JPH0555041B2 - - Google Patents

Info

Publication number
JPH0555041B2
JPH0555041B2 JP61180589A JP18058986A JPH0555041B2 JP H0555041 B2 JPH0555041 B2 JP H0555041B2 JP 61180589 A JP61180589 A JP 61180589A JP 18058986 A JP18058986 A JP 18058986A JP H0555041 B2 JPH0555041 B2 JP H0555041B2
Authority
JP
Japan
Prior art keywords
substrate
ions
openings
ion exchange
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61180589A
Other languages
Japanese (ja)
Other versions
JPS6336202A (en
Inventor
Eiji Okuda
Hiroshi Wada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP61180589A priority Critical patent/JPS6336202A/en
Publication of JPS6336202A publication Critical patent/JPS6336202A/en
Publication of JPH0555041B2 publication Critical patent/JPH0555041B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は基板内に光導波路、マイクロレンズ等
の光学素子をイオン交換で一体に形成する技術に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a technique for integrally forming optical elements such as optical waveguides and microlenses within a substrate by ion exchange.

〔従来の技術〕[Conventional technology]

表面が平担なガラス基板の面を、光導波路、レ
ンズ等所望の光学素子の平面パターンで開口を設
けたマスク材で被覆し、このマスク材の開口を通
してTl,Cs,Li,Agなど基板ガラス組成とはイ
オン半径の異なる基板の屈折率に変化を与えるイ
オンを、ガラス中のイオンとの交換で内部拡散さ
せ、拡散イオンの濃度分布に基づく屈折率分布を
もつ光学素子を基板内に一体的に形成する方法が
知られている。
The surface of a glass substrate with a flat surface is covered with a mask material having openings in a planar pattern of desired optical elements such as optical waveguides and lenses, and the substrate glass such as Tl, Cs, Li, Ag, etc. is passed through the openings of this mask material. Composition means that ions that change the refractive index of the substrate with different ionic radii are internally diffused through exchange with ions in the glass, and an optical element with a refractive index distribution based on the concentration distribution of the diffused ions is integrated within the substrate. There are known methods of forming

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の従来方法では、開口を設けたマスク材は
光学素子を設けるべき基板面側にのみ配し、裏面
側は全面露出させておくか又は全面をマスク材で
覆つている。
In the above-mentioned conventional method, the mask material provided with the opening is placed only on the side of the substrate where the optical element is to be provided, and the back side is either entirely exposed or covered entirely with the mask material.

この結果基板材組成のイオンとはイオン半径の
異なるイオンが、基板表面側ではマスク開口部分
のみ侵入するので周囲イオンとの間に基板面に平
行な面内で膨張あるいは収縮の歪を生じ、一方裏
面側は基板全面にわたり上記外部イオンが一様に
侵入するか又は全く侵入しないので上記の歪は無
く、このためイオンの侵入領域が両表面で異なる
部分では基板の表面側と裏面側との間に歪差を生
じる。
As a result, ions with a different ionic radius from the ions of the substrate material composition enter only the mask opening on the substrate surface side, causing expansion or contraction distortion between them and the surrounding ions in a plane parallel to the substrate surface. On the back side, the above-mentioned external ions penetrate uniformly over the entire surface of the substrate, or do not penetrate at all, so there is no distortion as described above. Therefore, in the part where the ion penetration area is different on both surfaces, there is a gap between the front side and the back side of the substrate. This causes a distortion difference.

そして上記の表裏面間での歪差に基づく応力で
基板に反り等の変形を生じ、素子の光学特性が悪
化するという問題があつた。また光導波路の場合
は、隣接する導波路端が一直線上に並ばなくなる
ため光フアイバとの接続作業が困難になるという
問題もあつた。
Then, there is a problem that the stress caused by the strain difference between the front and back surfaces causes deformation such as warping in the substrate, deteriorating the optical characteristics of the device. In the case of optical waveguides, there is also a problem in that adjacent waveguide ends are no longer aligned in a straight line, making it difficult to connect them to optical fibers.

〔問題点を解決する手段〕[Means to solve problems]

基板の、光学素子を形成しようとする面(表
面)とは反対側の面(裏面)も、表面側とほぼ同
一パターンの開口ももつマスク材で被覆し、この
開口を通して表面側と同時にイオン交換を行なう
ようにした。
The surface (back surface) opposite to the surface on which the optical element is to be formed (front surface) of the substrate is also covered with a mask material that also has openings with almost the same pattern as the front surface side, and ion exchange is performed simultaneously on the front surface through this opening. I decided to do this.

〔作用〕[Effect]

基板の表裏両面側においてそれぞれほぼ同等の
且つほぼ同一領域で歪を生じるので、両者の歪が
互いに相殺されて両者間に従来のような局部応力
の発生が無くなり、イオン交換処理時における基
板の反り等の変形が防止できる。
Since strain occurs in approximately the same area on both the front and back sides of the substrate, the strains on both sides cancel each other out, eliminating the generation of local stress between them as in the past, and preventing warpage of the substrate during ion exchange treatment. This can prevent deformation such as

〔実施例〕〔Example〕

以下本発明を図面に示した実施例に基づいて詳
細に説明する。
The present invention will be described in detail below based on embodiments shown in the drawings.

第1図に示すように平板状の透明ガラス基板1
の両面1A,1Bをそれぞれイオン透過防止マス
ク材2A,2Bで被覆する。
As shown in FIG. 1, a flat transparent glass substrate 1
Both surfaces 1A and 1B of are coated with ion permeation prevention mask materials 2A and 2B, respectively.

このマスク材2A,2Bには所望の光学素子
(図示例ではマイクロレンズアレイ)の平面パタ
ーンで開口3A,3Bをそれぞれ設けるととも
に、両マスク材の開口3A,3Bの形状および位
置をほぼ同一としておく。
The mask materials 2A and 2B are respectively provided with openings 3A and 3B in a planar pattern of a desired optical element (in the illustrated example, a microlens array), and the shapes and positions of the openings 3A and 3B of both mask materials are made almost the same. .

マスク材2A,2Bは、例えば高周波スパツク
リング法で金属チタン膜を付着させた後、周知の
フオトリソグラフイ技術で所定のパターン開口を
形成することにより得られる。このとき表裏面に
設けたフオトレジストは両面露光機を用いて同時
に露光し、その後熱リン酸等によりエツチングし
てもよいし、また片面づつ露光、エツチングを行
なつてもよい。
The mask materials 2A and 2B are obtained by, for example, depositing a metallic titanium film using a high-frequency sputtering method, and then forming a predetermined pattern of openings using a well-known photolithography technique. At this time, the photoresists provided on the front and back surfaces may be exposed simultaneously using a double-sided exposure machine and then etched with hot phosphoric acid or the like, or exposure and etching may be performed on one side at a time.

次いで上記の両面にそれぞれパターン開口付き
マスクを施した基板1を、第2図に示すようにガ
ラス基板内に拡散させるべきイオンを含む溶融塩
5、例えば硝酸タリウム(TlNO3)中に一定時
間浸漬する。
Next, as shown in FIG. 2, the substrate 1 with patterned opening masks on both sides is immersed for a certain period of time in a molten salt 5, such as thallium nitrate (TlNO 3 ), containing ions to be diffused into the glass substrate. do.

これにより溶融塩5中のイオン6、例えばTl
イオンがマスク開口2A,2Bを通してガラス基
板1中のイオンとの交換によつて基板内に拡散侵
入し、マスク開口2A,2Bを中心とする断面略
半円状の領域に侵入イオン6の濃度分布に基づく
屈折率勾配部分7つまり所望の光学素子が形成さ
れる。
As a result, ions 6 in the molten salt 5, for example Tl
The ions diffuse into the substrate through exchange with ions in the glass substrate 1 through the mask openings 2A and 2B, and the concentration distribution of the intruding ions 6 occurs in a region with a substantially semicircular cross section centered around the mask openings 2A and 2B. A refractive index gradient portion 7 based on , that is, a desired optical element is formed.

このとき侵入イオン6のイオン半径が基板ガラ
ス1を構成するイオンと相違することに起因して
上記部分7と周辺基板部分との間に歪を生じる。
At this time, since the ionic radius of the invading ions 6 is different from that of the ions constituting the substrate glass 1, distortion occurs between the portion 7 and the peripheral substrate portion.

しかるに上記方法によれば、表裏両面でほぼ対
称の濃度勾配及び侵入領域をもつてイオン拡散が
行なわれるので、上記の歪が両面間で相殺され
て、両面間での歪差に基づく応力の発生が従来に
比べ大幅に減少し、イオン交換処理後に基板に反
り等の変形を生じることが無くなる。
However, according to the above method, ions are diffused with almost symmetrical concentration gradients and penetration regions on both the front and back surfaces, so the above-mentioned strain is canceled out between the two surfaces, and stress is generated due to the strain difference between the two surfaces. is significantly reduced compared to the conventional method, and deformation such as warping of the substrate does not occur after the ion exchange treatment.

図示例ではマスク開口3A,3Bとしてマイク
ロレンズアレイを製作するための円形としたが、
言うまでもなくマスク開口3A,3Bの形状は任
意であつてよく、光導波路等種々の平板型光学素
子の製造に適用できるものである。
In the illustrated example, the mask openings 3A and 3B are circular for manufacturing a microlens array, but
Needless to say, the mask openings 3A and 3B may have any shape, and can be applied to the manufacture of various flat optical elements such as optical waveguides.

〔発明の効果〕〔Effect of the invention〕

本発明によればイオン交換処理時の基板表裏面
間の不均等な膨張、収縮力に起因する反り等の変
形を防止することができ、光学特性の優れた光学
素子を安定して製造できるようになつた。
According to the present invention, it is possible to prevent uneven expansion between the front and back surfaces of the substrate during ion exchange treatment, warping and other deformations caused by contraction force, and it is possible to stably manufacture optical elements with excellent optical properties. It became.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例を示し、第1図は基板両
面に同等の開口パターンをもつマスクを施した状
態を示す断面図及び平面図、第2図は上記基板を
イオン交換処理する工程を示す断面図である。 1……基板、2A,2B……マスク材、3A,
3B……開口、5……溶融塩、6……イオン、7
……光学素子。
The figures show an embodiment of the present invention. Figure 1 is a cross-sectional view and a plan view showing a state in which masks with the same opening pattern are applied to both sides of the substrate, and Figure 2 shows the process of ion exchange treatment of the substrate. FIG. 1...Substrate, 2A, 2B...Mask material, 3A,
3B... Opening, 5... Molten salt, 6... Ion, 7
...Optical element.

Claims (1)

【特許請求の範囲】 1 基板の片面を、所定パターンの開口を設けた
マスク材で被覆し、前記開口部を通して基板内に
該基板の光学特性を変化させ得るイオンを交換拡
散させることにより、基板内の片面側に光学素子
を一体に形成する方法において、 前記基板の裏面側も、表面側とほぼ同一の開口
パターンをもつマスク材で被覆して該開口を通し
てイオン拡散を表面側と同時に行ない、これによ
りイオン交換で基板に生じる光学特性以外の物性
変化の偏りを相殺し、イオン交換処理の後裏面側
に形成された光学素子を含む基板層を除去するこ
とを特徴とするイオン交換による光学素子の製造
方法。
[Scope of Claims] 1. One side of the substrate is coated with a mask material provided with openings in a predetermined pattern, and ions that can change the optical properties of the substrate are exchanged and diffused into the substrate through the openings. In the method of integrally forming an optical element on one side of the substrate, the back side of the substrate is also covered with a mask material having almost the same opening pattern as the front side, and ions are diffused through the openings simultaneously with the front side. An optical element using ion exchange, which is characterized by canceling out bias in changes in physical properties other than optical properties that occur in the substrate due to ion exchange, and removing the substrate layer including the optical element formed on the back side after the ion exchange treatment. manufacturing method.
JP61180589A 1986-07-31 1986-07-31 Production of optical element based on ion exchange Granted JPS6336202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61180589A JPS6336202A (en) 1986-07-31 1986-07-31 Production of optical element based on ion exchange

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61180589A JPS6336202A (en) 1986-07-31 1986-07-31 Production of optical element based on ion exchange

Publications (2)

Publication Number Publication Date
JPS6336202A JPS6336202A (en) 1988-02-16
JPH0555041B2 true JPH0555041B2 (en) 1993-08-16

Family

ID=16085905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61180589A Granted JPS6336202A (en) 1986-07-31 1986-07-31 Production of optical element based on ion exchange

Country Status (1)

Country Link
JP (1) JPS6336202A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5753702A (en) * 1980-09-16 1982-03-30 Nippon Sheet Glass Co Ltd Lens body
JPS58198001A (en) * 1982-05-14 1983-11-17 Seiko Epson Corp Refractive index distributed type flat plate microlens array
JPS60208701A (en) * 1984-04-02 1985-10-21 Nippon Sheet Glass Co Ltd Method for producing plane plastic lens

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5753702A (en) * 1980-09-16 1982-03-30 Nippon Sheet Glass Co Ltd Lens body
JPS58198001A (en) * 1982-05-14 1983-11-17 Seiko Epson Corp Refractive index distributed type flat plate microlens array
JPS60208701A (en) * 1984-04-02 1985-10-21 Nippon Sheet Glass Co Ltd Method for producing plane plastic lens

Also Published As

Publication number Publication date
JPS6336202A (en) 1988-02-16

Similar Documents

Publication Publication Date Title
EP0467579B1 (en) Method of producing optical waveguides by an ion exchange technique on a glass substrate
AU604173B2 (en) Method of making integrated optical component
KR100248055B1 (en) Hybrid wave guide & its fabrication method
JPH02293351A (en) Production of light waveguide path and ion exchange mask used for it
US4983499A (en) Method of forming waveguide lens having refractive index distribution
US5062688A (en) Flat plate optical element and method for preparing the same
US5876642A (en) Process for making a mold for the manufacture of microlenses
JPH0555041B2 (en)
JP3173110B2 (en) Method for manufacturing optical element by ion diffusion
JPH0197907A (en) Production of optical waveguide circuit
JP3243826B2 (en) Method for manufacturing optical element by ion replacement
JPS6348501A (en) Flat plate microlens
JPS61261239A (en) Production of refractive index distribution type planar lens
JP3656789B2 (en) Mold manufacturing method
JPH0462644B2 (en)
JPH02244001A (en) Flat plate optical element and its production
JPS6066210A (en) Production of optical waveguide
JPH07270634A (en) Manufacture of optical waveguide and optical waveguide substrate
JPS6218559A (en) Mask for exposure
JP3344009B2 (en) Method for correcting deformation of flat optical element substrate
JPH02113209A (en) Manufacture of y-branch waveguide
JPS6397906A (en) Waveguide type optical filter
JPH11248905A (en) Production of planar microlens array
JPS62212605A (en) Production of optical waveguide
JPS616154A (en) Production of flat plate microlens

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees