JPH07242486A - Production of iii-v compound semiconductor crystal - Google Patents

Production of iii-v compound semiconductor crystal

Info

Publication number
JPH07242486A
JPH07242486A JP3712294A JP3712294A JPH07242486A JP H07242486 A JPH07242486 A JP H07242486A JP 3712294 A JP3712294 A JP 3712294A JP 3712294 A JP3712294 A JP 3712294A JP H07242486 A JPH07242486 A JP H07242486A
Authority
JP
Japan
Prior art keywords
reaction tube
furnace
growth
group
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3712294A
Other languages
Japanese (ja)
Inventor
Toshiaki Fujiwara
敏明 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP3712294A priority Critical patent/JPH07242486A/en
Publication of JPH07242486A publication Critical patent/JPH07242486A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To efficiently produce single crystals and polycrystals of a III-V compd. semiconductor. CONSTITUTION:Two units of growth boats 20, 30 housing crystal raw materials of group III elements are arranged on both sides of a group V element 40 and are encapsulated into a reaction tube 10. This reaction tube 10 is inserted into a furnace core tube 51 of a heating furnace 50 provided with a temp. gradient in the axial direction of the furnace and the crystals 22, 32 crystallized from melts 21, 31 formed by heating of the crystal raw materials are grown in the furnace axis direction from the central part of the reaction tube 10 toward both ends. As a result, two units of the growth ports 20, 30 are encapsulated into one unit of the reaction tube 10 and crystal growth is effected and, therefore, the single crystals or polycrystals are grown efficiently with a floor area smaller than in the case of using two units of the reaction tubes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、III−V族等の化合
物半導体単結晶や多結晶をボート法で製造する方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a compound semiconductor single crystal or polycrystal of III-V group by a boat method.

【0002】[0002]

【従来の技術】化合物半導体材料の単結晶や多結晶は、
液体封止引上げ法,ボート法等で製造されている。液体
封止引上げ法は、N2 ,Ar等の不活性ガスで加圧され
た高圧容器内に融液を収容したルツボをセットし、融液
から単結晶や多結晶を引き上げる。この方法は、大型の
単結晶や多結晶の製造に適しているものの、高圧ガス容
器を必要とすることから高価な設備を使用することにな
る。また、高純度に精製されたN2,Ar等の高価な不
活性ガスを消費するため、得られた化合物半導体の単結
晶又は多結晶は、非常に高価な製品となる。この点、ボ
ート法によるとき、比較的低い設備コスト及び製造コス
トで単結晶や多結晶を製造できる。ボート法では、単結
晶又は多結晶原料を収容した育成ボートを石英管等の反
応管内に収容し、反応管の長手方向に沿って温度勾配を
付けて加熱する。高温側で融液が生成し、低温になるに
従って融液から単結晶又は多結晶が成長する。
2. Description of the Related Art Single crystals and polycrystals of compound semiconductor materials are
It is manufactured by the liquid sealing pulling method, the boat method, etc. In the liquid sealing pulling method, a crucible containing a melt is set in a high-pressure container pressurized with an inert gas such as N 2 or Ar, and a single crystal or a polycrystal is pulled from the melt. Although this method is suitable for the production of large single crystals and polycrystals, it requires a high-pressure gas container and therefore uses expensive equipment. Further, since expensive inert gas such as N 2 and Ar purified to high purity is consumed, the obtained single crystal or polycrystal of the compound semiconductor becomes a very expensive product. In this respect, according to the boat method, single crystals and polycrystals can be manufactured with relatively low equipment cost and manufacturing cost. In the boat method, a growth boat containing a single crystal or polycrystal raw material is contained in a reaction tube such as a quartz tube and heated with a temperature gradient along the longitudinal direction of the reaction tube. A melt is generated on the high temperature side, and a single crystal or a polycrystal grows from the melt as the temperature becomes lower.

【0003】[0003]

【発明が解決しようとする課題】ボート法では、反応管
1基に育成ボート1基のみを封入している。この反応管
に温度勾配を付けて単結晶又は多結晶を成長させている
ので、加熱ゾーンが短く、生成した融液の温度分布が不
均一になり易い。その結果、得られた単結晶又は多結晶
に、クラック,気孔,疎な部分等の欠陥が発生する。そ
のため、歩留りが低く、結果として製造コストを上昇さ
せることにもなる。本発明は、このような問題を解消す
べく案出されたものであり、反応管の中央部から両端部
に向かって融液から単結晶又は多結晶を成長させる方式
を採用することにより、十分な加熱ゾーンをとり、品質
に優れた単結晶や多結晶を製造することを目的とする。
In the boat method, only one growth boat is enclosed in one reaction tube. Since a single crystal or a polycrystal is grown in this reaction tube with a temperature gradient, the heating zone is short and the temperature distribution of the generated melt tends to be non-uniform. As a result, defects such as cracks, pores and sparse parts occur in the obtained single crystal or polycrystal. Therefore, the yield is low and, as a result, the manufacturing cost is increased. The present invention has been devised in order to solve such a problem, and by adopting a method of growing a single crystal or a polycrystal from a melt from the central part of the reaction tube toward both ends, it is sufficient. The objective is to produce a high quality single crystal or polycrystal by taking various heating zones.

【0004】[0004]

【課題を解決するための手段】本発明のIII−V族化
合物半導体結晶製造方法は、その目的を達成するため、
III族元素の結晶原料を収容した2基の育成ボートを
V族元素の両側に配置して反応管に封入し、炉軸方向に
温度勾配を付けた加熱炉の炉芯管に前記反応管を挿入
し、前記結晶原料の加熱により生成した融液から晶出す
る結晶を、前記反応管の中央部から両端に向かった炉軸
方向に成長させることを特徴とする。本発明に従った半
導体結晶製造装置は、図1に示すように、一つの反応管
10に2基の育成ボート20,30を封入している。育
成ボート20,30は、反応管10の中央部に配置され
たV族元素40の両側にセットされる。反応管10は、
加熱炉50に挿通した炉芯管51の内部に配置される。
加熱炉50は、V族元素40に対向する位置が低温部5
L で、育成ボート20,30に収容した融液21,3
1に対向する位置が高温部52H となるヒーター52を
備えている。加熱炉50の炉殻には、融液21,31か
ら晶出する単結晶又は多結晶22,32の成長状態を観
察しながら温度分布,加熱条件,放熱条件等を制御する
ため、放熱部を兼ねた覗き窓53が設けられている。覗
き窓53以外の部分には、断熱材54がライニングされ
ている。
The method for producing a III-V group compound semiconductor crystal according to the present invention has the following objectives.
Two growth boats containing a group III element crystal raw material are placed on both sides of the group V element and enclosed in a reaction tube, and the reaction tube is attached to a furnace core tube of a heating furnace having a temperature gradient in the furnace axis direction. It is characterized in that a crystal which is inserted and crystallized from a melt generated by heating the crystal raw material is grown in a furnace axis direction from the central portion of the reaction tube toward both ends. In the semiconductor crystal manufacturing apparatus according to the present invention, as shown in FIG. 1, two growth boats 20 and 30 are enclosed in one reaction tube 10. The growth boats 20 and 30 are set on both sides of the group V element 40 arranged in the center of the reaction tube 10. The reaction tube 10 is
It is arranged inside a furnace core tube 51 inserted into the heating furnace 50.
In the heating furnace 50, the position facing the group V element 40 is at the low temperature part 5
2 L , melts 21 and 3 stored in the growth boats 20 and 30
The heater 52 has a high temperature portion 52 H at a position facing 1. The furnace shell of the heating furnace 50 is provided with a heat radiating portion in order to control the temperature distribution, heating conditions, heat radiating conditions, etc. while observing the growth state of the single crystals or polycrystals 22, 32 crystallized from the melts 21, 31. A combined viewing window 53 is provided. A heat insulating material 54 is lined in a portion other than the viewing window 53.

【0005】高温部ヒーター−52H は、三次元の温度
分布が高精度に制御されるように、加熱炉50の円周方
向に沿って4分割されている。4分割されている各ヒー
ター−は、必要箇所に設置されている熱電対によって、
或いは覗き窓から観測できる結晶の成長度合いに応じ
て、各ヒーター−への印加電圧が調整され、固液界面に
おける温度勾配や結晶成長速度が高精度で制御される。
高温部ヒーター52H により、炉軸方向(X軸),ボー
ト幅方向(Y軸)及び上下方向(Z軸)の温度分布が高
精度に制御される。そのため、温度勾配や融点の移動等
が容易に操作され、クラック,気孔,疎の部分等の欠陥
がない均質で緻密な単結晶又は多結晶22,32を再現
性良く合成できる。低温部ヒーター52L は、従来では
反応管の一つの端部に設けられており、外界の影響を受
け、温度変動を生じさせ易い。他方、本発明では、反応
管10の中心部に低温部ヒーター52L が配置されてい
るため、温度変動がなく、温度分布も均一に制御でき
る。これにより、V族元素40が配置されているゾーン
の加熱温度が精密に操作され、V族元素40の蒸気圧が
適正に制御される。その結果、育成ボート20,30の
末端から融液21,31が吹き溢れることがない。
[0005] high-temperature portion heater -52 H, as three-dimensional temperature distribution is controlled highly accurately, divided into four parts along the circumferential direction of the heating furnace 50. Each heater, which is divided into four parts, is equipped with a thermocouple installed at the required location.
Alternatively, the voltage applied to each heater is adjusted according to the degree of crystal growth that can be observed through the viewing window, and the temperature gradient and crystal growth rate at the solid-liquid interface are controlled with high accuracy.
The high temperature heater 52 H controls the temperature distribution in the furnace axis direction (X axis), the boat width direction (Y axis), and the vertical direction (Z axis) with high accuracy. Therefore, the temperature gradient and the movement of the melting point can be easily manipulated, and homogeneous and dense single crystals or polycrystals 22 and 32 having no defects such as cracks, pores and sparse parts can be synthesized with good reproducibility. The low-temperature heater 52 L is conventionally provided at one end of the reaction tube, and is easily affected by the external environment to cause temperature fluctuations. On the other hand, in the present invention, since the low temperature heater 52 L is arranged at the center of the reaction tube 10, there is no temperature fluctuation and the temperature distribution can be controlled uniformly. As a result, the heating temperature of the zone in which the group V element 40 is arranged is precisely controlled, and the vapor pressure of the group V element 40 is properly controlled. As a result, the melts 21 and 31 will not overflow from the ends of the growth boats 20 and 30.

【0006】育成ボート20,30に収容されている単
結晶又は多結晶原料は、高温部ヒーター52H で加熱さ
れ、融液21,31となる。融液21,31は、加熱炉
50の中央部から両側に向かって高くなる温度勾配で高
温部ヒーター52H によって加熱されているので、種結
晶23,33を起点として矢印方向に凝固が進行する。
このとき、V族元素40は、低温部ヒーター52L で加
熱されて気化し、キャピラリー11,12の孔部を経
て、両側に配置されている育成ボート20,30に送ら
れ、融液21,31に取り込まれる。融液21,31は
種結晶23,33の結晶方位を倣って凝固し、種結晶2
3,33側から所定の単結晶22,32が成長する。ま
た、育成ボート20,30に種結晶23,33を設置せ
ずに結晶成長させると、多結晶が融液21,31から同
様に晶出する。
The single crystal or polycrystalline raw material contained in the growing boats 20 and 30 is heated by the high temperature heater 52 H to become the melts 21 and 31. Since the melts 21 and 31 are heated by the high temperature heater 52 H with a temperature gradient that increases from the center of the heating furnace 50 to both sides, solidification proceeds in the arrow direction starting from the seed crystals 23 and 33. .
At this time, the group V element 40 is heated by the low temperature heater 52 L to be vaporized, sent through the holes of the capillaries 11 and 12 to the growth boats 20 and 30 arranged on both sides, and melt 21 and It is taken in by 31. The melts 21 and 31 are solidified following the crystal orientations of the seed crystals 23 and 33, and the seed crystals 2
Predetermined single crystals 22 and 32 grow from the 3 and 33 sides. Further, when the crystals are grown on the growth boats 20 and 30 without installing the seed crystals 23 and 33, polycrystals are similarly crystallized from the melts 21 and 31.

【0007】このように、反応管10の中央部1箇所に
V族元素40を集約し、V族元素40の両側に2基の育
成ボート20,30を配置するとき、育成ボート1基の
みを封入した反応管2基を使用する場合と比較して、ヒ
ーター52を必要最小限の長さで断熱性良く設計でき
る。そのため、熱が結晶成長に効率よく利用され、溶解
に要する時間が短縮される。また、加熱炉50を2基設
置する場合に比較して、設置面積も少なくて済む。
As described above, when the group V element 40 is collected at one location in the center of the reaction tube 10 and the two growing boats 20 and 30 are arranged on both sides of the group V element 40, only one growing boat is used. The heater 52 can be designed with a necessary minimum length and good heat insulation property as compared with the case of using two enclosed reaction tubes. Therefore, heat is efficiently used for crystal growth, and the time required for melting is shortened. Further, the installation area can be reduced as compared with the case where two heating furnaces 50 are installed.

【0008】[0008]

【実施例】【Example】

実施例1:III族元素としてGa3.6kgを、直径
90mmの半円形断面をもち長さ600mmの育成ボー
ト20,30にそれぞれ収容した。V族元素40として
As7.8kgを反応管10の中央部に静置し、V族元
素40の両側に育成ボート20,30を配置して反応管
10に封入した。加熱炉50の炉芯管51内に反応管1
0を挿入し、加熱炉50内の温度をGaAsの融点12
38℃以上の温度に加熱した。加熱により育成ボート2
0,30に収容されている単結晶原料Gaが溶融し、A
s(V族元素40)がガス化してGaと反応し、GaA
s融液21,31が生成した。高温部ヒーター52H
印加電圧を調節し、単結晶22,32の成長に適した炉
軸方向温度勾配2.5℃/cmの温度分布を得た。この
条件下で、育成ボート20,30の先端に設置している
種結晶23,33に融液21,31を接触させ、種結晶
23,33を起点として単結晶22,32を反応管10
の中央部から両側に向かって炉軸方向に成長させた。
Example 1: As a Group III element, 3.6 kg of Ga was housed in each of the growth boats 20 and 30 having a semicircular cross section with a diameter of 90 mm and a length of 600 mm. As group V element 40, As of 7.8 kg was allowed to stand still in the center of the reaction tube 10, and the growth boats 20 and 30 were arranged on both sides of the group V element 40 and sealed in the reaction tube 10. The reaction tube 1 is placed in the furnace core tube 51 of the heating furnace 50.
0 is inserted and the temperature in the heating furnace 50 is set to the melting point of GaAs of 12
Heated to a temperature above 38 ° C. Heating boat 2 by heating
The single crystal raw material Ga contained in 0, 30 is melted, and A
s (group V element 40) is gasified and reacts with Ga, resulting in GaA
s melts 21 and 31 were produced. The voltage applied to the high temperature heater 52 H was adjusted to obtain a temperature distribution with a furnace axial temperature gradient of 2.5 ° C./cm suitable for growing the single crystals 22 and 32. Under these conditions, the melts 21 and 31 are brought into contact with the seed crystals 23 and 33 installed at the tips of the growth boats 20 and 30, and the single crystals 22 and 32 are made into the starting points from the seed crystals 23 and 33 and the reaction tubes 10 are formed.
Was grown in the furnace axis direction from the center to both sides.

【0009】結晶成長中に融点の移動及び温度分布を設
計通りに進行させることができ、2基の育成ボート2
0,30の容量に対応して15.6kgのGaAs単結
晶が得られた。このときの結晶成長速度は、10mm/
時であった。得られたGaAs単結晶は、急激な成長が
抑制されたことから、クラック,気孔,疎の部分等の欠
陥がない均質で緻密な単結晶であった。育成ボート2
0,30の先端部に種結晶23,33を設置しない他
は、同じ条件下で融液21,31から多結晶を成長させ
た。得られたGaAs多結晶は、同様にクラック,気
孔,疎の部分等の欠陥がない均質で緻密な製品であっ
た。
The melting point shift and temperature distribution can be made to proceed as designed during crystal growth, and the two growth boats 2
15.6 kg of GaAs single crystal was obtained corresponding to a capacity of 0,30. The crystal growth rate at this time is 10 mm /
It was time. The obtained GaAs single crystal was a homogeneous and dense single crystal having no defects such as cracks, pores, and sparse portions because rapid growth was suppressed. Training boat 2
Polycrystals were grown from the melts 21 and 31 under the same conditions except that the seed crystals 23 and 33 were not installed at the tips of 0 and 30. The obtained GaAs polycrystal was a homogeneous and dense product without defects such as cracks, pores, and sparse portions.

【0010】実施例2:III族元素としてIn5.9
kgを、直径80mmの半円形断面をもち長さ510m
mの育成ボート20,30にそれぞれ収容した。V族元
素40としてAs6.1kgを反応管10の中央部に静
置し、V族元素40の両側に育成ボート20,30を配
置して反応管10に封入した。加熱炉50の炉芯管51
内に反応管10を挿入し、加熱炉50内の温度をInA
sの融点943℃以上の温度に加熱した。加熱により育
成ボート20,30に収容されている単結晶原料Inが
溶融し、ガス化したAsと反応して、InAs融液2
1,31が生成した。高温部ヒーター52H の印加電圧
を調節し、単結晶22,32の成長に適した炉軸方向温
度勾配2.4℃/cmの温度分布を得た。この条件下
で、育成ボート20,30の先端に設置している種結晶
23,33に融液21,31を接触させ、種結晶23,
33を起点として単結晶22,32を反応管10の中央
部から両側に向かって炉軸方向に成長させた。結晶成長
中に融点の移動及び温度分布を設計通りに進行させるこ
とができ、融液21,31の吹き溢れや急激な成長が抑
制された。得られたInAs単結晶は、2基の育成ボー
ト20,30の容量に対応する17.8kgの重さであ
り、クラック,気孔,疎の部分等の欠陥がない均質で緻
密な単結晶であった。このときの結晶成長速度は、8m
m/時であった。GaP,InP等の単結晶及び多結晶
も、耐圧容器内で同様な方法によって製造できた。
Example 2: In5.9 as a group III element
kg has a semicircular cross section with a diameter of 80 mm and a length of 510 m
They were housed in m. As the group V element 40, 6.1 kg of As was allowed to stand still in the center of the reaction tube 10, and the growth boats 20 and 30 were arranged on both sides of the group V element 40 and sealed in the reaction tube 10. Furnace core tube 51 of heating furnace 50
The reaction tube 10 is inserted into the heating furnace 50 and the temperature inside the heating furnace 50 is set to InA.
The melting point of s was heated to a temperature of 943 ° C. or higher. The single crystal raw material In contained in the growing boats 20 and 30 is melted by heating and reacts with gasified As to form an InAs melt 2
1,31 were generated. The voltage applied to the high temperature heater 52 H was adjusted to obtain a temperature distribution having a furnace axial temperature gradient of 2.4 ° C./cm suitable for growing the single crystals 22 and 32. Under this condition, the melts 21 and 31 are brought into contact with the seed crystals 23 and 33 installed at the tips of the growing boats 20 and 30, respectively.
Single crystals 22 and 32 were grown in the furnace axial direction from the center of the reaction tube 10 toward the both sides, starting from 33. The movement of the melting point and the temperature distribution could be made to proceed as designed during the crystal growth, and the overflow and rapid growth of the melts 21 and 31 were suppressed. The obtained InAs single crystal had a weight of 17.8 kg corresponding to the capacities of the two growth boats 20 and 30, and was a homogeneous and dense single crystal free from defects such as cracks, pores and sparse parts. It was The crystal growth rate at this time is 8 m
It was m / hour. Single crystals and polycrystals of GaP, InP, etc. could also be manufactured by the same method in a pressure resistant container.

【0011】[0011]

【発明の効果】以上に説明したように、本発明において
は、V族元素の両側に2基の育成ボートを配置して反応
管に封入し、生成した融液から晶出する単結晶又は多結
晶の成長を反応管の中央部から両側に向かった炉軸方向
に進行させている。これにより、少ない設置面積で、よ
り多量の単結晶や多結晶を能率よく且つ安価に製造する
ことができる。また、加熱ゾーンが必要最小限の長さで
済むため、緻密な設計が可能になり、熱が有効に利用さ
れると共に温度分布を高精度に設定できる。そのため、
クラック,気孔,疎の部分等の欠陥がない均質で緻密な
単結晶や多結晶が得られる。
INDUSTRIAL APPLICABILITY As described above, in the present invention, two growth boats are arranged on both sides of the group V element and sealed in the reaction tube, and a single crystal or a polycrystal crystallized from the melt produced. Crystal growth is allowed to proceed in the furnace axial direction from the center of the reaction tube to both sides. Thereby, a large amount of single crystals and polycrystals can be efficiently and inexpensively manufactured with a small installation area. Further, since the heating zone is required to have the minimum necessary length, a precise design can be achieved, heat can be effectively used, and temperature distribution can be set with high accuracy. for that reason,
Homogeneous and dense single crystals and polycrystals without defects such as cracks, pores, and sparse parts can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明実施例で使用した半導体結晶製造装置FIG. 1 is a semiconductor crystal manufacturing apparatus used in an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10:反応管 20,30:育成ボート 21,
31:融液 22,32:単結晶又は多結晶 23,
33:種結晶 40:V族元素 50:加熱炉 51:
炉芯管 52:ヒーター 52H :高温部 52
L :低温部
10: Reaction tube 20, 30: Growth boat 21,
31: melt 22, 32: single crystal or polycrystal 23,
33: Seed crystal 40: Group V element 50: Heating furnace 51:
Furnace core tube 52: Heater 52 H : High temperature part 52
L : Low temperature part

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 III族元素の結晶原料を収容した2基
の育成ボートをV族元素の両側に配置して反応管に封入
し、炉軸方向に温度勾配を付けた加熱炉の炉芯管に前記
反応管を挿入し、前記結晶原料の加熱により生成した融
液から晶出する結晶を、前記反応管の中央部から両端に
向かった炉軸方向に成長させることを特徴とするIII
−V族化合物半導体結晶の製造方法。
1. A furnace core tube of a heating furnace in which two growth boats containing a crystal raw material of a group III element are arranged on both sides of a group V element and enclosed in a reaction tube, and a temperature gradient is given in a furnace axial direction. The reaction tube is inserted into the reaction tube, and crystals crystallized from a melt produced by heating the crystal raw material are grown in the furnace axial direction from the central portion of the reaction tube toward both ends.
-Method for producing Group V compound semiconductor crystal.
JP3712294A 1994-03-08 1994-03-08 Production of iii-v compound semiconductor crystal Withdrawn JPH07242486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3712294A JPH07242486A (en) 1994-03-08 1994-03-08 Production of iii-v compound semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3712294A JPH07242486A (en) 1994-03-08 1994-03-08 Production of iii-v compound semiconductor crystal

Publications (1)

Publication Number Publication Date
JPH07242486A true JPH07242486A (en) 1995-09-19

Family

ID=12488805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3712294A Withdrawn JPH07242486A (en) 1994-03-08 1994-03-08 Production of iii-v compound semiconductor crystal

Country Status (1)

Country Link
JP (1) JPH07242486A (en)

Similar Documents

Publication Publication Date Title
EP0992618B1 (en) Method of manufacturing compound semiconductor single crystal
US4904336A (en) Method of manufacturing a single crystal of compound semiconductor and apparatus for the same
US4764350A (en) Method and apparatus for synthesizing a single crystal of indium phosphide
JPS6041036B2 (en) GaAs floating zone melting grass crystal production equipment
JPH07242486A (en) Production of iii-v compound semiconductor crystal
JPH01212291A (en) Method and apparatus for growing crystal
JPH1129398A (en) Apparatus for producing compound semiconductor single crystal
JP2543449B2 (en) Crystal growth method and apparatus
JPH0234592A (en) Growing method for compound semiconductor single crystal
JPH05139884A (en) Production of single crystal
JP2589212B2 (en) Semiconductor single crystal manufacturing equipment
KR930000903B1 (en) Temperature control method of low temperature part in simple crystal manufacture of iii-v compound semiconductor
JPH0558772A (en) Production of compound semiconductor single crystal
JPH0449185Y2 (en)
JPH05178683A (en) Device for producing single crystal of compound semiconductor
JPH0778770A (en) Manufacture of compound semiconductor material polycrystal and quartz boat
JP2535773B2 (en) Method and apparatus for producing oxide single crystal
RU1431391C (en) Process of growing monocrystals of cadmium telluride
JPH0362676B2 (en)
JPH0940492A (en) Production of single crystal and apparatus for production therefor
JPH06219885A (en) Method for growing compound semiconductor crystal
JPH05279164A (en) Production of iii-v group compound semiconductor single crystal and apparatus therefor
JPS6168394A (en) Production of groups iii-v polycrystal body
JPS6229394B2 (en)
JPS60215597A (en) Crucible for producing crystal

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010508