resin that has high water absorbency even under pressure.

【0012】0012

【課題を解決するための手段】前記諸目的は、下端が開
口された筒状体の上部から官能基を有する高吸水性樹脂
粉末を投入するとともに、該筒状体の上部から下部に向
けて該高吸水性樹脂の2個以上の官能基と反応し得る基
を有する化合物の液状物を液滴状に噴霧して、該筒状体
の下部に向って流下する前記高吸水性樹脂粉末と、該筒
状体の下部に向って径方向に拡散しつつ流下する該液滴
とを相互に並流状態で接触させ、該液滴が均一に吸着さ
れた該高吸水性樹脂粉末を該筒状体の下部から取出し、
ついで取出された該高吸水性樹脂粉末を40℃以上の温
度で加熱処理することを特徴とする高吸水性樹脂の製造
方法により達成される。
[Means for Solving the Problems] The above-mentioned objects are such that superabsorbent resin powder having a functional group is introduced from the upper part of a cylindrical body whose lower end is open, and the superabsorbent resin powder having a functional group is introduced from the upper part of the cylindrical body toward the lower part. A liquid substance of a compound having a group capable of reacting with two or more functional groups of the super absorbent resin is sprayed in the form of droplets, and the super absorbent resin powder flows down toward the lower part of the cylindrical body. , the droplets flowing down while diffusing in the radial direction toward the bottom of the cylindrical body are brought into contact with each other in a cocurrent state, and the superabsorbent resin powder with the droplets uniformly adsorbed is placed in the cylindrical body. Take it out from the bottom of the body,
This is achieved by a method for producing a super absorbent resin, which is characterized in that the super absorbent resin powder taken out is then heat-treated at a temperature of 40° C. or higher.

【0013】[0013]

【作用】以下、図面を参照しつつ本発明方法をさらに詳
細に説明する。
[Operation] The method of the present invention will be explained in more detail below with reference to the drawings.

【0014】図1は、本発明の高吸水性樹脂粉末の連続
製造方法を具体化した装置を示す図である。図示するよ
うに下端に開口部11を有する円筒体10が上下方向を
向いて設けられており、この円筒体10の上部中央には
下方に向けて広がった円錘形の分散板12が設置されて
いる。この分散板12に向けて高吸水性樹脂粉末Aを供
給して、分散板12の下部全周から前記樹脂粉末Aを前
記円筒体10内に投入するための投入部材13が円筒体
10の上方に設けられている。
FIG. 1 is a diagram showing an apparatus embodying the method for continuously producing superabsorbent resin powder of the present invention. As shown in the figure, a cylindrical body 10 having an opening 11 at the lower end is provided facing in the vertical direction, and a conical dispersion plate 12 that expands downward is installed in the upper center of this cylindrical body 10. ing. A charging member 13 is provided above the cylindrical body 10 for supplying the superabsorbent resin powder A toward the dispersing plate 12 and injecting the resin powder A into the cylindrical body 10 from the entire circumference of the lower part of the dispersing plate 12. It is set in.

【0015】前記分散板12の中心部にはパイプ14が
取付けられ、このパイプ14の先端には前記分散板12
の下方に位置させてノズル15が装着されている。この
ノズル15からは空気と該高吸水性樹脂の2個以上の官
能基と反応し得る基を有する化合物の液状物(以下、液
状物Bという)とが同時に噴出されるようになっており
、液状物Bは微細な液滴となって円筒体10内の下方に
向けて噴霧される。分散板12の部分から投入される前
記高吸水性樹脂粉末Aと前記ノズル15から噴霧された
微細な液滴は、互いに円筒体10の下方に向かうに従っ
て拡散しつつ噴霧力と自重とで流下することになる。 これにより、それぞれれ拡散しつつ流下する樹脂粉末A
は上部から下部に流下する一方、液状物Bの液滴は、円
筒体10内でこれの径方向に所定の角度で拡散しつつ上
部から下部に流下するので、該樹脂粉末Aと液状物Bと
は並流状態で接触し樹脂粉末Aの表面に液状物Bが均一
に分散された混合物となる。この際、樹脂粉末Aに付着
した液滴を媒体として複数の樹脂粉末Aが粘結された状
態の粘結造粒体を形成することがある。
A pipe 14 is attached to the center of the dispersion plate 12, and the dispersion plate 12 is attached to the tip of the pipe 14.
A nozzle 15 is mounted below the nozzle. From this nozzle 15, air and a liquid substance of a compound having a group capable of reacting with two or more functional groups of the superabsorbent resin (hereinafter referred to as liquid substance B) are ejected simultaneously. The liquid substance B becomes fine droplets and is sprayed downward into the cylindrical body 10. The super-absorbent resin powder A introduced from the dispersion plate 12 and the fine droplets sprayed from the nozzle 15 spread downward from each other in the cylindrical body 10 and flow down due to the spray force and their own weight. It turns out. As a result, the resin powder A flows down while diffusing.
flows down from the top to the bottom, while droplets of the liquid substance B flow down from the top to the bottom while diffusing at a predetermined angle in the radial direction of the cylinder 10, so that the resin powder A and the liquid substance B The resin powder A is brought into contact with the resin powder A in a parallel flow state, and a mixture is formed in which the liquid substance B is uniformly dispersed on the surface of the resin powder A. At this time, a plurality of resin powders A may be caked to form a caking granule using the droplets attached to the resin powder A as a medium.

【0016】図2は、本発明の他の実施態様を示すもの
であり、前記図1に示された部材と共通する部材には、
同一の符号が付されている。図1に示す装置にあっては
、高吸水性樹脂粉末Aを単独で分散板12に投入するよ
うにしていたが、図2に示す装置にあっては、気流によ
って高吸水性樹脂粉末Aを分散投入するようにしている
FIG. 2 shows another embodiment of the present invention, and the members common to those shown in FIG. 1 include:
The same reference numerals are given. In the device shown in FIG. 1, the superabsorbent resin powder A was put into the dispersion plate 12 alone, but in the device shown in FIG. I try to distribute the input.

【0017】このために、図示するように、分散板16
は下方に向かうに従って径が小さくなるテーパー部16
aと、このテーパー部16aの下端部から下方に伸びる
ストレート部16bとにより形成されている。前記テー
パー部16aの上面に投入部材13から投入された高吸
水性樹脂粉末Aには、空圧配管18の先端に設けられた
ノズル19からの圧縮空気が吹付けられ、樹脂粉末Aは
この気流の作用によっても下方に流下することになる。 この場合の樹脂粉末Aと気流との混合比は、0.1〜5
kg/Nm3の範囲となるようにすることが好ましい。 樹脂粉末Aの量が5kg/Nm3を越える比率とすると
、気流による樹脂粉末Aの分散ないし拡散が不十分とな
り、液状物Bの液滴との均一な接触が図られなくなる。 一方、0.1kg/Nm3よりも少ない比率では、膨大
なガス量を投入するので、これの廃棄のために過大な設
備が必要となり、実用性がない。また、排気が不十分な
状態では混合物が円筒体10の内周面に付着する量が増
加することになり、連続運転が困難となる。上述した気
流と樹脂粉末Aとの比率と共に、気流の流量を制御する
ことによって、気流の円筒体10内での滞留時間が定ま
ることになるが、この滞留時間は0.1〜30秒程度に
設定することが好ましい。
For this purpose, as shown in the figure, the dispersion plate 16
is a tapered portion 16 whose diameter decreases toward the bottom.
a, and a straight portion 16b extending downward from the lower end of the tapered portion 16a. Compressed air from a nozzle 19 provided at the tip of the pneumatic piping 18 is blown onto the super absorbent resin powder A fed from the feeding member 13 onto the upper surface of the tapered portion 16a, and the resin powder A is blown by this air flow. It also flows downward due to the action of In this case, the mixing ratio of resin powder A and the air flow is 0.1 to 5.
It is preferable to set it within the range of kg/Nm3. If the ratio of the amount of resin powder A exceeds 5 kg/Nm3, the resin powder A will not be sufficiently dispersed or diffused by the airflow, and uniform contact with droplets of liquid material B will not be achieved. On the other hand, if the ratio is less than 0.1 kg/Nm3, a huge amount of gas will be injected, and excessive equipment will be required to dispose of it, which is impractical. Furthermore, if the exhaust is insufficient, the amount of the mixture adhering to the inner circumferential surface of the cylindrical body 10 will increase, making continuous operation difficult. The residence time of the airflow within the cylindrical body 10 is determined by controlling the flow rate of the airflow as well as the ratio of the airflow to the resin powder A described above, and this residence time is approximately 0.1 to 30 seconds. It is preferable to set

【0018】図3は図2に示された装置の変形例であり
、この場合の円筒体10の壁内にはジャケット31が形
成されており、この中に蒸気配管32により蒸気を循環
させて、円筒体10の内面を加熱するようにしている。 図示する場合には約2kg/cm2Gの蒸気を循環させ
、内面の温度を約100℃に保つようにした。これによ
り、円筒体10の内面に対する混合物の付着が防止され
ることになる。実験では上述した条件で連続的に60分
間装置を作動させたが、付着物の発生が全く見られなか
った。この場合には上述したジャケット31が設けられ
ていることと、空圧配管18の先端のノズル19の位置
が相違していることを除き、前記図2に示された装置と
基本形態は同一である。
FIG. 3 shows a modification of the apparatus shown in FIG. 2, in which a jacket 31 is formed within the wall of the cylindrical body 10, and steam is circulated through the jacket 31 through a steam pipe 32. , the inner surface of the cylindrical body 10 is heated. In the case shown in the figure, about 2 kg/cm2G of steam was circulated to maintain the inner surface temperature at about 100°C. This prevents the mixture from adhering to the inner surface of the cylindrical body 10. In the experiment, the apparatus was operated continuously for 60 minutes under the above-mentioned conditions, but no deposits were observed. In this case, the basic configuration is the same as the device shown in FIG. 2, except that the jacket 31 described above is provided and the position of the nozzle 19 at the tip of the pneumatic pipe 18 is different. be.

【0019】図4は更に他の具体例を示す図であり、こ
の基本形態は図2に示された装置と共通性を有している
が、この場合には液状物Bを噴出するノズル33が円筒
体10の内周面に多数配置されている。これらのノズル
33からの液滴は、それぞれのノズルが下方に向けて所
定の角度で傾斜していることから、流下する樹脂粉末A
に対して所定の角度で交差しつつ下方に向けて拡散流下
することになる。この場合にも上述した場合と同様な作
用効果が得られた。これらのノズル33から液滴を水平
方向に円筒体10の中心部に向けて噴霧するようにして
も、樹脂粉末Aを投入するための気流の影響によって、
液滴の流れが規制される結果、円筒体10内に下方に向
かうに従って液滴と樹脂粉末Aはそれぞれ並流状態とな
り液滴と樹脂粉末Aが均一に混合され混合物となる。
FIG. 4 is a diagram showing still another specific example, and this basic form is common to the device shown in FIG. are arranged in large numbers on the inner peripheral surface of the cylindrical body 10. Since each nozzle is tilted downward at a predetermined angle, the droplets from these nozzles 33 flow down into the resin powder A.
It will diffuse and flow downward while intersecting at a predetermined angle. In this case as well, the same effects as in the case described above were obtained. Even if droplets are sprayed horizontally from these nozzles 33 toward the center of the cylindrical body 10, due to the influence of the airflow for injecting the resin powder A,
As a result of regulating the flow of the droplets, the droplets and the resin powder A become cocurrent as they move downward into the cylindrical body 10, and the droplets and the resin powder A are uniformly mixed to form a mixture.

【0020】なお、前記それぞれの実施態様にあっては
、筒状体として円筒体10を用いたが、横断面が四角形
やそれ以上の多角形となった角形の筒体を用いても良く
、あるいは円錘形や角錘形等の錘形の筒体を用いても良
い。
In each of the embodiments described above, the cylindrical body 10 is used as the cylindrical body, but a rectangular cylindrical body whose cross section is a quadrangle or a larger polygon may also be used. Alternatively, a cone-shaped cylinder such as a conical shape or a pyramid shape may be used.

【0021】本発明の好ましい態様は、下端が開口され
た筒体の上部に設置した分散部材から気流によって高吸
水性樹脂粉末Aを投入することである。気流を用いない
投入方法では高吸水性樹脂粉末Aの分散が不十分になる
ことがあり、連続運転する際に、加圧下吸収性が悪くな
ることがある。また液状物Bを噴霧するノズルは、高吸
水性樹脂粉末Aの分散部材の内側、好ましくはほぼ中央
に設置するのが好ましい。該分散部材の外側に設置する
と、高吸水性樹脂粉末Aと液状物Bとの接触が不均一に
なることがあり、連続運転の際に得られる高吸水性樹脂
の加圧下吸収性が悪くなることがある。また液状物Bが
拡散して筒体内壁を濡らすために、高吸水性樹脂粉末A
が壁に付着しやすくなる。
A preferred embodiment of the present invention is that the superabsorbent resin powder A is introduced by airflow from a dispersion member installed at the top of a cylinder whose bottom end is open. If the charging method does not use airflow, the superabsorbent resin powder A may not be sufficiently dispersed, and the absorbency under pressure may deteriorate during continuous operation. Further, it is preferable that the nozzle for spraying the liquid substance B be installed inside the dispersion member for the superabsorbent resin powder A, preferably approximately at the center. If it is installed outside the dispersion member, the contact between the superabsorbent resin powder A and the liquid B may become uneven, and the absorbency under pressure of the superabsorbent resin obtained during continuous operation will deteriorate. Sometimes. In addition, in order for the liquid B to diffuse and wet the inner wall of the cylinder, the super absorbent resin powder A
will easily adhere to the wall.

【0022】筒体の内壁は保温手段を儲けることによっ
て50〜200℃、より好ましくは70〜200℃に保
つのがよい。これにより、筒体の内面に高吸水性樹脂粉
末Aが付着するのを防止することができ、連続運転して
も安定した性能の高吸水性樹脂が得られる。高吸水性樹
脂粉末Aの筒体内壁への付着は、該付着部分への過剰な
あるいは不均一な液状物Bの混合状態をひきおこし、連
続運転の際に得られる高吸水性樹脂の品質の低下および
安定性を下げることになる。
[0022] The inner wall of the cylinder is preferably maintained at a temperature of 50 to 200°C, more preferably 70 to 200°C, by providing a heat insulating means. Thereby, it is possible to prevent the super absorbent resin powder A from adhering to the inner surface of the cylinder, and it is possible to obtain a super absorbent resin with stable performance even during continuous operation. Adhesion of the superabsorbent resin powder A to the inner wall of the cylinder causes excessive or non-uniform mixing of the liquid substance B to the adhesion area, resulting in a decrease in the quality of the superabsorbent resin obtained during continuous operation. and reduce stability.

【0023】本発明において、筒状体の下部から取出さ
れた高吸水性樹脂粉末Aと液状物Bの混合物は、40℃
以上の温度で加熱処理される。
[0023] In the present invention, the mixture of super absorbent resin powder A and liquid substance B taken out from the lower part of the cylindrical body is heated to 40°C.
Heat treatment is performed at the above temperature.

【0024】本発明で用いられる加熱装置としては、通
常の乾燥機やジャケット付き混合機等がある。一例を挙
げると、例えば、リボンブレンダー、流動層乾燥機、パ
ドル型乾燥機、赤外線乾燥機等である。
[0024] Examples of the heating device used in the present invention include a conventional dryer and a jacketed mixer. Examples include ribbon blenders, fluidized bed dryers, paddle dryers, infrared dryers, and the like.

【0025】リボンブレンダーとしては、横型と縦型と
があり、横型には単軸または複軸があり、またこのリボ
ンブレンダーは回分あるいは連続の両操作に用いられる
。リボン羽根は、粉粒体の運動が、外羽根は内側に、ま
た内羽根は外側に移動する二重巻リボン構造が一般的で
あるが、対象物質やその性状あるいは操作(回分または
連続)に対応してリボン形状を変える必要があり、リボ
ン羽根の強制的な剪断と循環により混合が促進され、槽
中央底部または側面より混合物を排出する。
[0025] Ribbon blenders are available in horizontal and vertical types, with the horizontal type having a single shaft or multiple shafts, and these ribbon blenders can be used in both batch and continuous operations. Ribbon blades generally have a double-wound ribbon structure in which the powder particles move inward on the outer blades and outward on the inner blades, but depending on the target material, its properties, or operation (batch or continuous) A corresponding change in ribbon shape is required, and forced shear and circulation of the ribbon vanes facilitates mixing and discharges the mixture from the center bottom of the tank or from the sides.

【0026】流動層乾燥機は、多孔板上の粉粒状湿原料
を下方より熱風により浮游させ、激しく混合させること
により熱交換を行って乾燥を行う装置である。その代表
的なものとしては、横型流動層形式のものがあり、流動
層内に解砕機を設け、供給された原料中の凝集塊を解砕
すると同時に熱風により熱交換する方式であり、この時
の解砕機は、原料状態により回転数、羽根形状および取
付け場所がその都度決定されるが、標準的には供給口下
部の流動層内に取付けられる。解砕機により解砕され下
部の熱風により流動化させられた原料は、機内に設けら
れた調整可変式せきによってショートパスを防止される
。これにより供給原料の平均滞留時間分布はせばめられ
、均一な製品が得られることとなる。また、せきを傾斜
させることにより、滞留時間の調整も可能である。乾燥
が進むにつれ、原料は入口により出口へと移動する。
The fluidized bed dryer is a device that performs drying by floating the powdery wet raw material on a perforated plate with hot air from below and vigorously mixing it to perform heat exchange. A typical example is the horizontal fluidized bed type, in which a crusher is installed in the fluidized bed, and the agglomerates in the supplied raw material are crushed and at the same time heat exchanged with hot air. The rotation speed, blade shape, and installation location of the crusher are determined each time depending on the raw material condition, but the crusher is normally installed in the fluidized bed below the supply port. The raw material crushed by the crusher and fluidized by the hot air at the bottom is prevented from short-pathing by the adjustable weir provided inside the machine. This narrows the average residence time distribution of the feedstock and results in a uniform product. In addition, the residence time can be adjusted by tilting the weir. As drying progresses, the raw material is moved by the inlet to the outlet.

【0027】ジャケット付き混合機としては、例えば本
体に加熱ジャケット付の水平U型トラフ状の乾燥室を設
け、その一端上面に原料供給口と他端下面に製品排出口
とがあり、ロータには中空扇形伝熱羽根と原料を攪拌移
送する攪拌羽根を1組としたものを等間隔に多数取付け
、低速で回転するものである。機内で原料は連続的に攪
拌、加熱、移送され、排出口部の可動せきをオーバーフ
ローして排出され、攪拌羽根の角度を変えることによっ
て機内の滞留時間が調整される。
As a jacketed mixer, for example, the main body is provided with a horizontal U-shaped trough-shaped drying chamber with a heating jacket, and has a raw material supply port on the upper surface of one end and a product discharge port on the lower surface of the other end, and the rotor has a A large number of hollow fan-shaped heat transfer blades and stirring blades for agitating and transferring raw materials are installed at equal intervals and rotate at low speed. The raw material is continuously stirred, heated, and transferred inside the machine, and is discharged by overflowing a movable weir at the discharge port, and the residence time inside the machine is adjusted by changing the angle of the stirring blade.

【0028】本発明において、液状物Bの付着した高吸
水性樹脂粉末の加熱処理温度は40℃以上であり、好ま
しくは80〜220℃であるが、使用する親水性架橋剤
により最適な加熱温度が異なるのが通常である。また、
加熱処理時間は、加熱処理方式にもよるが、通常0.1
〜5時間、好ましくは0.5〜2時間である。
[0028] In the present invention, the heat treatment temperature of the super absorbent resin powder to which the liquid substance B is attached is 40°C or higher, preferably 80 to 220°C, but the optimum heating temperature may be determined depending on the hydrophilic crosslinking agent used. Usually, they are different. Also,
The heat treatment time depends on the heat treatment method, but is usually 0.1
-5 hours, preferably 0.5-2 hours.

【0029】本発明において対象となる高吸水性樹脂粉
末とは、水中において多量の水を吸収して膨潤しヒドロ
ゲルを形成する従来公知の粉末状高吸水性樹脂であり、
例えば、デンプン−アクリロニトリルグラフト共重合体
の加水分解物、アククリル酸エステル−酢酸ビニル共重
合体のケン化物、アクリロニトリル共重合体もしくはア
クリルアミド共重合体の加水分解物、デンプン−アクリ
ル酸グラフト重合体の中和物、自己架橋型ポリアクリル
酸中和物、ポリアクリル酸塩架橋体、架橋イソブチレン
−無水マイレン酸共重合体の中和物等を挙げることがで
きる。
[0029] The superabsorbent resin powder targeted in the present invention is a conventionally known powdered superabsorbent resin that absorbs a large amount of water in water and swells to form a hydrogel.
For example, hydrolysates of starch-acrylonitrile graft copolymers, saponified products of acrylic acid ester-vinyl acetate copolymers, hydrolysates of acrylonitrile copolymers or acrylamide copolymers, and starch-acrylic acid graft copolymers. Examples include neutralized products of self-crosslinking polyacrylic acid, crosslinked polyacrylates, and neutralized products of crosslinked isobutylene-maleic anhydride copolymers.

【0030】このような高吸水性樹脂粉末は、一般に官
能基を有する水溶性エチレン性不飽和単量体を重合する
ことにより得られる。本発明に用いられる高吸水性樹脂
粉末を構成する単量体は、官能基を有する水溶性エチレ
ン性不飽和単量体であり、一例を挙げると、例えばアク
リル酸、メタクリル酸、マレイン酸、フマル酸、イタコ
ン酸、プロトン酸、シトラコン酸、α−ヒドロキシアク
リル酸、アコニット酸、2−(メタ)アクリロイルエタ
ンスルホン酸、2−(メタ)アクリルアミド−2−メチ
ルプロパンスルホン酸等を上げることができるが、不飽
和カルボン酸およびそれらの塩を少なくとも1種含むも
のが好ましく、より好ましくはアクリル酸1〜50モル
%とアクリル酸塩99〜50モル%とからなるアクリル
酸塩系単量体である。もちろん、このアクリル酸とアク
リル酸塩の比率は、アクリル酸を重合して得られるポリ
アクリル酸を部分的に中和して、前記モル比となるよう
にしたものでもよいことはもちろんである。
[0030] Such a super absorbent resin powder is generally obtained by polymerizing a water-soluble ethylenically unsaturated monomer having a functional group. The monomer constituting the superabsorbent resin powder used in the present invention is a water-soluble ethylenically unsaturated monomer having a functional group, such as acrylic acid, methacrylic acid, maleic acid, fumaric acid, etc. acids, itaconic acid, protonic acid, citraconic acid, α-hydroxyacrylic acid, aconitic acid, 2-(meth)acryloylethanesulfonic acid, 2-(meth)acrylamido-2-methylpropanesulfonic acid, etc. , an unsaturated carboxylic acid and a salt thereof, and more preferably an acrylate monomer containing 1 to 50 mol% of acrylic acid and 99 to 50 mol% of an acrylate. Of course, the molar ratio between acrylic acid and acrylic acid salt may be adjusted to the above molar ratio by partially neutralizing polyacrylic acid obtained by polymerizing acrylic acid.

【0031】また、高吸水性樹脂粉末は架橋性単量体を
使用しない自己架橋性のものより、2個以上の重合性不
飽和基や反応性官能基を有する架橋性単量体をごく少量
反応させたものの方が望ましい。
[0031] In addition, super absorbent resin powder contains a very small amount of crosslinkable monomers having two or more polymerizable unsaturated groups or reactive functional groups, compared to self-crosslinkable ones that do not use crosslinkable monomers. A reaction product is preferable.

【0032】これらの架橋剤の例としては、例えばN,
N´−メチレンビス(メタ)アクリルアミド、N−メチ
ロール(メタ)アクリルアミド、(ポリ)エチレングリ
コールジ(メタ)アクリレート、(ポリ)プロピレング
リコールジ(メタ)アクリレート、グリセリントリ(メ
タ)アクリレート、グリセリンジ(メタ)アクリレート
、(メタ)アクリル酸多価金属塩、トリメチロールプロ
パントリ(メタ)アクリレート、トリアリルアミン、ト
リアリルシアヌレート、トリアリルイソシアヌレート、
トリアリルホスフェート、グリシジル(メタ)アクリレ
ート、エチレングリコールジグリシジルエーテル、グリ
セリントリ(ジ)グリシジルエーテル、ポリエチレング
リコールジグリシジルエーテル等を挙げることができる
。またこれら架橋剤は2種以上混合して使用してもよい
。これらの架橋剤の使用量は、一般に0.001モル%
〜0.5モル%、好ましくは0.01〜0.3モル%程
度である。
Examples of these crosslinking agents include, for example, N,
N'-methylene bis(meth)acrylamide, N-methylol(meth)acrylamide, (poly)ethylene glycol di(meth)acrylate, (poly)propylene glycol di(meth)acrylate, glycerin tri(meth)acrylate, glycerin di(meth)acrylate, ) acrylate, (meth)acrylic acid polyvalent metal salt, trimethylolpropane tri(meth)acrylate, triallylamine, triallyl cyanurate, triallyl isocyanurate,
Examples include triallyl phosphate, glycidyl (meth)acrylate, ethylene glycol diglycidyl ether, glycerin tri(di)glycidyl ether, polyethylene glycol diglycidyl ether, and the like. Further, two or more of these crosslinking agents may be used in combination. The amount of these crosslinking agents used is generally 0.001 mol%
~0.5 mol%, preferably about 0.01~0.3 mol%.

【0033】高吸水性樹脂粉末を得るための重合方法と
しては、水溶液重合、逆相懸濁重合、沈澱重合、塊状重
合等の各種の方法を採用することができる。中でも、重
合時の作業性や得られた高吸水性樹脂粉末と液状物Bと
を混合する際の取り扱い性の点から、水溶液重合または
逆相懸濁重合法が好ましく、特に水溶液重合が好ましい
[0033] As the polymerization method for obtaining the superabsorbent resin powder, various methods such as aqueous solution polymerization, reverse phase suspension polymerization, precipitation polymerization, and bulk polymerization can be employed. Among these, from the viewpoint of workability during polymerization and ease of handling when mixing the obtained superabsorbent resin powder and liquid material B, aqueous solution polymerization or reversed-phase suspension polymerization is preferred, and aqueous solution polymerization is particularly preferred.

【0034】高吸水性樹脂粉末を水溶液重合や逆相懸濁
重合法で合成する際の単量体水溶液中の単量体濃度は、
広い範囲にわたって選択が可能であるが、一般に20重
量%以上、より好ましくは25重量%以上から飽和濃度
までである。
[0034] The monomer concentration in the monomer aqueous solution when synthesizing super absorbent resin powder by aqueous solution polymerization or reverse phase suspension polymerization method is as follows:
Selection is possible over a wide range, but generally from 20% by weight or more, more preferably 25% by weight or more up to saturation concentration.

【0035】また、重合の際に用いられる重合開始剤と
しては、一般に使用される水溶性ラジカル重合開始剤で
ある過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモ
ニウム等の過硫酸塩、過酸化水素、t−ブチルハイドロ
パーオキシド、クメンハイドロパーオキシド等のハイド
ロパーオキシド、2,2´−アゾビス−2−アミジノプ
ロパン塩酸塩等のアゾ化合物が挙げられる。これらの重
合開始剤は2種類以上混合して使用することも可能であ
り、更には亜硫酸塩、l−アスコルビン酸、第2鉄塩等
の還元剤との組み合わせによりレドックス開始剤系も用
いることができる。重合開始剤の使用量は、単量体に体
して0.001〜1.0重量%、好ましくは0.005
〜0.5重量%である。
In addition, the polymerization initiators used in the polymerization include persulfates such as potassium persulfate, sodium persulfate, and ammonium persulfate, which are commonly used water-soluble radical polymerization initiators, hydrogen peroxide, t Examples include hydroperoxides such as -butyl hydroperoxide and cumene hydroperoxide, and azo compounds such as 2,2'-azobis-2-amidinopropane hydrochloride. It is also possible to use a mixture of two or more of these polymerization initiators, and it is also possible to use a redox initiator system in combination with a reducing agent such as sulfite, l-ascorbic acid, or ferric salt. can. The amount of the polymerization initiator used is 0.001 to 1.0% by weight based on the monomer, preferably 0.005% by weight.
~0.5% by weight.

【0036】本発明に用いられる高吸水性樹脂粉末のも
つ2個以上の官能基と反応しうる基を有する化合物(以
下、表面架橋剤という)としては親水性であることが好
ましく、より好ましくは水溶性の化合物であれば特に制
限なく、例えばエチレングリコール、ジエチレングリコ
ール、トリエチレングリコール、テトラエチレングリコ
ール、ポリエチレングリコール、グリセリン、ポリグリ
セリン、プロピレングリコール、ジエタノールアミン、
トリエタノールアミン、ポリオキシプロピレン、オキシ
エチレンオキシプロピレンブロック共重合体、ペンタエ
リスリトール、ソルビトール等の多価アルコール類;エ
チレングリコールジグリシジルエーテル、ポリエチレン
グリコールジグリシジエーテル、グリセロールポリグリ
シジルエーテル、ジグリセロールポリグリシジルエーテ
ル、ポリグリセロールポリグリシジルエーテル、ソルビ
ートルポリグリシジルエーテル、ペンタエリスリトール
ポリグリシジルエーテル、プロピレングリコールジクリ
シジルエーテル、ポリプロピレングリコールジグリシジ
ルエーテル等の多価グリシジルエーテル類;2.2−ビ
スヒドロキシメチルブタノール−トリス[3−(1−ア
ジリジニル)プロピオネート]、1,6−ヘキサメチレ
ンジエチレンウレア、ジフェニルメタン−ビス−4,4
´−N,N´−ジエチレンウレア等の多価アジリジン類
;エピクロルヒドリン、α−メチルクロルヒドリン等の
ハロエポキシ化合物類;グルタルアルデヒド、グリオキ
サール等の多価アルデヒド類;エチレンジアミン、ジエ
チレントリアミン、トリエチレンテトラミン、テトラエ
チレンペンタミン、ペンタエチレンヘキサミン、ポリエ
チレンイミン等の多価アミン類;2,4−トルイレンジ
イソシアネート、ヘキサメチレンジイソシアネート等の
多価イソシアネート類;塩化アルミニウム、塩化マグネ
シウム、塩化カルシウム、硫酸アルミニウム、硫酸マグ
ネシウム、硫酸カルシウム等の多価金属塩類などを例示
することができる。特に好ましくは多価アルコール類、
多価グリシジルエーテル類、多価アミン類、多価金属塩
類である。
The compound having a group capable of reacting with two or more functional groups of the superabsorbent resin powder used in the present invention (hereinafter referred to as a surface crosslinking agent) is preferably hydrophilic, and more preferably There are no particular restrictions on water-soluble compounds, such as ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, glycerin, polyglycerin, propylene glycol, diethanolamine,
Polyhydric alcohols such as triethanolamine, polyoxypropylene, oxyethylene oxypropylene block copolymer, pentaerythritol, sorbitol; ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerol polyglycidyl ether, diglycerol polyglycidyl ether , polyglycidyl ethers such as polyglycerol polyglycidyl ether, sorbitol polyglycidyl ether, pentaerythritol polyglycidyl ether, propylene glycol dicrycidyl ether, polypropylene glycol diglycidyl ether; 2.2-bishydroxymethylbutanol-tris [3 -(1-aziridinyl)propionate], 1,6-hexamethylene diethylene urea, diphenylmethane-bis-4,4
Polyvalent aziridines such as '-N,N'-diethyleneurea; haloepoxy compounds such as epichlorohydrin and α-methylchlorohydrin; polyvalent aldehydes such as glutaraldehyde and glyoxal; ethylenediamine, diethylenetriamine, triethylenetetramine, tetra Polyvalent amines such as ethylene pentamine, pentaethylene hexamine, polyethylene imine; polyvalent isocyanates such as 2,4-toluylene diisocyanate and hexamethylene diisocyanate; aluminum chloride, magnesium chloride, calcium chloride, aluminum sulfate, magnesium sulfate, Examples include polyvalent metal salts such as calcium sulfate. Particularly preferably polyhydric alcohols,
These are polyvalent glycidyl ethers, polyvalent amines, and polyvalent metal salts.

【0037】これらの表面架橋剤の使用量は、その種類
によるが、一般に高吸水性樹脂粉末に対して0.1〜3
0重量%が適当であり、好ましくは0.5〜10重量%
である。この量が0.1重量%未満の場合には、本発明
の効果があらわれず、また30重量%を越えて使用する
と吸収倍率が著しく低下することがある。
[0037] The amount of these surface crosslinking agents used depends on the type of the agent, but is generally 0.1 to 3% of the super absorbent resin powder.
0% by weight is suitable, preferably 0.5-10% by weight
It is. If this amount is less than 0.1% by weight, the effect of the present invention will not be achieved, and if it is used in excess of 30% by weight, the absorption capacity may decrease significantly.

【0038】本発明に用いられる高吸水性樹脂粉末のも
つ2個以上の官能基と反応しうる基を有する化合物は、
それ自体が液状であれば単独で使用できるが、通常希釈
剤によって希釈され液状物Bとして用いられる。希釈剤
としては前記化合物を溶解あるいは分散され得るもので
あって、高吸水性樹脂の性能に影響を及ぼさないもので
あれば制限なく用いることができる。例えば水、メチル
アルコール、エチルアルコール、n−プロピルアルコー
ル、イソプロピルアルコール、n−ブチルアルコール、
イソブチルアルコール、t−ブチルアルコール等の低級
アルコール類、アセトン、メチルエチルケトン等のケト
ン類、ジオキサン、テトラヒドロフラン等のエーテル類
、N,N′−ジメチルホルムアミド等のアミド類、ジメ
チルスルホキシド等のスルホキシド類等を挙げることが
できる。
[0038] The compound having a group capable of reacting with two or more functional groups of the super absorbent resin powder used in the present invention is as follows:
If it is liquid itself, it can be used alone, but it is usually diluted with a diluent and used as liquid material B. As the diluent, any diluent that can dissolve or disperse the above-mentioned compound and does not affect the performance of the superabsorbent resin can be used without any restriction. For example, water, methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol,
Examples include lower alcohols such as isobutyl alcohol and t-butyl alcohol, ketones such as acetone and methyl ethyl ketone, ethers such as dioxane and tetrahydrofuran, amides such as N,N'-dimethylformamide, and sulfoxides such as dimethyl sulfoxide. be able to.

【0039】ただし、本発明の特徴は、全く有機溶剤を
使用しなくても前記化合物と高吸水性樹脂粉末を均一に
混合することにある。すなわち、希釈剤は水単独である
ことが経済性や火災、公害の問題回避の点から好ましい
However, the feature of the present invention is that the above compound and superabsorbent resin powder can be mixed uniformly without using any organic solvent. That is, it is preferable to use water alone as the diluent from the viewpoint of economy and avoidance of fire and pollution problems.

【0040】本発明において用いられる液状物Bの微細
な液滴としては、その平均径が300μm以下のものが
好ましく、さらに好ましくは250μm以下のものであ
る。通常は、平均径50〜200μmある。この平均径
が300μmを越えると液状物Bの均一な拡散ないし分
散が困難になり、高密度の塊が生じたり、筒体内で、液
状物Bと接触しない高吸水性樹脂粉末の残留量が多くな
ることがあり、好ましくない。平均径が300μm以下
の微細な液滴を生成させる方法としては、回転円板法、
加圧ノズル法、及び2流体ノズル法を挙げることができ
るが、本発明では上部より高吸水性樹脂粉末が投入され
るために、液滴噴霧機にガスを噴出して造粒付着を防ぐ
ことが可能な2流体ノズルが適している。そのようなも
のとしては、例えば、ルミナ(扶桑精機(株)製)の2
流体ノズル、スプレーベクター(神戸鋳鉄(株)製)を
挙げることができる。
The fine droplets of liquid material B used in the present invention preferably have an average diameter of 300 μm or less, more preferably 250 μm or less. Usually, the average diameter is 50 to 200 μm. If this average diameter exceeds 300 μm, uniform diffusion or dispersion of liquid material B becomes difficult, resulting in formation of high-density lumps, or a large amount of superabsorbent resin powder remaining in the cylinder that does not come into contact with liquid material B. This is not desirable. Methods for generating fine droplets with an average diameter of 300 μm or less include the rotating disk method,
Examples include the pressurized nozzle method and the two-fluid nozzle method, but in the present invention, since the super absorbent resin powder is introduced from the top, gas is ejected into the droplet sprayer to prevent granulation and adhesion. A two-fluid nozzle that can do this is suitable. For example, Lumina (manufactured by Fuso Seiki Co., Ltd.) 2
Examples include fluid nozzles and spray vectors (manufactured by Kobe Cast Iron Co., Ltd.).

【0041】[0041]

【実施例】以下、実施例により本発明を詳細に説明する
が、本発明の範囲がこれらの実施例にのみ限定されるも
のではない。なお、下記実施例中特にことわりのない限
り全ての「%」は重量%を、「部」は重量部をそれぞれ
示すものとする。
[Examples] The present invention will be explained in detail with reference to Examples below, but the scope of the present invention is not limited only to these Examples. In the following examples, unless otherwise specified, all "%" and "parts" indicate parts by weight, respectively.

【0042】実施例1 内容積が10リットル、羽根の回転径が120mmのシ
グマ型羽根が2本設けられたジャケット付きステンレス
製の双腕型ニーダーに蓋を付け、このニーダー内にアク
リル酸ナトリウム水溶液4380部、アクリル酸414
部およびイオン交換水706部からなるアクリル酸塩系
単量体の水溶液5500部(モノマー濃度37重量%、
中和率75mol %)と、トリメチロールプロパント
リアクリレート3.4部とを入れ、窒素ガスを吹き込み
反応系内を窒素置換した。次いで、2本のシグマ型羽根
を56r.p.m.の速度で回転させ、ジャケット内に
35℃の温水を通して加熱しながら、重合開始剤として
過硫酸ナトリウム2.8部およびl−アルコルビン酸0
.14部を添加した。開始剤添加後、5分で重合を開始
し、20分で反応系内の温度が83℃に達し、含水ゲル
状物は約5mmの径の細粒にされ、60分で重合を終了
して含水ゲル状重合体を取出した。
Example 1 A lid was attached to a jacketed stainless steel double-arm kneader equipped with two sigma-type blades with an internal volume of 10 liters and a blade rotation diameter of 120 mm, and a sodium acrylate aqueous solution was placed in the kneader. 4380 parts, acrylic acid 414
5,500 parts of an aqueous solution of acrylate monomers (monomer concentration 37% by weight,
(neutralization rate: 75 mol %) and 3.4 parts of trimethylolpropane triacrylate were added, and nitrogen gas was blown to replace the inside of the reaction system with nitrogen. Next, two sigma type impellers were attached to a 56r. p. m. While rotating at a speed of
.. 14 parts were added. After adding the initiator, polymerization started in 5 minutes, the temperature in the reaction system reached 83°C in 20 minutes, the water-containing gel was made into fine particles with a diameter of about 5 mm, and polymerization was completed in 60 minutes. A hydrogel polymer was taken out.

【0043】この含水ゲル状重合体を熱風乾燥機中に厚
さ50mmに展開して、温度150℃の熱風で90分間
乾燥した。これをハンマー型粉砕機で粉砕し、20メッ
シュ金網でフルイ分けして、高吸水性樹脂粉末Aを得た
[0043] This hydrogel polymer was spread out in a hot air dryer to a thickness of 50 mm, and dried with hot air at a temperature of 150°C for 90 minutes. This was pulverized with a hammer-type pulverizer and sieved through a 20-mesh wire gauze to obtain superabsorbent resin powder A.

【0044】この高吸水性樹脂粉末A100部にグリセ
リン0.5部および水10部よりなる液状物Bを図3に
示す装置を用いて混合し、加熱処理したのち、20メッ
シュ金網でフルイ分けし、未通過物はロールミル型整粒
機で粉砕して全量を20メッシュ通過物として、吸水剤
(1)を得た。
100 parts of this superabsorbent resin powder A was mixed with liquid B consisting of 0.5 parts of glycerin and 10 parts of water using the apparatus shown in FIG. 3, heated, and then sieved through a 20-mesh wire mesh. The unfiltered material was pulverized using a roll mill type sieve, and the entire amount was made into a 20 mesh material to obtain a water absorbing agent (1).

【0045】すなわち、図3に示す装置において、投入
部材13から投入された高吸水性樹脂粉末Aには、空圧
配管18の先端に設けられたノズル19よりなる気流発
生手段からの圧縮空気が吹付けられ高吸水性樹脂粉末A
は自重とこの気流の作用によって円筒体10の径方向に
拡散されるとともに円筒体10の下方に流下した。
That is, in the apparatus shown in FIG. 3, the super absorbent resin powder A introduced from the input member 13 is filled with compressed air from the airflow generating means consisting of the nozzle 19 provided at the tip of the pneumatic pipe 18. Sprayed super absorbent resin powder A
was diffused in the radial direction of the cylindrical body 10 due to its own weight and the action of this airflow, and flowed down below the cylindrical body 10.

【0046】分散部材16の中心部にはパイプ14が取
付けられ、このパイプの先端には、前記分散部材16の
下方に位置させてノズル15が装着された。このノズル
15からは空気と液状物Bとが同時に噴出され、液状物
Bは微細な液滴となって円筒体10内の下方に向けて噴
霧された。噴霧された液状物Bの液滴は、円筒体10の
径方向に拡散しつつ該円筒体10の下方に流下したが、
ノズル位置の調整と高吸水性樹脂粉末Aの吸液とにより
、該円筒体10の高さ方向のいずれの位置においても、
該円筒体10の径方向への拡散は、該高吸水性樹脂粉末
Aより大きくなることはなかった。また、該液滴は、流
下中に高吸水性樹脂粉末Aに吸液され、円筒体10の下
端においては該液滴の存在がほとんど認められなかった
。このとき、高吸水性樹脂粉末Aと気流との混合比は1
kg/Nm3であった。液状物Bの平均液滴径は、約1
00μmであった。また、高吸水性樹脂粉末Aの円筒体
10内の滞留時間は10秒であった。円筒体10は外部
からの加熱により内壁温度90℃に保たれた。
A pipe 14 was attached to the center of the dispersion member 16, and a nozzle 15 was attached to the tip of the pipe, positioned below the dispersion member 16. Air and liquid material B were simultaneously ejected from this nozzle 15, and liquid material B was sprayed downward into the cylindrical body 10 in the form of fine droplets. The droplets of the sprayed liquid substance B diffused in the radial direction of the cylindrical body 10 and flowed down below the cylindrical body 10, but
By adjusting the nozzle position and absorbing the super absorbent resin powder A, at any position in the height direction of the cylindrical body 10,
The diffusion in the radial direction of the cylindrical body 10 was not greater than that of the super absorbent resin powder A. Further, the droplets were absorbed by the superabsorbent resin powder A while flowing down, and the presence of the droplets was hardly recognized at the lower end of the cylindrical body 10. At this time, the mixing ratio of super absorbent resin powder A and air flow is 1
kg/Nm3. The average droplet diameter of liquid B is approximately 1
It was 00 μm. Further, the residence time of the super absorbent resin powder A in the cylindrical body 10 was 10 seconds. The inner wall temperature of the cylindrical body 10 was maintained at 90° C. by external heating.

【0047】高吸水性樹脂粉末Aと液状物Bとは並流状
態で接触し、樹脂粉末Aに付着した液状物Bの液滴を媒
体として、複数の樹脂粉末Aの表面上に液状物Bが均一
に分散された混合物になった。
The superabsorbent resin powder A and the liquid substance B are brought into contact with each other in a cocurrent state, and the liquid substance B is spread onto the surfaces of the plurality of resin powders A using the droplets of the liquid substance B attached to the resin powder A as a medium. became a homogeneously dispersed mixture.

【0048】このようにして混合物となった樹脂粉末を
、円筒体10の下方に設置されたジャケットを熱媒で2
00℃に加熱したリボンブレンダーに投入し加熱処理を
行なった。混合物を60分間加熱処理後に取り出した吸
水剤(1)の材料温度は180℃であった。
[0048] The resin powder thus obtained as a mixture is heated through a jacket installed below the cylindrical body 10 using a heating medium.
It was put into a ribbon blender heated to 00°C and heat treated. The material temperature of the water absorbing agent (1) taken out after heating the mixture for 60 minutes was 180°C.

【0049】得られた樹脂粉末Aおよび吸水剤(1)の
(a)吸収倍率、(b)吸引力、(c)加圧下吸収性お
よび(d)粒度(100メッシュ標準フルイを通過した
ものの重量%)を、下記のようにして評価した。
(a) Absorption capacity, (b) suction power, (c) absorbency under pressure, and (d) particle size (weight of the particles passed through a 100 mesh standard sieve) of the obtained resin powder A and water absorbing agent (1) %) was evaluated as follows.

【0050】(a)吸収倍率 得られた樹脂粉末Aまたは吸水剤(1)約0.2gを不
織布性のティーバッグ式袋(40mm×150mm)に
均一に入れ、0.9%食塩水に浸漬し、30分後の重量
を測定した。ティーバッグ式袋のみの吸液重量をブラン
クとして、下記数式1に従って吸水剤(1)の吸水倍率
を算出した。
(a) Absorption capacity Approximately 0.2 g of the obtained resin powder A or water absorbing agent (1) was uniformly placed in a non-woven tea bag type bag (40 mm x 150 mm) and immersed in 0.9% saline solution. The weight was measured 30 minutes later. Using the liquid absorption weight of only the tea bag type bag as a blank, the water absorption capacity of the water absorbing agent (1) was calculated according to the following formula 1.

【0051】[0051]

【数1】[Math 1]

【0052】(b)吸引力 テッシュペーパー(55mm×75mm)の上に人工尿
20ml(組成:尿素1.9%、NaCl  0.8%
、CaCl2  0.1%およびMgSO4  0.1
%)を加えて人工尿を含んだ基材を作成し、その基材の
上に、高吸水性樹脂粉末Aまたは吸水剤(1)の0.1
gを置いた。 10分後に膨潤ゲルを採取して、その重量を測定するこ
とにより、ティッシュペーパーからの液の吸引力とした
。また、同時に加えた高吸水性樹脂粉末Aまたは吸水剤
(1)のママコの有無を観察した 。(c)加圧下吸収性 図5に示す装置を用いて加圧下吸収性を測定した。ビュ
レット21の上口22に栓23をし、測定台24と空気
口25を等位置にセットした。測定台24中の直径70
mmのガラスフィルター(No.1)26上に濾紙、高
吸水性樹脂粉末Aまたは吸水剤(1)0.2gおよび濾
紙27を載せ、さらに20g/cm2のおもり28を載
せ、その後60分にわたって吸収した人工尿の量(ml
)として加圧下吸収性(ml/g)を下記数式2により
算出した。
(b) Suction force 20 ml of artificial urine (composition: urea 1.9%, NaCl 0.8%) was placed on tissue paper (55 mm x 75 mm).
, CaCl2 0.1% and MgSO4 0.1
%) to create a base material containing artificial urine, and on top of that base material, add 0.1% of super absorbent resin powder A or water absorbing agent (1).
I put g. The swollen gel was collected after 10 minutes and its weight was measured to determine the suction force of the liquid from the tissue paper. In addition, the presence or absence of superabsorbent resin powder A or water absorbing agent (1) added at the same time was observed. (c) Absorbency under pressure The absorbency under pressure was measured using the apparatus shown in FIG. A plug 23 was attached to the upper opening 22 of the burette 21, and the measuring table 24 and the air port 25 were set at equal positions. Diameter 70 in measuring stand 24
A filter paper, 0.2 g of super absorbent resin powder A or water absorbing agent (1), and a filter paper 27 were placed on a 20 mm glass filter (No. 1) 26, and then a 20 g/cm2 weight 28 was placed on top of the filter, and then the absorption was carried out for 60 minutes. Amount of artificial urine (ml)
), the absorbency under pressure (ml/g) was calculated using the following formula 2.

【0053】[0053]

【数2】[Math 2]

【0054】(d)粘度 70mmのJIS標準フルイの網目が20メッシュ、1
00メッシュと受け皿の3種類の分級皿を重ね、その上
に、得られた高吸水性樹脂粉末A、または吸水剤(1)
を30g入れて分級器で10分間振盪させた後、分級物
の秤量をして、重量%で表わした。
(d) JIS standard sieve with a viscosity of 70 mm, 20 mesh, 1
Layer three types of classification plates: 00 mesh and saucer, and place the obtained super absorbent resin powder A or water absorbent (1) on top of them.
After adding 30 g of the mixture and shaking it in a classifier for 10 minutes, the classified product was weighed and expressed in weight %.

【0055】表1に結果を示すが、高吸水性樹脂粉末A
に比べ、吸水剤(1)は加圧下吸収性が著しく改善され
かつ微粉末(100メッシュ通過量)の少ない取扱いの
容易な吸水剤が得られた。なお、加圧下吸収速度は、図
6に示すとうりであった。
The results are shown in Table 1. Super absorbent resin powder A
Compared to the water absorbing agent (1), the absorbency under pressure was significantly improved, and a water absorbing agent that was easy to handle and contained less fine powder (amount passing through 100 mesh) was obtained. In addition, the absorption rate under pressure was as shown in FIG.

【0056】比較例1 実施例1で得られた樹脂粉末A100部にグリセリン0
.5部および水10部よりなる液状物Bをパドル型混合
機で混合し、得られた混合物を実施例1と同様に処理し
て、比較吸水剤(1)を得た。得られた比較吸水剤(1
)について実施例1と同様に評価した。
Comparative Example 1 0 parts of glycerin was added to 100 parts of the resin powder A obtained in Example 1.
.. Liquid B consisting of 5 parts and 10 parts of water was mixed using a paddle mixer, and the resulting mixture was treated in the same manner as in Example 1 to obtain a comparative water absorbing agent (1). The obtained comparative water absorbing agent (1
) was evaluated in the same manner as in Example 1.

【0057】表1に結果を示すが、比較吸水剤(1)は
高吸水性樹脂粉末Aに比べ、吸収力は改善されてはいる
が、吸水剤(1)に比べて加圧下吸収性および粘度が劣
っていた。なお、加圧下吸収速度は、図6に示すとうり
であった。
The results are shown in Table 1. Comparative water-absorbing agent (1) has improved absorbency compared to super absorbent resin powder A, but has lower absorbency under pressure than water-absorbing agent (1). The viscosity was poor. In addition, the absorption rate under pressure was as shown in FIG.

【0058】実施例2 実施例1で得られた高吸水性樹脂粉末A100部に、グ
リセリン0.5部および水10部よりなる液状物Bを、
以下の方法で混合した。すなわち、図2に示す装置にお
いて、投入部材13より高吸水性樹脂粉末Aを円筒体1
0内に投入するとともに、パイプ14を経てノズル15
より前記液状物Bを噴霧しながら空圧配管18を経てノ
ズル19より圧縮空気を吹き付け、樹脂粉末Aをこの気
流の作用により下方に流下させた。このとき樹脂粉末A
と気流との混合比は1kg/Nm3であった。また、滞
留時間は10秒であった。このようにして得られた混合
物を実施例1と同様に処理して吸水剤(2)を得た。得
られた吸水剤(2)について、実施例1と同様にして評
価した。その結果を表1に示す。
Example 2 Liquid material B consisting of 0.5 parts of glycerin and 10 parts of water was added to 100 parts of super absorbent resin powder A obtained in Example 1.
It was mixed in the following manner. That is, in the apparatus shown in FIG.
0 into the nozzle 15 through the pipe 14.
While spraying the liquid material B, compressed air was blown from the nozzle 19 through the pneumatic piping 18, and the resin powder A was caused to flow downward by the action of this air flow. At this time, resin powder A
The mixing ratio of the air flow and the air flow was 1 kg/Nm3. Moreover, the residence time was 10 seconds. The mixture thus obtained was treated in the same manner as in Example 1 to obtain a water absorbing agent (2). The obtained water absorbing agent (2) was evaluated in the same manner as in Example 1. The results are shown in Table 1.

【0059】実施例3 実施例1において、グリセリン0.5部および水5部よ
りなる液状物B−1を用いた以外は実施例1と同様の操
作を行い吸水剤(3)を得た。得られた吸水剤(3)に
ついて、実施例1と同様にして評価し、その結果を表1
に示す。
Example 3 A water-absorbing agent (3) was obtained in the same manner as in Example 1 except that liquid material B-1 consisting of 0.5 parts of glycerin and 5 parts of water was used. The obtained water absorbing agent (3) was evaluated in the same manner as in Example 1, and the results are shown in Table 1.
Shown below.

【0060】比較例2 実施例3において、高吸水性樹脂粉末Aと液状物B−1
をパドル型混合機で混合した以外は実施例3と同様の操
作を行い、比較吸水剤(2)を得た。得られた比較吸水
剤(2)について、実施例1と同様にして評価し、その
結果を表1に示す。
Comparative Example 2 In Example 3, super absorbent resin powder A and liquid material B-1
A comparative water-absorbing agent (2) was obtained by performing the same operation as in Example 3, except that the mixture was mixed with a paddle-type mixer. The obtained comparative water absorbing agent (2) was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

【0061】実施例4 実施例1で得られた高吸水性樹脂粉末A100部に、グ
リセリン0.5部および水20部よりなる液状物B−2
を、以下の方法で混合した。すなわち、図4に示す装置
において、投入部材13より高吸水性樹脂粉末Aを円筒
体10内に投入するとともに、ノズル33から液状物B
−2を噴霧しながら、空圧配管18を経てノズル19よ
り圧縮空気を吹き付け、樹脂粉末Aをこの空気流の作用
により下方に流下させた。このようにして得られた混合
物を実施例1と同様に加熱処理して吸水剤(4)を得た
。得られた吸水剤(4)について、実施例1と同様にし
て評価した。その結果を表1に示す。
Example 4 Liquid material B-2 was added to 100 parts of the superabsorbent resin powder A obtained in Example 1, consisting of 0.5 parts of glycerin and 20 parts of water.
were mixed in the following manner. That is, in the apparatus shown in FIG.
While spraying -2, compressed air was blown from the nozzle 19 through the pneumatic pipe 18, and the resin powder A was caused to flow downward by the action of this air flow. The mixture thus obtained was heat treated in the same manner as in Example 1 to obtain a water absorbing agent (4). The obtained water absorbing agent (4) was evaluated in the same manner as in Example 1. The results are shown in Table 1.

【0062】実施例5 実施例1で得られた高吸水性樹脂粉末A100部は、エ
チレングリコールジグリシジルエーテル0.5部および
水10部からなる液状物B−3を、図1に示す装置を用
いて混合し、加熱処理した後、20メッシュ金網でフル
イ分けし、未通過物はロールミル型整粒機で粉砕して全
量を20メッシュ通過物として吸水剤(5)を得た。
Example 5 100 parts of the superabsorbent resin powder A obtained in Example 1 was mixed with liquid B-3 consisting of 0.5 parts of ethylene glycol diglycidyl ether and 10 parts of water using the apparatus shown in FIG. After mixing and heat-treating, the mixture was sieved through a 20-mesh wire gauze, and the unfiltered material was pulverized using a roll mill type sieving machine to obtain a water-absorbing agent (5) as a 20-mesh sieve.

【0063】すなわち、図1に示す装置において、投入
部材13より高吸水性樹脂粉末Aを円筒体10内に投入
するとともに、パイプ14を経てノズル15より前記液
状物B−3を噴霧した。このノズル15から噴霧された
微細な液滴は、円筒体10の下方に向かうにしたがって
、拡散しつつ噴霧力と自重により流下し、前記樹脂粉末
Aと液状物B−3とは並流状態で接触し、樹脂粉末Aに
付着した液状物B−3の液滴を媒体として、複数の樹脂
粉末Aの表面上に液状物B−3が均一に分散された混合
物となった。得られた混合物をベルトコンベアーにうす
くのせ、赤外線乾燥機中を通過させて加熱処理を行い吸
水剤(5)を得た。このとき平均加熱時間は10分で乾
燥機出口での取り出し材料温度は120℃であった。 得られた吸水剤(5)について実施例1と同様にして評
価した。その結果を表1に示す。
That is, in the apparatus shown in FIG. 1, the superabsorbent resin powder A was charged into the cylindrical body 10 from the charging member 13, and the liquid material B-3 was sprayed from the nozzle 15 through the pipe 14. The fine droplets sprayed from the nozzle 15 diffuse as they go downwards in the cylindrical body 10 and flow down due to the spray force and their own weight, and the resin powder A and the liquid substance B-3 are in a cocurrent state. A mixture was obtained in which the liquid B-3 was uniformly dispersed on the surfaces of the plurality of resin powders A using the droplets of the liquid B-3 adhering to the resin powder A as a medium. The obtained mixture was thinly placed on a belt conveyor, passed through an infrared dryer, and heated to obtain a water absorbing agent (5). At this time, the average heating time was 10 minutes, and the temperature of the material taken out at the outlet of the dryer was 120°C. The obtained water absorbing agent (5) was evaluated in the same manner as in Example 1. The results are shown in Table 1.

【0064】実施例6 実施例1で得られた高吸水性樹脂粉末A100部にグリ
セリン0.5部および水60部からなる液状物B−4を
実施例1と同様に混合し、加熱処理して吸水剤(6)を
得た。得られた吸水剤(6)について実施例1と同様に
して評価した。その結果を表1に示す。
Example 6 Liquid material B-4 consisting of 0.5 parts of glycerin and 60 parts of water was mixed with 100 parts of the superabsorbent resin powder A obtained in Example 1 in the same manner as in Example 1, and the mixture was heated. A water absorbing agent (6) was obtained. The obtained water absorbing agent (6) was evaluated in the same manner as in Example 1. The results are shown in Table 1.

【0065】実施例7 実施例1においてニーダー内でアクリル酸1460部お
よび2−アクリルアミド−2−メチルプロパンスルホン
酸220部を蒸留水2970部に溶解し、炭酸ナトリウ
ム850部を加え中和し、N,N´−メチレンビスアク
リルアミド1.0部を加え溶解させた。以後の操作は実
施例1と同様に行い、含水ゲル状重合体を得た。得られ
た含水ゲル状重合体を、熱風乾燥機で乾燥後、実施例1
と同様に粉砕、分級して20メッシュ通過物(高吸水性
樹脂粉末B)を得た。この高吸水性樹脂粉末B100部
にグリセリン0.5部および水10部からなる液状物B
を実施例1と同様にして、混合し加熱処理して吸水剤(
7)を得た。得られた吸水剤(7)について実施例1と
同様にして評価した。その結果を表1に示す。
Example 7 In Example 1, 1460 parts of acrylic acid and 220 parts of 2-acrylamido-2-methylpropanesulfonic acid were dissolved in 2970 parts of distilled water in a kneader, and 850 parts of sodium carbonate was added to neutralize the solution. , N'-methylenebisacrylamide (1.0 part) was added and dissolved. The subsequent operations were performed in the same manner as in Example 1 to obtain a hydrogel polymer. After drying the obtained hydrogel polymer with a hot air dryer, Example 1
The mixture was crushed and classified in the same manner as above to obtain a 20-mesh material (super absorbent resin powder B). Liquid B consisting of 100 parts of this super absorbent resin powder B, 0.5 parts of glycerin and 10 parts of water.
were mixed and heated in the same manner as in Example 1 to obtain a water absorbing agent (
7) was obtained. The obtained water absorbing agent (7) was evaluated in the same manner as in Example 1. The results are shown in Table 1.

【0066】実施例8 攪拌機、還流冷却機、温度計、窒素ガス導入管および滴
下ろうとを付した500mlの四つ口セパラブルフラス
コにシクロヘキサン250mlをとり、分散剤としてソ
ルビタンモノステアレート(HLB4.7)2.0gを
加えて溶解させ、窒素ガスを吹き込んで溶存酸素を追い
だした。別にフラスコ中にアクリル酸ナトリウム28.
2g、アクリル酸7.21gおよびメチレンビスアクリ
ルアミド0.004gをイオン交換水65.79gに溶
解し、次いで過硫酸カリウム0.05gを加えて溶解さ
せた後、窒素ガスを吹き込んで水溶液内に溶存する酸素
を追いだした。
Example 8 250 ml of cyclohexane was placed in a 500 ml four-necked separable flask equipped with a stirrer, reflux condenser, thermometer, nitrogen gas inlet tube and dropping funnel, and sorbitan monostearate (HLB 4.7) was added as a dispersant. ) was added and dissolved, and nitrogen gas was blown in to drive out dissolved oxygen. Separately in a flask 28.
2g of acrylic acid, 7.21g of acrylic acid, and 0.004g of methylenebisacrylamide are dissolved in 65.79g of ion-exchanged water, then 0.05g of potassium persulfate is added and dissolved, and then nitrogen gas is blown into the aqueous solution. Driven out oxygen.

【0067】次いで、このフラスコ内の単量体水溶液を
上記セパラブルフラスコに加えて、250r.p.m.
で攪拌することにより分散させた。その後、浴温を60
℃に昇温して重合反応を開始させた後、2時間この温度
を保持して重合を完了した。重合終了後、共沸脱水によ
り大部分の水を留去して、重合体のシクロヘキサン懸濁
液を得た。この懸濁液を濾過して、高吸水性樹脂粉末C
を得た。この樹脂粉末Cを実施例1と同様に液状物Bと
混合し加熱処理して吸水剤(8)を得た。得られた吸水
剤(8)について評価した結果を表1に示す。
Next, the monomer aqueous solution in this flask was added to the separable flask and heated at 250 rpm. p. m.
The mixture was dispersed by stirring. After that, increase the bath temperature to 60
After the temperature was raised to .degree. C. to initiate the polymerization reaction, this temperature was maintained for 2 hours to complete the polymerization. After the polymerization was completed, most of the water was distilled off by azeotropic dehydration to obtain a cyclohexane suspension of the polymer. This suspension was filtered and superabsorbent resin powder C
I got it. This resin powder C was mixed with liquid B in the same manner as in Example 1, and heat treated to obtain a water absorbing agent (8). Table 1 shows the results of evaluating the obtained water absorbing agent (8).

【0068】[0068]

【表1】[Table 1]

【0069】表1に示した結果から明らかなように本発
明の製造方法によって得られた吸水剤はママコにならず
、かつ大きな吸引力および加圧下吸収性を有する吸水能
力の優れた高吸水性樹脂である。さらに微粉末の100
メッシュ通過量が少なく、作業性が良いことが判る。
As is clear from the results shown in Table 1, the water-absorbing agent obtained by the production method of the present invention is highly water-absorbent, does not become bulky, and has an excellent water-absorbing ability with a large suction force and absorbency under pressure. It is resin. Furthermore, 100% of fine powder
It can be seen that the amount of mesh passing through is small and workability is good.

【0070】(粒子の強度試験)実施例1において得ら
れた高吸水性樹脂粉末Aおよび吸水剤(1)と比較例1
で得られた比較吸水剤(1)について、これらを各々3
0gずつ100mlマヨネーズびんに直径5mmのガラ
ス球5gと共に仕込んでペイントシェイカーで30分間
振盪させた。振盪させた後の各々の粒度について調べた
。その結果を表2に示す。
(Particle strength test) Super water absorbent resin powder A and water absorbing agent (1) obtained in Example 1 and Comparative Example 1
Regarding the comparative water absorbing agent (1) obtained in
0 g each was placed in a 100 ml mayonnaise bottle along with 5 g of glass balls with a diameter of 5 mm, and the mixture was shaken in a paint shaker for 30 minutes. The particle size of each sample was examined after shaking. The results are shown in Table 2.

【0071】[0071]

【表2】[Table 2]

【0072】本発明で得られた吸水剤は振動および磨耗
に対する強度の強いものであることが判る。
It can be seen that the water absorbing agent obtained according to the present invention has strong resistance to vibration and abrasion.

【0073】[0073]

【発明の効果】以上述べたように、本発明は、下端が開
口された筒状体の上部から官能基を有する高吸水性樹脂
粉末を投入するとともに、該筒状体の上部から下部に向
けて該高吸水性樹脂の2個以上の官能基と反応し得る基
を有する化合物の液状物を液滴状にして噴霧し、該筒状
体の下部に向かって流下する前記高吸水性樹脂粉末と、
該筒状体の下部に向かって径方向に拡散しつつ流下する
該液滴とを相互に並流状態で接触させ、該液滴が均一に
吸着された高吸水性樹脂粉末を該筒状体の下部から取出
し、次いで取出された該高吸水性樹脂粉末を40℃以上
の温度で加熱処理することを特徴とする高吸水性樹脂の
製造方法であるから、得られる高吸水性樹脂は、水性液
体と接した際の吸収倍率や加圧下吸収性および水性液体
を含んだ基材からの水分の吸引力のいずれにも優れるも
のである。
Effects of the Invention As described above, according to the present invention, superabsorbent resin powder having a functional group is introduced from the upper part of a cylindrical body with an open bottom end, and the superabsorbent resin powder is introduced from the upper part of the cylindrical body to the lower part. A liquid substance of a compound having a group capable of reacting with two or more functional groups of the super absorbent resin is sprayed in the form of droplets, and the super absorbent resin powder flows down toward the lower part of the cylindrical body. and,
The droplets flowing down while diffusing in the radial direction toward the bottom of the cylindrical body are brought into contact with each other in a cocurrent state, and the superabsorbent resin powder with the droplets uniformly adsorbed is transferred to the cylindrical body. The method for producing a super absorbent resin is characterized by taking out the super absorbent resin powder from the lower part of the bottle, and then heat-treating the super absorbent resin powder taken out at a temperature of 40°C or higher. It has excellent absorption capacity when in contact with liquid, absorbency under pressure, and ability to absorb water from a base material containing an aqueous liquid.

【0074】また本発明方法は、親水性有機溶媒を使用
しない場合でも実施できるため、工業的に安全かつ経済
性の優れた製造方法を提供するものである。さらに、本
発明で得られた高吸水性樹脂は、高品質の所望の範囲内
の粒度を有するものであり、微粉末が含まれなくなるこ
とから、高吸水性樹脂粉末の使用に際して粉塵の発生や
作業環境の悪化等がなくなる。
Furthermore, the method of the present invention can be carried out without using a hydrophilic organic solvent, so it provides an industrially safe and economically superior manufacturing method. Furthermore, the superabsorbent resin obtained in the present invention is of high quality and has a particle size within a desired range, and does not contain fine powder, so there is no possibility of dust generation when using the superabsorbent resin powder. Deterioration of the working environment will be eliminated.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】は本発明の実施態様に係る高吸水性樹脂の製造
方法を行うための装置を示す断面図。
FIG. 1 is a sectional view showing an apparatus for carrying out a method for producing a super absorbent resin according to an embodiment of the present invention.

【図2】は気流によって高吸水性樹脂粉末を分散投入す
るようにした実施態様に係る製造方法を行うための装置
を示す断面図。
FIG. 2 is a sectional view showing an apparatus for carrying out a manufacturing method according to an embodiment in which super absorbent resin powder is dispersed and introduced by air current.

【図3】は気流によって高吸水性樹脂粉末を分散投入す
るようにした実施態様に係る製造方法を行うための装置
の一変形例を示す断面図。
FIG. 3 is a sectional view showing a modified example of an apparatus for carrying out the manufacturing method according to the embodiment in which super absorbent resin powder is dispersed and introduced by airflow.

【図4】は本発明の他の実施態様に係る製造方法を行う
ための装置を示す断面図。
FIG. 4 is a sectional view showing an apparatus for performing a manufacturing method according to another embodiment of the present invention.

【図5】は高吸水性樹脂の加圧下吸収性を測定するため
の装置の概略断面図である。
FIG. 5 is a schematic cross-sectional view of an apparatus for measuring the absorbency under pressure of a superabsorbent resin.

【図6】は高吸水性樹脂の加圧下吸収速度を示すグラフ
である。
FIG. 6 is a graph showing the absorption rate under pressure of a super absorbent resin.

【符号の説明】[Explanation of symbols]

10・・・円筒体(筒状体)、11・・・開口部、12
,16・・・分散板、13・・・投入部材、14・・・
パイプ、15,33・・・ノズル、18・・・空圧配管
、19・・・圧縮空気ノズル、21・・・ビュレット、
23・・・栓、25・・・空気口、24・・・測定台、
28・・・おもり。
10... Cylindrical body (cylindrical body), 11... Opening, 12
, 16... Dispersion plate, 13... Injection member, 14...
Pipe, 15, 33... Nozzle, 18... Pneumatic piping, 19... Compressed air nozzle, 21... Bullet,
23... Plug, 25... Air port, 24... Measuring table,
28... Weight.

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】下端が開口された筒状体の上部から官能基
を有する高吸水性樹脂粉末を投入するとともに、該筒状
体の上部から下部に向けて該高吸水性樹脂の2個以上の
官能基と反応し得る基を有する化合物の液状物を微細液
滴状に噴霧して、該筒状体の下部に向って流下する前記
高吸水性樹脂粉末と、該筒状体の下部に向って径方向に
拡散しつつ流下する該液滴とを相互に並流状態で接触さ
せ、該液滴が均一に吸着された該高吸水性樹脂粉末を該
筒状体の下部から取出し、ついで取出された該高吸水性
樹脂粉末を40℃以上の温度で加熱処理することを特徴
とする高吸水性樹脂の製造方法。
Claim 1: Powder of a super absorbent resin having a functional group is introduced from the top of a cylindrical body with an open bottom end, and two or more powders of the super absorbent resin are poured from the top to the bottom of the cylindrical body. A liquid substance of a compound having a group capable of reacting with the functional group of The superabsorbent resin powder with the droplets uniformly adsorbed thereon is taken out from the lower part of the cylindrical body, and then the droplets are brought into contact with each other in a parallel flow state. A method for producing a super absorbent resin, which comprises heat-treating the super absorbent resin powder taken out at a temperature of 40° C. or higher.
【請求項2】該液状物が2個以上の官能基と反応し得る
基を有する化合物の希釈剤による希釈物である請求項1
に記載の方法。
Claim 2: Claim 1, wherein the liquid substance is a dilution of a compound having a group capable of reacting with two or more functional groups with a diluent.
The method described in.
【請求項3】該高吸水性樹脂粉末100重量部に対する
該液状物の割合が1〜50重量部である請求項1または
2に記載の方法。
3. The method according to claim 1 or 2, wherein the ratio of the liquid substance to 100 parts by weight of the superabsorbent resin powder is 1 to 50 parts by weight.
【請求項4】該希釈剤が水である請求項2に記載の方法
4. The method of claim 2, wherein the diluent is water.
【請求項5】2個以上の官能基と反応し得る化合物が水
溶性である請求項4に記載の方法。
5. The method according to claim 4, wherein the compound capable of reacting with two or more functional groups is water-soluble.
【請求項6】2個以上の官能基と反応し得る化合物が多
価アルコールである請求項5に記載の方法。
6. The method according to claim 5, wherein the compound capable of reacting with two or more functional groups is a polyhydric alcohol.
【請求項7】多価アルコールは該高吸水性樹脂粉末10
0重量部当り0.1〜30重量部の割合で用いてなる請
求項6に記載の方法。
7. The polyhydric alcohol is the super absorbent resin powder 10
7. The method according to claim 6, wherein the amount is 0.1 to 30 parts by weight per 0 parts by weight.
【請求項8】該高吸水性樹脂粉末の官能基がカルボキシ
ル基である請求項1に記載の方法。
8. The method according to claim 1, wherein the functional group of the superabsorbent resin powder is a carboxyl group.
【請求項9】官能基を有する高吸水性樹脂粉末がアクリ
ル酸1〜50モル%とアクリル酸塩99〜50モル%と
からなるアクリル酸単量体の架橋重合体である請求項8
に記載の方法。
(9) The super absorbent resin powder having a functional group is a crosslinked polymer of acrylic acid monomers consisting of 1 to 50 mol% of acrylic acid and 99 to 50 mol% of acrylate.
The method described in.
【請求項10】官能基を有する高吸水性樹脂粉末が、ア
クリル酸塩系単量体100重量部および架橋性単量体0
〜5重量部を、20重量%以上の単量体濃度で重合して
形成されるゲル状含水重合体を加熱乾燥して得られたア
クリル酸塩系重合体である請求項9に記載の方法。
10. A superabsorbent resin powder having a functional group contains 100 parts by weight of an acrylate monomer and 0 parts by weight of a crosslinking monomer.
The method according to claim 9, which is an acrylate-based polymer obtained by heating and drying a gel-like hydrous polymer formed by polymerizing ~5 parts by weight at a monomer concentration of 20% by weight or more. .
【請求項11】該筒状体の内壁温度が50〜200℃に
保持されてなる請求項1に記載の方法。
11. The method according to claim 1, wherein the temperature of the inner wall of the cylindrical body is maintained at 50 to 200°C.
【請求項12】該筒状体が円筒状である請求項1に記載
の方法。
12. The method according to claim 1, wherein the cylindrical body is cylindrical.
【請求項13】該液滴を該筒状体の上部中央に位置する
ノズルから下方に向けて噴霧し、また該高吸水性樹脂粉
末を該ノズルの外側から下方に向けて投入してなる請求
項1に記載の方法。
13. A claim in which the droplets are sprayed downward from a nozzle located at the center of the upper part of the cylindrical body, and the super absorbent resin powder is introduced downward from the outside of the nozzle. The method described in Section 1.
【請求項14】該液滴を該筒状体の上部内壁面に設けら
れたノズルから下方に向けて噴霧し、また該高吸水性樹
脂粉末を該筒状体上部中心から下方に向けて投入してな
る請求項1に記載の方法。
14. The droplets are sprayed downward from a nozzle provided on the inner wall surface of the upper part of the cylindrical body, and the super absorbent resin powder is injected downward from the center of the upper part of the cylindrical body. The method according to claim 1, comprising:
【請求項15】該高吸水性樹脂粉末は気流によって供給
されてなる請求項1に記載の方法。
15. The method according to claim 1, wherein the superabsorbent resin powder is supplied by airflow.
【請求項16】該高吸水性樹脂粉末と該気流との混合比
が0.1〜5kg/Nm3である請求項15に記載の方
法。
16. The method according to claim 15, wherein the mixing ratio of the superabsorbent resin powder and the air flow is 0.1 to 5 kg/Nm3.
【請求項17】該筒状体内での該気流の滞留時間が0.
1〜30秒である請求項13に記載の方法。
17. The residence time of the air flow within the cylindrical body is 0.
14. The method according to claim 13, wherein the time is 1 to 30 seconds.
【請求項18】該液状物の液滴の径が300μm以下で
ある請求項1に記載の方法。
18. The method according to claim 1, wherein the droplets of the liquid material have a diameter of 300 μm or less.
JP3011189A 1991-01-31 1991-01-31 Method for producing superabsorbent resin Expired - Lifetime JP3016879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3011189A JP3016879B2 (en) 1991-01-31 1991-01-31 Method for producing superabsorbent resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3011189A JP3016879B2 (en) 1991-01-31 1991-01-31 Method for producing superabsorbent resin

Publications (2)

Publication Number Publication Date
JPH04246403A true JPH04246403A (en) 1992-09-02
JP3016879B2 JP3016879B2 (en) 2000-03-06

Family

ID=11771121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3011189A Expired - Lifetime JP3016879B2 (en) 1991-01-31 1991-01-31 Method for producing superabsorbent resin

Country Status (1)

Country Link
JP (1) JP3016879B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5633316A (en) * 1991-04-15 1997-05-27 The Dow Chemical Company Surface crosslinked and surfactant coated absorbent resin particles and method of preparation
EP1191051A2 (en) 2000-09-20 2002-03-27 Nippon Shokubai Co., Ltd. Water-absorbent polymer particles and production process therefor
WO2003106513A1 (en) * 2002-06-12 2003-12-24 住友精化株式会社 Water-absorbing resin
US6716894B2 (en) 2001-07-06 2004-04-06 Nippon Shokubai Co., Ltd. Water-absorbent resin powder and its production process and uses
JP2004359943A (en) * 2003-05-09 2004-12-24 Nippon Shokubai Co Ltd Water absorption resin and its producing method
US6835325B1 (en) 1999-10-21 2004-12-28 Daiso Co., Ltd. Crosslinking agent based on polyallyl ether compound
US7732646B2 (en) 2002-05-06 2010-06-08 Daiso Co., Ltd. Crosslinking agent based on linear hydroxypolyallyl ether
JP2011527360A (en) * 2008-07-09 2011-10-27 ビーエーエスエフ ソシエタス・ヨーロピア Surface post-crosslinking method for water-absorbing polymer particles
CN102836691A (en) * 2012-08-27 2012-12-26 江苏远洋药业股份有限公司 Device for transient reaction of chemical product and use method thereof
US8487048B2 (en) 2003-05-09 2013-07-16 Nippon Shokubai Co., Ltd. Water-absorbent resin and its production process
CN110128579A (en) * 2019-04-13 2019-08-16 复旦大学 High pass weight polymers library is automatically synthesized apparatus and method
US10730028B2 (en) 2016-03-31 2020-08-04 Sumitomo Seika Chemicals Co., Ltd. Apparatus for producing water-absorbing resin particles
US11786884B2 (en) 2020-04-30 2023-10-17 Kimberly-Clark Worldwide, Inc. Superabsorbent polymers based on copolymers of charged monomers and neutral monomers

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69333678T2 (en) 1992-08-17 2005-03-03 Weyerhaeuser Co., Tacoma Binder for particles
US5998032A (en) 1992-08-17 1999-12-07 Weyerhaeuser Company Method and compositions for enhancing blood absorbence by superabsorbent materials
US6340411B1 (en) 1992-08-17 2002-01-22 Weyerhaeuser Company Fibrous product containing densifying agent
CN102814157B (en) * 2012-08-27 2014-06-11 江苏远洋药业股份有限公司 Device for chemical product instantaneous reaction

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5633316A (en) * 1991-04-15 1997-05-27 The Dow Chemical Company Surface crosslinked and surfactant coated absorbent resin particles and method of preparation
US6835325B1 (en) 1999-10-21 2004-12-28 Daiso Co., Ltd. Crosslinking agent based on polyallyl ether compound
EP2272898A1 (en) 2000-09-20 2011-01-12 Nippon Shokubai Co., Ltd. Water-absorbent polymer particles and production process therefor
US6720389B2 (en) 2000-09-20 2004-04-13 Nippon Shokubai Co., Ltd. Water-absorbent resin and production process therefor
EP1191051A3 (en) * 2000-09-20 2002-09-25 Nippon Shokubai Co., Ltd. Water-absorbent polymer particles and production process therefor
US7183456B2 (en) 2000-09-20 2007-02-27 Nippon Shokubai Co., Ltd. Water-absorbent resin and production process therefor
EP1191051A2 (en) 2000-09-20 2002-03-27 Nippon Shokubai Co., Ltd. Water-absorbent polymer particles and production process therefor
US6716894B2 (en) 2001-07-06 2004-04-06 Nippon Shokubai Co., Ltd. Water-absorbent resin powder and its production process and uses
US7732646B2 (en) 2002-05-06 2010-06-08 Daiso Co., Ltd. Crosslinking agent based on linear hydroxypolyallyl ether
WO2003106513A1 (en) * 2002-06-12 2003-12-24 住友精化株式会社 Water-absorbing resin
US8487048B2 (en) 2003-05-09 2013-07-16 Nippon Shokubai Co., Ltd. Water-absorbent resin and its production process
JP2004359943A (en) * 2003-05-09 2004-12-24 Nippon Shokubai Co Ltd Water absorption resin and its producing method
JP2011527360A (en) * 2008-07-09 2011-10-27 ビーエーエスエフ ソシエタス・ヨーロピア Surface post-crosslinking method for water-absorbing polymer particles
CN102836691A (en) * 2012-08-27 2012-12-26 江苏远洋药业股份有限公司 Device for transient reaction of chemical product and use method thereof
CN102836691B (en) * 2012-08-27 2014-02-26 江苏远洋药业股份有限公司 Device for transient reaction of chemical product and use method thereof
US10730028B2 (en) 2016-03-31 2020-08-04 Sumitomo Seika Chemicals Co., Ltd. Apparatus for producing water-absorbing resin particles
KR20210064436A (en) 2016-03-31 2021-06-02 스미토모 세이카 가부시키가이샤 Water-absorbing resin particle production device
US11117111B2 (en) 2016-03-31 2021-09-14 Sumitomo Seika Chemicals Co., Ltd. Apparatus for producing water-absorbing resin particles
CN110128579A (en) * 2019-04-13 2019-08-16 复旦大学 High pass weight polymers library is automatically synthesized apparatus and method
CN110128579B (en) * 2019-04-13 2021-08-20 复旦大学 Automatic synthesis device and method for high-throughput polymer library
US11786884B2 (en) 2020-04-30 2023-10-17 Kimberly-Clark Worldwide, Inc. Superabsorbent polymers based on copolymers of charged monomers and neutral monomers

Also Published As

Publication number Publication date
JP3016879B2 (en) 2000-03-06

Similar Documents

Publication Publication Date Title
CN100497447C (en) Water-absorbency resin and preparing method thereof
JPH04246403A (en) Production of highly water-absorptive resin
EP0450923B1 (en) Method of treating the surface of an absorbent resin
JP5132927B2 (en) Method for producing water absorbent resin
JP4879423B2 (en) Method for producing water absorbent resin
JP5977839B2 (en) Polyacrylic acid (salt) water-absorbing resin and method for producing the same
JPH07242709A (en) Preparation of water-absorbent resin
JPS59189103A (en) Water-absorbing agent
CN107722329A (en) Polyacrylic acid water-absorbent resin, composition and its manufacture method
JPS6116903A (en) Water-absorbent
JP2004352940A (en) Method for producing water-absorbing resin and spade type mixer
CN110372891B (en) Method for producing polyacrylic acid water-absorbent resin
KR102635153B1 (en) Method for producing water absorbent resin and water absorbent resin
JP4342213B2 (en) Manufacturing method of water absorbent resin
CN111116947A (en) Method for producing polyacrylic acid water-absorbent resin
CN102844358B (en) Method for producing water-absorbing polymer particles
JP3970818B2 (en) Granulated particles of water absorbent resin, absorbent article containing the same, and method for producing granulated particles of water absorbent resin
JP5150718B2 (en) Method for coating water-absorbing polymer particles
JP4704559B2 (en) Manufacturing method of basic water-absorbing resin, manufacturing method of water-absorbing agent, and use thereof
JP7355900B2 (en) water absorbent resin powder
JP2022132184A (en) Method for producing water-absorbing resin and water-absorbing resin
JP3515679B2 (en) Water absorbent resin and manufacturing method
JP2003238696A (en) Surface-crosslinked water-absorbing polymer and method for producing the same
WO2022239723A1 (en) Poly(meth)acrylic acid (salt) water-absorbing resin and absorbent article
WO2022075256A1 (en) Method for producing water-absorbing resin particles

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 12