JP3173110B2 - Method for manufacturing optical element by ion diffusion - Google Patents

Method for manufacturing optical element by ion diffusion

Info

Publication number
JP3173110B2
JP3173110B2 JP08527592A JP8527592A JP3173110B2 JP 3173110 B2 JP3173110 B2 JP 3173110B2 JP 08527592 A JP08527592 A JP 08527592A JP 8527592 A JP8527592 A JP 8527592A JP 3173110 B2 JP3173110 B2 JP 3173110B2
Authority
JP
Japan
Prior art keywords
optical element
ion diffusion
substrate
mask film
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08527592A
Other languages
Japanese (ja)
Other versions
JPH05286740A (en
Inventor
浩之 根本
寿雄 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP08527592A priority Critical patent/JP3173110B2/en
Publication of JPH05286740A publication Critical patent/JPH05286740A/en
Application granted granted Critical
Publication of JP3173110B2 publication Critical patent/JP3173110B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ガラス基板中にレンズ
アレイ、光導波路等の光学素子をイオン拡散で形成する
方法の改良に関し、特に基板の厚みが薄い場合の変形を
防止する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a method for forming optical elements such as a lens array and an optical waveguide in a glass substrate by ion diffusion, and more particularly to a technique for preventing deformation when a substrate is thin.

【0002】[0002]

【従来の技術】ガラス基板の片面側に、周囲よりも屈折
率の大な領域からなる略半球あるいは略半円柱状をなし
た微小なレンズを多数形成した平板マイクロレンズは、
通常の球面レンズでは製作が不可能であるような極めて
多数、かつ高集積度のレンズアレイ体が得られるので、
光学分野で広範な用途が期待されている。
2. Description of the Related Art A flat microlens formed on a single side of a glass substrate by forming a large number of minute lenses in a substantially hemispherical or substantially semi-cylindrical shape formed of a region having a refractive index larger than that of the surroundings,
Since an extremely large number and a highly integrated lens array body that cannot be manufactured with a normal spherical lens can be obtained,
Extensive applications are expected in the optical field.

【0003】上記のような平板マイクロレンズを製作す
る方法としては、ガラス基板の両表面を金属膜等からな
るイオン拡散防止マスク膜で被覆し、ガラス基板のレン
ズ形成面のマスク膜部分に、所定のレンズアレイパター
ンで開口を設け、このマスク膜被覆基板を、ガラス中の
一価陽イオンと置換してガラスの屈折率を高める一価の
陽イオンを含む溶融塩中に浸漬し、マスク膜の開口を通
してガラス中のイオンと溶融塩中のイオンとを交換させ
てレンズ部分を形成する、いわゆるイオン交換法が好適
である。上記の方法は、マスク膜開口の形状を変えるこ
とにより、レンズアレイ以外にも光導波路など種々の光
学素子の形成に適用することができる。
[0003] As a method of manufacturing the above-mentioned flat plate microlens, both surfaces of a glass substrate are covered with an ion diffusion preventing mask film made of a metal film or the like, and a predetermined portion of the mask film portion on the lens forming surface of the glass substrate is coated. An opening is provided in the lens array pattern of the above, and the mask film-coated substrate is immersed in a molten salt containing a monovalent cation that increases the refractive index of the glass by substituting the monovalent cation in the glass to form a mask film. A so-called ion exchange method in which ions in the glass and ions in the molten salt are exchanged through the opening to form a lens portion is preferable. The above method can be applied to formation of various optical elements such as optical waveguides other than the lens array by changing the shape of the mask film opening.

【0004】しかしながら、ガラス基板の片面側のみに
上記イオン置換を行った場合、基板の両面間で応力歪、
ガラス物性に差異を生じ、これに起因して特に基板の厚
みが薄い場合に基板ガラスが大きく反り変形してしまう
という問題があった。
However, when the above-mentioned ion replacement is performed only on one side of the glass substrate, stress distortion,
There is a problem in that a difference occurs in the glass properties, and as a result, the substrate glass is greatly warped and deformed particularly when the thickness of the substrate is small.

【0005】この問題を解決する有効な方法として、光
学素子形成面と対向する裏面側はマスク膜を施さずにガ
ラス表面を露出させたままとして両面側から同時にイオ
ン拡散処理を行うことにより、基板裏面に一様深さのイ
オン拡散層を形成し、この面で発生する応力歪によって
光学素子形成面側の応力歪を相殺する方法が提案されて
いる。
As an effective method for solving this problem, the back surface opposite to the surface on which the optical element is formed is not subjected to a mask film and the surface of the glass is left exposed, and the ion diffusion treatment is performed simultaneously from both surfaces, so that the substrate is exposed. A method has been proposed in which an ion diffusion layer having a uniform depth is formed on the back surface, and the stress strain on the optical element forming surface side is offset by the stress strain generated on this surface.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述し
た改良方法でも、光学素子形成領域外はイオン拡散が無
く、光学素子自体が小さくなるほど裏面側の一様拡散層
による応力歪の方が優勢となり、光学素子形成側の面が
凹となる変形を生じてしまうという問題が残されてい
る。
However, even in the above-mentioned improved method, there is no ion diffusion outside the optical element forming region, and as the optical element itself becomes smaller, the stress strain due to the uniform diffusion layer on the back side becomes more dominant. There remains a problem that the surface on the optical element forming side is deformed to be concave.

【0007】[0007]

【課題を解決するための手段】光学素子形成側の面のう
ち、光学素子形成領域外の周辺部に非マスキング領域を
設けて、基板両面から同時にイオン拡散処理する。この
非マスキング領域は、例えば1つの基板に多数の光学素
子ユニットを形成して後に切断分割する際の切り線入れ
部分など、製品性能、品質に影響しない部分に設けてお
けばよい。
A non-masking region is provided in a peripheral portion of the surface on the optical element forming side outside the optical element forming region, and ion diffusion processing is performed simultaneously from both surfaces of the substrate. The non-masking region may be provided in a portion that does not affect product performance and quality, such as a cut line portion when a large number of optical element units are formed on one substrate and cut and divided later.

【0008】[0008]

【作用】上記方法によれば、光学素子形成領域外の周辺
部で裏面側と同等の一様なイオン拡散を生じるので、光
学素子がかなり小さい場合であっても、この領域を囲む
部分で基板表裏両面での応力歪が均衡し、従って光学素
子形成領域内の反り変形を非常に小さく抑えることがで
きる。
According to the above-mentioned method, uniform ion diffusion is generated at the peripheral portion outside the optical element forming region and equivalent to that at the back surface side. The stress-strain on both the front and back surfaces is balanced, so that the warpage deformation in the optical element forming region can be suppressed very small.

【0009】[0009]

【実施例】以下本発明を図面に示した実施例に基づき、
詳細に説明する。図1に示すように、平行平面に仕上げ
たガラス基板1の片面側を金属薄膜からなるイオン透過
防止用マスク膜3で被覆し、このマスク膜3に周知のフ
ォトリソグラフィ技術を用いて所定の光学素子、例えば
レンズアレイのパターンで開口部4を設ける。このと
き、マスク膜3は基板の全表面ではなく、周辺に一定幅
の領域11を残して施す。すなわち、光学素子形成領域
10外に非マスキング領域11を設けておく。また基板
1の裏面側はマスク膜を施さずにおく。
BRIEF DESCRIPTION OF THE DRAWINGS FIG.
This will be described in detail. As shown in FIG. 1, one side of a glass substrate 1 finished in a parallel plane is covered with a mask film 3 made of a metal thin film for preventing ion permeation, and a predetermined optical film is formed on the mask film 3 by using a well-known photolithography technique. The openings 4 are provided in a pattern of elements, for example, a lens array. At this time, the mask film 3 is applied not to the entire surface of the substrate but to leave a region 11 having a constant width in the periphery. That is, the non-masking region 11 is provided outside the optical element formation region 10. Also, the back side of the substrate 1 is left without a mask film.

【0010】上記のマスク膜付き基板1を、図2に示す
ように高温に保持された溶融塩5中に浸漬してイオン拡
散処理する。一例として、300mm角で厚み2mmの
ソーダライムガラス基板の片面を金属薄膜からなるマス
ク膜で被覆し、このマスク膜にレンズアレイ形成のため
に口径70μmの開口4を多数配列形成した。このと
き、上記マスク膜の周囲に幅20mmで非マスキング領
域11を残した。上記ガラス基板を、ガラスの粘弾性温
度に保持された溶融塩中に150時間浸漬した。
The above-mentioned substrate 1 with a mask film is immersed in a molten salt 5 maintained at a high temperature as shown in FIG. As an example, one side of a 300 mm square soda lime glass substrate having a thickness of 2 mm was covered with a mask film made of a metal thin film, and a large number of openings 4 having a diameter of 70 μm were formed on the mask film to form a lens array. At this time, a non-masking region 11 having a width of 20 mm was left around the mask film. The glass substrate was immersed in a molten salt maintained at the viscoelastic temperature of glass for 150 hours.

【0011】上記イオン拡散処理を行った後のガラス基
板の状態を図3に断面で示す。ガラス基板1の一方の面
1Aでは、マスク膜の開口4部分のイオン拡散でレンズ
2が形成されるが、この部分のイオン拡散量は小さい。
一方、非マスキング領域11ではレンズ2の部分に比べ
て充分大な幅で一様深さのイオン拡散層12が形成さ
れ、この領域では裏面全面のイオン拡散層13と等量で
ある。よって、この領域で基板両面での応力歪が均衡
し、非マスキング領域11を設けない場合の該領域での
両面不均衡に起因する反り変形が改善される。
FIG. 3 is a cross-sectional view showing the state of the glass substrate after the above-described ion diffusion treatment. On one surface 1A of the glass substrate 1, the lens 2 is formed by ion diffusion in the opening 4 of the mask film, but the amount of ion diffusion in this portion is small.
On the other hand, in the non-masking region 11, an ion diffusion layer 12 having a sufficiently large width and a uniform depth as compared with the lens 2 is formed. In this region, the ion diffusion layer 13 has the same amount as the ion diffusion layer 13 on the entire back surface. Therefore, in this region, the stress-strain on both surfaces of the substrate is balanced, and the warpage deformation due to the imbalance on both surfaces in the region where the non-masking region 11 is not provided is improved.

【0012】前記数値例で、イオン交換処理の後、基板
ガラスの反り変形量を測定したところ、中央と周縁との
高低差は最大でも50μm以下であり、実用上問題がな
いことが確認された。
In the above numerical examples, when the amount of warpage of the substrate glass was measured after the ion exchange treatment, the height difference between the center and the periphery was at most 50 μm or less, and it was confirmed that there was no practical problem. .

【0013】[0013]

【発明の効果】本発明によれば、従来不可能であったガ
ラス基板の大面積化、及び薄板化が実現でき、量産時に
大幅なコストダウンが可能となる。
According to the present invention, it is possible to realize a glass substrate having a large area and a thin plate, which were not possible in the past, and it is possible to greatly reduce costs during mass production.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における基板のマスキング状態を示す平
面図
FIG. 1 is a plan view showing a masking state of a substrate according to the present invention.

【図2】図1の基板を溶融塩中に浸漬してイオン拡散処
理を行う工程を示す断面図
FIG. 2 is a cross-sectional view showing a step of immersing the substrate of FIG. 1 in a molten salt to perform an ion diffusion process.

【図3】図2の処理によるガラス基板中へのイオン拡散
状態を示す断面図
FIG. 3 is a sectional view showing a state of ion diffusion into a glass substrate by the processing of FIG. 2;

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 レンズ(光学素子) 3 イオン透過防止用マスク膜 4 開口 5 溶融塩 11 非マスキング領域 12、13 イオン拡散層 Reference Signs List 1 glass substrate 2 lens (optical element) 3 mask film for preventing ion permeation 4 opening 5 molten salt 11 non-masking region 12, 13 ion diffusion layer

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C03C 21/00 G02B 3/00 G02B 6/13 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C03C 21/00 G02B 3/00 G02B 6/13

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ガラス基板の表面を所定の光学素子パタ
ーンで開口を設けたマスク膜により被覆してイオン拡散
処理を行う光学素子の製造方法において、前記基板面の
うち光学素子形成領域外の周辺部に非マスキング領域を
設け、一方、光学素子形成面と対向する裏面側はマスク
膜を施さずにガラス表面を露出させたままとし、該ガラ
ス基板の両面側から同時にイオン拡散処理を行うことを
特徴とするイオン拡散による光学素子の製造方法。
1. A method of manufacturing an optical element for performing an ion diffusion process by covering a surface of a glass substrate with a mask film provided with an opening with a predetermined optical element pattern, wherein the periphery of the substrate surface outside an optical element forming region is provided. A non-masking region is provided in the portion, while the back surface side opposite to the optical element forming surface is exposed to the glass surface without applying a mask film, and ion diffusion treatment is performed simultaneously from both sides of the glass substrate. A characteristic method for producing an optical element by ion diffusion.
JP08527592A 1992-04-07 1992-04-07 Method for manufacturing optical element by ion diffusion Expired - Fee Related JP3173110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08527592A JP3173110B2 (en) 1992-04-07 1992-04-07 Method for manufacturing optical element by ion diffusion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08527592A JP3173110B2 (en) 1992-04-07 1992-04-07 Method for manufacturing optical element by ion diffusion

Publications (2)

Publication Number Publication Date
JPH05286740A JPH05286740A (en) 1993-11-02
JP3173110B2 true JP3173110B2 (en) 2001-06-04

Family

ID=13854018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08527592A Expired - Fee Related JP3173110B2 (en) 1992-04-07 1992-04-07 Method for manufacturing optical element by ion diffusion

Country Status (1)

Country Link
JP (1) JP3173110B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4205212B2 (en) * 1998-07-27 2009-01-07 パナソニック株式会社 Optical element and optical head
JP6172667B2 (en) * 2013-08-08 2017-08-02 国立大学法人東京工業大学 Method for producing double-sided chemically strengthened glass

Also Published As

Publication number Publication date
JPH05286740A (en) 1993-11-02

Similar Documents

Publication Publication Date Title
US5160523A (en) Method of producing optical waveguides by an ion exchange technique on a glass substrate
US6753064B1 (en) Multi-layered coated substrate and method of production thereof
US4844724A (en) Method of adjusting refractive index distribution lenses
JPS63301901A (en) Distributed index type optical element and its production
US5062688A (en) Flat plate optical element and method for preparing the same
US5876642A (en) Process for making a mold for the manufacture of microlenses
JP3173110B2 (en) Method for manufacturing optical element by ion diffusion
JP3243826B2 (en) Method for manufacturing optical element by ion replacement
JPS63153501A (en) Lens array plate and its production
JPS6146408B2 (en)
US3900249A (en) Soft-focus optical element
CN110627377A (en) Curved surface strengthened glass and preparation method thereof
JPS60235102A (en) Transmission type light scattering element
JPH0723922B2 (en) Flat micro lens
JPH0792521B2 (en) Flat optical element and manufacturing method thereof
JPH0555041B2 (en)
JP3344009B2 (en) Method for correcting deformation of flat optical element substrate
JPS616154A (en) Production of flat plate microlens
TW202000616A (en) Curved tempered glass and method of manufacturing the same
JPH04240134A (en) Production of distributed index lens
JPS6066210A (en) Production of optical waveguide
JPS6283335A (en) Production of microlens array
JPH11248905A (en) Production of planar microlens array
JPS60215552A (en) Production of plate microlens
JPS61261239A (en) Production of refractive index distribution type planar lens

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees