JPH0723922B2 - Flat micro lens - Google Patents

Flat micro lens

Info

Publication number
JPH0723922B2
JPH0723922B2 JP61193086A JP19308686A JPH0723922B2 JP H0723922 B2 JPH0723922 B2 JP H0723922B2 JP 61193086 A JP61193086 A JP 61193086A JP 19308686 A JP19308686 A JP 19308686A JP H0723922 B2 JPH0723922 B2 JP H0723922B2
Authority
JP
Japan
Prior art keywords
lens
substrate
refractive index
mask
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61193086A
Other languages
Japanese (ja)
Other versions
JPS6348501A (en
Inventor
幸司 田中
正尋 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP61193086A priority Critical patent/JPH0723922B2/en
Publication of JPS6348501A publication Critical patent/JPS6348501A/en
Publication of JPH0723922B2 publication Critical patent/JPH0723922B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は透明基板中にイオン交換等でレンズを一体的に
埋め込み形成した平板マイクロレンズの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement of a flat plate microlens in which a lens is integrally embedded in a transparent substrate by ion exchange or the like.

〔従来の技術〕[Conventional technology]

〔従来の技術〕 平板マイクロレンズは、平坦な表面をもつ透明な基板内
に屈折率勾配をもつ小レンズ部分を埋め込み形成した光
学素子であり、微小なレンズを精密な位置関係で多数配
列したレンズアレイも容易に製作でき、また平板状であ
るため光学系の組み立てが容易であるなど在来の球面レ
ンズに比べて多くの優れた特性をもっているためその用
途が急速に拡大しつつある。
[Prior Art] A flat microlens is an optical element in which a small lens portion having a refractive index gradient is embedded and formed in a transparent substrate having a flat surface. A lens in which a large number of minute lenses are arranged in a precise positional relationship Arrays are easy to fabricate, and because they have a flat plate shape, it is easy to assemble an optical system. Since they have many excellent characteristics compared to conventional spherical lenses, their applications are rapidly expanding.

上記のような平板マイクロレンズをガラスを基材として
製作する場合、一般的には以下のような方法が用いられ
る。
When the above-mentioned flat plate microlens is manufactured using glass as a base material, the following method is generally used.

まずガラス基板面をイオン透過防止用の金属被膜マスク
で覆い、このマスクに所定のレンズ形状及び配列パター
ンで開口を設け、この開口を通して基板ガラスの屈折率
を高めるイオンを基板内に拡散させる。
First, the glass substrate surface is covered with a metal coating mask for preventing ion permeation, and openings are formed in this mask with a predetermined lens shape and arrangement pattern, and ions for increasing the refractive index of the substrate glass are diffused into the substrate through the openings.

例えば、上記イオンを含む高温の溶融塩を基板のマスク
面に接触させて、溶融塩中のイオンとガラス中のイオン
とのイオン交換を利用して、溶融塩中の上記イオンをガ
ラス中に拡散させる。この後マスクを取り除けばガラス
基板内には、屈折率がマスク開口直下の部分で最大で深
部および側方に向けて同心円状に漸減する分布をもつ断
面が略半円形の屈折率勾配型レンズが形成される。
For example, a high temperature molten salt containing the above ions is brought into contact with the mask surface of the substrate, and the ions in the molten salt are diffused into the glass by utilizing the ion exchange between the ions in the molten salt and the ions in the glass. Let After this, if the mask is removed, a gradient index lens with a substantially semi-circular cross section having a distribution in which the refractive index is concentrically reduced toward the deepest and lateral sides at the maximum just below the mask opening is formed in the glass substrate. It is formed.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上述した方法においてイオン透過防止マスクを除去した
後、レンズの焦点距離を所望の値に調整するために基板
面を研磨する必要があり、特に直径が200μm程度以下
の微小口径レンズの場合には研磨工程で研磨量を数μm
以下に制御せねばならず、精密な焦点初期制御が極めて
困難であるという問題があった。
After removing the ion permeation preventive mask by the method described above, it is necessary to polish the substrate surface to adjust the focal length of the lens to a desired value, especially in the case of a micro-aperture lens with a diameter of about 200 μm or less. Polishing amount is several μm in the process
There is a problem in that precise initial focus control is extremely difficult because it must be controlled as follows.

〔問題点を解決するための手段〕[Means for solving problems]

ガラス基板の一方の面に、イオン交換法によりその断面
が略半円形でありその屈折率が該半円形の中心において
最大で中心から離れるにしたがって屈折率の漸減する屈
折率分布をもつ領域からなるレンズ部を、埋め込み形成
した平板マイクロレンズにおいて、前記レンズ部形成面
側の前記レンズ部以外の前記基板面にのみ遮光槽を設け
るとともに、さらに前記レンズ部形成面側の前記基板面
に、前記レンズの焦点距離を調整しかつ前記レンズ面を
保護するための透明皮膜を、前記レンズ部ではレンズ面
に接して他の部分では前記遮光層上に積層して設け、か
つ前記皮膜の表面は平滑とする。
It consists of a region on one surface of the glass substrate, the cross section of which is approximately semicircular by the ion exchange method, and the refractive index of which is maximum at the center of the semicircle and gradually decreases as the distance from the center increases. In a flat plate microlens having a lens part embedded therein, a light shielding tank is provided only on the substrate surface other than the lens part on the lens part formation surface side, and the lens is formed on the substrate surface on the lens part formation surface side. A transparent coating for adjusting the focal length of the lens and protecting the lens surface is provided in contact with the lens surface in the lens portion and laminated on the light shielding layer in the other portion, and the surface of the coating is smooth. To do.

〔作 用〕[Work]

上記構造によれば、透明被膜の屈折率及び膜厚を適当に
選ぶことにより、基板内埋め込みレンズの焦点距離を微
調整できる。
According to the above structure, the focal length of the lens embedded in the substrate can be finely adjusted by appropriately selecting the refractive index and the film thickness of the transparent coating.

そして上記のような被膜は、スピンコート、蒸着、スパ
ッタリング等周知の薄膜形成技術を用いて厚みを精密に
制御できるので、従来のように基板面を研磨する場合に
比べて高精度で且つ安定した光学特性のものを得ること
ができる。また、透明被膜によって、基板面に露出して
いるレンズ面を劣化あるいは傷つきから保護することが
できる。
Since the thickness of the above-mentioned coating can be precisely controlled by using a well-known thin film forming technique such as spin coating, vapor deposition, and sputtering, it is more accurate and stable as compared with the conventional case where the substrate surface is polished. Optical characteristics can be obtained. Further, the transparent film can protect the lens surface exposed on the substrate surface from deterioration or damage.

またレンズ部以外の基板表面を遮光層で覆っているの
で、レンズ部分以外の基板部分を透過する結像に寄与し
ない光が遮断され、コントラストの良好な鮮明な結像を
得ることができる。
Further, since the surface of the substrate other than the lens portion is covered with the light-shielding layer, the light that does not contribute to the image formation that passes through the substrate part other than the lens portion is blocked, and a clear image with good contrast can be obtained.

〔実 施 例〕〔Example〕

以下本発明を図面に示した実施例に基づいて詳細に説明
する。
The present invention will be described below in detail based on the embodiments shown in the drawings.

第1図において平板マイクロレンズ10は、透明ガラス基
板11の肉厚内に、断面が略半円形の屈折率勾配レンズ12
……を相互に間隔をおいて多数埋め込み形成している。
In FIG. 1, a flat plate microlens 10 has a refractive index gradient lens 12 having a substantially semicircular cross section within the thickness of a transparent glass substrate 11.
A large number of ...... are embedded and formed at intervals.

レンズ12はその一方のレンズ面12Aが基板面11A上にあ
り、屈折率が基板面上で最大で深部に向けて同心円状に
漸減する分布をもっている。そしてレンズ面12A以外の
基板面は、レンズ部以外の透過光を遮断するために遮光
層13で被覆してあり、また基板面に露出しているレンズ
面12Aを透明被膜14で被覆してある。透明被膜14として
は、耐候性に優れたものが望ましく、シリコン樹脂、ポ
リイミド樹脂等の合成樹脂あるいはガラス等の無機材料
で形成することができる。
The lens 12 has one lens surface 12A on the substrate surface 11A, and has a distribution in which the refractive index is maximum on the substrate surface and gradually decreases concentrically toward the deep portion. The surface of the substrate other than the lens surface 12A is covered with a light-shielding layer 13 for blocking transmitted light other than the lens portion, and the lens surface 12A exposed on the surface of the substrate is covered with a transparent film 14. . The transparent coating 14 is preferably excellent in weather resistance, and can be formed of a synthetic resin such as a silicone resin or a polyimide resin, or an inorganic material such as glass.

上記の透明被膜14により、レンズ面12Aが完全にフラッ
トでない場合(例えばイオン交換に伴なうふくらみ変
形)形状が是正されるとともに、入射光線の屈折が被膜
14の屈折率に依存して変化し、レンズ12の焦点距離が変
化する。また被膜14によってレンズ面12Aの劣化、傷付
き等を防止することができる。
The transparent coating 14 corrects the shape when the lens surface 12A is not completely flat (for example, the bulging deformation associated with ion exchange) and refracts the incident light beam.
The focal length of the lens 12 changes depending on the refractive index of 14. Further, the coating film 14 can prevent the lens surface 12A from being deteriorated and scratched.

図示例のようにレンズ部周辺に遮光層13を設けた場合
は、この遮光層13上にも透明被膜14を設けておけば遮光
層13の保護にもなり、また製作上もレンズ部のみに限定
して形成するよりも容易である。
When the light-shielding layer 13 is provided around the lens portion as in the illustrated example, providing the transparent coating 14 on the light-shielding layer 13 also protects the light-shielding layer 13, and also only the lens portion is manufactured. It is easier than limited formation.

次に第2図ないし第6図に基づいて製造方法を説明す
る。
Next, the manufacturing method will be described with reference to FIGS.

まず第2図に示すように、Naイオン,Kイオンなどの交換
可能なイオンを含むほうけい酸ガラスの基板11を用意
し、この基板11の上下面を平行且つ平坦に仕上げる。
First, as shown in FIG. 2, a borosilicate glass substrate 11 containing exchangeable ions such as Na ions and K ions is prepared, and the upper and lower surfaces of the substrate 11 are finished parallel and flat.

次いで基板面上に、一例としてTiあるいはCrを高周波ス
パッタ法で約2μmの膜厚で形成した後、周知のフォト
リゾグラフィー技術を用いて開口部16を設けてイオン透
過防止マスク15とする。この開口部16は、円形、ライン
状など得ようとするレンズの平面形状と相似形とし且つ
レンズ径よりも充分小さくしておく。
Next, as an example, Ti or Cr is formed with a film thickness of about 2 μm by a high frequency sputtering method on the surface of the substrate, and then an opening 16 is provided using a well-known photolithography technique to form an ion permeation preventive mask 15. The opening 16 has a shape similar to the planar shape of the lens to be obtained, such as a circle or a line, and is sufficiently smaller than the lens diameter.

次に第3図および第4図に示すように、基板ガラスの屈
折率を増大させるイオン例えばTlイオンを含む高温に保
持された溶融塩17中に、基板11のマスク面側を浸漬し、
自然拡散(第3図)または基板両面間に電界を印加する
電界印加拡散(第4図)で、溶融塩中の前記イオンをマ
スク開口部16を通して、ガラス中のイオンとの交換によ
り基板内に拡散させる。
Next, as shown in FIG. 3 and FIG. 4, the mask surface side of the substrate 11 is dipped in a molten salt 17 that is held at a high temperature and contains ions that increase the refractive index of the substrate glass, for example, Tl ions,
By natural diffusion (Fig. 3) or electric field application diffusion (Fig. 4) that applies an electric field between both sides of the substrate, the ions in the molten salt pass through the mask opening 16 and are exchanged with the ions in the glass to enter the substrate. Spread.

上記のイオン拡散処理により、第5図に示すようにガラ
ス中に拡散侵入したイオンの濃度分布に応じた屈折率勾
配をもつ断面が略半円形のレンズ12が基板11内に形成さ
れる。
By the above ion diffusion treatment, a lens 12 having a substantially semicircular cross section having a refractive index gradient according to the concentration distribution of ions diffused and penetrated into the glass is formed in the substrate 11 as shown in FIG.

次いで基板11を溶融塩浴から取り出し洗浄するととも
に、マスク15をエッチング除去した後、フォトリソグラ
フィー技術を用いてレンズ部12以外の基板面を遮光層13
で被覆する。
Next, the substrate 11 is taken out of the molten salt bath and washed, and the mask 15 is removed by etching. Then, the substrate surface other than the lens portion 12 is covered with the light shielding layer 13 by using a photolithography technique.
Cover with.

例えば、CrあるいはTiを高周波スパッタ法により0.2μ
m程度の膜厚で基板面に付着させた後、フォトリソグラ
フィーの技術を用いてレンズ部12に対してマスクアライ
メント装置により高精度の位置合せを行ない、露光・現
象後、レンズ部12とほぼ同一大きさの開口部17を設けて
残部を遮光層13とする。
For example, 0.2μ of Cr or Ti by high frequency sputtering method
After adhering to the substrate surface with a film thickness of about m, the lens part 12 is aligned with a mask alignment device with high precision using the photolithography technique, and after exposure / phenomenon, it is almost the same as the lens part 12. An opening 17 having a size is provided and the rest is used as the light shielding layer 13.

次に、遮光層13のある部分ではこの遮光層13に積層し
て、またレンズ部12では基板面に接して透明被膜14を被
覆する。この透明被膜18は、例えばシリコン樹脂をスピ
ンコートにより膜厚が10μm程度になるように塗布して
形成する。
Next, a portion of the light-shielding layer 13 is laminated on the light-shielding layer 13, and the lens portion 12 is covered with the transparent coating 14 in contact with the substrate surface. The transparent film 18 is formed by applying, for example, silicon resin by spin coating so that the film thickness is about 10 μm.

以下に具体的数値例を示す。Specific numerical examples are shown below.

実 施 例 厚み5mmのソーダライムガラス基板の面を、直径0.1mmの
円形開口を設けたマスク膜で被覆し、Tl2SO4:ZnSO4=6
0:40モル%の混合溶融塩中に490℃で約120時間浸漬して
イオン交換を行なった後マスクを除去すると、基板内に
は基板面上での口径が約200μmの屈折率勾配型レンズ
が形成されていた。
Example: The surface of a soda-lime glass substrate with a thickness of 5 mm is covered with a mask film with a circular opening with a diameter of 0.1 mm, and Tl 2 SO 4 : ZnSO 4 = 6
When the mask is removed after immersion in 0:40 mol% mixed molten salt at 490 ° C for about 120 hours and ion exchange, the gradient index lens with a diameter of about 200 μm on the substrate surface Had been formed.

上記レンズの焦点距離を測定したところ310μmであっ
た。
The focal length of the above lens was measured and found to be 310 μm.

次に基板面上のレンズ面に、屈折率が1.40の市販のシリ
コン樹脂(信越化学株式会社製KR112)をスピンコート
法で2000rpm,60秒間の条件で塗布して膜厚10μmの透明
被膜を設けた後焦点距離を測定したところ560μmであ
り、上記樹脂膜を設ける前の焦点距離310μmから大き
く変化しており、所望のレンズ焦点距離をほぼ満足して
いることを確認した。
Next, a commercially available silicone resin with a refractive index of 1.40 (KR112 manufactured by Shin-Etsu Chemical Co., Ltd.) was applied to the lens surface on the substrate surface by spin coating at 2000 rpm for 60 seconds to form a transparent film with a thickness of 10 μm. After that, the focal length was measured to be 560 μm, which was largely different from the focal length before the resin film was provided of 310 μm, and it was confirmed that the desired lens focal length was almost satisfied.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す断面図、第2図ないし
第6図は本発明の平板マイクロレンズを製造する方法の
一例を示し、第2図は基板にイオン透過防止マスクを形
成した状態を示す断面図、第3図は自然拡散によるイオ
ン交換処理を示す断面図、第4図は電界印加イオン交換
処理を示す断面図、第5図はイオン交換処理によって屈
折率勾配レンズが形成された状態を示す断面図、第6図
は上記の基板に遮光層および透明被膜を設けた状態を示
す断面図である。 10……平板マイクロレンズ、11……基板 12……屈折率勾配レンズ、12A……レンズ面 13……遮光層、14……透明被膜 15……マスク、16……開口部、17……溶融塩
FIG. 1 is a sectional view showing an embodiment of the present invention, FIGS. 2 to 6 show an example of a method for manufacturing a flat plate microlens of the present invention, and FIG. 2 is a substrate on which an ion permeation preventive mask is formed. FIG. 3 is a sectional view showing an ion exchange treatment by natural diffusion, FIG. 4 is a sectional view showing an electric field application ion exchange treatment, and FIG. 5 is a refractive index gradient lens formed by the ion exchange treatment. FIG. 6 is a cross-sectional view showing the formed state, and FIG. 6 is a cross-sectional view showing the state in which a light shielding layer and a transparent coating are provided on the above substrate. 10 …… Flat microlens, 11 …… Substrate 12 …… Gradient index lens, 12A …… Lens surface 13 …… Light blocking layer, 14 …… Transparent coating 15 …… Mask, 16 …… Opening, 17 …… Melting salt

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ガラス基板の一方の面に、イオン交換法に
よりその断面が略半円形でありその屈折率が該半円形の
中心において最大で中心から離れるにしたがって屈折率
の漸減する屈折率分布をもつ領域からなるレンズ部を、
埋め込み形成した平板マイクロレンズにおいて、 前記レンズ部形成面側の前記レンズ部以外の前記基板面
にのみ遮光槽を設けるとともに、さらに前記レンズ部形
成面側の前記基板面に、前記レンズの焦点距離を調整し
かつ前記レンズ面を保護するための透明皮膜を、前記レ
ンズ部ではレンズ面に接して他の部分では前記遮光層上
に積層して設け、かつ前記皮膜の表面は平滑であること
を特徴とする平板マイクロレンズ。
1. A refractive index distribution in which the cross section is substantially semicircular on one surface of a glass substrate by an ion exchange method, and the refractive index is maximum at the center of the semicircle and gradually decreases as the distance from the center increases. The lens part consisting of the area with
In the embedded flat plate microlens, a light shielding tank is provided only on the substrate surface other than the lens portion on the lens portion forming surface side, and the focal length of the lens is further provided on the substrate surface on the lens portion forming surface side. A transparent coating for adjusting and protecting the lens surface is provided in contact with the lens surface in the lens portion and laminated on the light shielding layer in the other portion, and the surface of the coating is smooth. A flat plate micro lens.
JP61193086A 1986-08-19 1986-08-19 Flat micro lens Expired - Lifetime JPH0723922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61193086A JPH0723922B2 (en) 1986-08-19 1986-08-19 Flat micro lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61193086A JPH0723922B2 (en) 1986-08-19 1986-08-19 Flat micro lens

Publications (2)

Publication Number Publication Date
JPS6348501A JPS6348501A (en) 1988-03-01
JPH0723922B2 true JPH0723922B2 (en) 1995-03-15

Family

ID=16301993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61193086A Expired - Lifetime JPH0723922B2 (en) 1986-08-19 1986-08-19 Flat micro lens

Country Status (1)

Country Link
JP (1) JPH0723922B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3035851B2 (en) * 1988-08-02 2000-04-24 オムロン株式会社 Optical device
KR100924230B1 (en) 2007-06-21 2009-11-02 성균관대학교산학협력단 Focal length adjustable transparent lens using electro-active ion-exchange actuator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518669A (en) * 1978-07-28 1980-02-08 Canon Inc Optical device for imaging
JPS60123801A (en) * 1983-12-09 1985-07-02 Canon Inc Flat plate microlens

Also Published As

Publication number Publication date
JPS6348501A (en) 1988-03-01

Similar Documents

Publication Publication Date Title
US7113336B2 (en) Microlens including wire-grid polarizer and methods of manufacture
AU604173B2 (en) Method of making integrated optical component
US5062688A (en) Flat plate optical element and method for preparing the same
KR100541027B1 (en) Image sensor, fabrication method of an image sensor and mold for fabricating a micro condenser element array used in the same
JPH0723922B2 (en) Flat micro lens
US11313997B2 (en) Optical elements having gradient optical properties
JP4107800B2 (en) Manufacturing method of flat lens
JPH05150103A (en) Production of aspherical microlens array
JPS6146408B2 (en)
JPS61284702A (en) Flat plate microlens and its production
JPS58167453A (en) Preparation of material wherein cylindrical lenses are arranged
JP2922947B2 (en) Liquid crystal display device
JPH07104106A (en) Production of aspherical microlens array
JP3173110B2 (en) Method for manufacturing optical element by ion diffusion
JPS58167452A (en) Preparation of material wherein very small lenses are arranged
JP3243826B2 (en) Method for manufacturing optical element by ion replacement
JPH0792521B2 (en) Flat optical element and manufacturing method thereof
JPH07134202A (en) Microlens array and its production
JPS59101881A (en) Manufacture of lens-loaded optical communication diode
JPS616154A (en) Production of flat plate microlens
JPS6283335A (en) Production of microlens array
JPS61208276A (en) Light-receiving element and manufacture thereof
JPH0517522B2 (en)
JPH05254891A (en) Ion exchange treating method
JP3271312B2 (en) Cylindrical flat plate microlens and method of manufacturing the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term