JPH07238309A - Smelting reduction method for metal oxide - Google Patents

Smelting reduction method for metal oxide

Info

Publication number
JPH07238309A
JPH07238309A JP2959594A JP2959594A JPH07238309A JP H07238309 A JPH07238309 A JP H07238309A JP 2959594 A JP2959594 A JP 2959594A JP 2959594 A JP2959594 A JP 2959594A JP H07238309 A JPH07238309 A JP H07238309A
Authority
JP
Japan
Prior art keywords
magnesia
slag
period
smelting reduction
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2959594A
Other languages
Japanese (ja)
Other versions
JP2803558B2 (en
Inventor
Hideo Nakamura
英夫 中村
Yasuto Miyata
康人 宮田
Shigeru Inoue
茂 井上
Hideaki Mizukami
秀昭 水上
Atsushi Watanabe
敦 渡辺
Hisaki Kato
久樹 加藤
Haruyoshi Tanabe
治良 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP6029595A priority Critical patent/JP2803558B2/en
Publication of JPH07238309A publication Critical patent/JPH07238309A/en
Application granted granted Critical
Publication of JP2803558B2 publication Critical patent/JP2803558B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/10Making spongy iron or liquid steel, by direct processes in hearth-type furnaces
    • C21B13/105Rotary hearth-type furnaces

Abstract

PURPOSE:To provide a smelting reduction method of a metal oxide, by which the wear of a furnace refractory is restrained and the service life of the furnace refractory can be prolonged. CONSTITUTION:Magnesia-containing material is added to slag and the temp. of molten iron is raised and also, the magnesia content in the slag is made higher than the saturated solubility by 1-20%, i.e., the solid magnesia-containing material is in existence in the slag through temp.raising and slag-making period for executing the slag-making at the initial stage, and smelting reductio period for charging and reducing the metal oxide. At the time of keeping the magnesia content in the slag within the super saturation range, elution of the magnesia from the furnace refractory is restrained and the erosion of the furnace refractory caused by the elution of the magnesia is greatly reduced. Further, in the temp. raising and slag-making period, since a quickly meltable material such as magnesia clinker is added as the magnesia source, the magnesia content can be kept in the saturated condition even in the temp.raising and slag-making period, and the wear of the furnace refractory is further reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】本発明はニッケル鉱石やクロム鉱
石などの金属酸化物を溶融還元する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for smelting and reducing metal oxides such as nickel ore and chromium ore.

【0001】[0001]

【従来の技術】ニッケル鉱石やクロム鉱石などを溶融還
元する場合には、例えば、図1に示すような溶融還元炉
が使用されている。この図において、1はマグネシア系
耐火物がライニングされた溶融還元炉、2は上吹き酸素
ランス、3は攪拌ガスを吹き込むための底吹き羽口であ
り、10は溶湯、11は溶融スラグを示す。
2. Description of the Related Art In the case of smelting and reducing nickel ore or chrome ore, for example, a smelting reduction furnace as shown in FIG. 1 is used. In this figure, 1 is a smelting reduction furnace lined with magnesia refractory, 2 is a top blowing oxygen lance, 3 is a bottom blowing tuyere for blowing a stirring gas, 10 is a molten metal, and 11 is a molten slag. .

【0002】この炉を使用する操業においては、溶銑を
装入し、ランス2から酸素を吹き込み、底吹き羽口3か
ら攪拌ガスを吹き込みながら、溶銑中にニッケルやクロ
ムなどの鉱石、コークスなどの炭材、および石灰などの
造滓材を装入する。そして、溶銑中の炭素及び装入した
炭材によって鉱石を溶融還元し、溶湯10を生成させ
る。この際、生成したCOガスを炉内で燃焼(二次燃
焼)させ、熱の供給を効率的に行っている。
In the operation using this furnace, hot metal is charged, oxygen is blown from the lance 2, and a stirring gas is blown from the bottom blowing tuyere 3, while ores such as nickel and chromium, coke, etc. are introduced into the hot metal. Charge carbonaceous material and slag material such as lime. Then, the ore is melt-reduced by the carbon in the hot metal and the charged carbonaceous material to generate the molten metal 10. At this time, the generated CO gas is combusted (secondary combustion) in the furnace to efficiently supply heat.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記の溶融還
元技術においては、炉体耐火物の損耗が激しく、その損
耗がコスト面でも無視出来ないと言う問題がある。炉体
耐火物の損耗は、主に、炉体耐火物と溶融スラグとの界
面における溶融スラグの流動によって、炉体耐火物中の
マグネシアがスラグ中に溶解する現象、所謂溶損による
ものである。
However, in the above smelting reduction technique, there is a problem that the refractory body of the furnace body is heavily worn and the wear cannot be ignored in terms of cost. The wear of the furnace body refractory is mainly due to a phenomenon in which magnesia in the furnace body refractory melts in the slag due to the flow of the molten slag at the interface between the furnace body refractory and the molten slag, so-called melting loss. .

【0004】この際、炉体耐火物の溶損が激しい理由と
しては、溶融還元製錬の操業が転炉による一般の鋼の精
錬における操業に比べて溶銑装入から出鋼まで(1タッ
プ)の処理時間が長いために、炉体耐火物と溶融スラグ
の接触時間が長いこと、及び炉内でCOガスを二次燃焼
させるのでスラグの温度が溶湯の温度よりも高くなるこ
と等が挙げられる。更に、溶融還元製錬においては、多
量のスラグが生成するので、炉体耐火物と溶融スラグの
接触面積が広くなり、炉体耐火物の損耗度合が一層大き
くなる。
At this time, the reason why the melting loss of the refractory material of the furnace body is severe is that the operation of smelting reduction smelting is from the hot metal charging to the tapping (1 tap) compared to the operation in the general steel refining by the converter. The long contact time between the furnace refractory and the molten slag, and the fact that the temperature of the slag becomes higher than the temperature of the molten metal because CO gas is secondarily burned in the furnace. . Further, in the smelting reduction smelting, since a large amount of slag is generated, the contact area between the furnace body refractory material and the molten slag is increased, and the degree of wear of the furnace body refractory material is further increased.

【0005】本発明は、上記従来技術の問題点を解決
し、炉体耐火物の損耗を抑制することができる金属酸化
物の溶融還元方法を提供するものである。
The present invention provides a smelting reduction method for metal oxides, which solves the above-mentioned problems of the prior art and can suppress the wear of the refractory body of the furnace body.

【0006】[0006]

【課題を解決するための手段及び作用】上記の目的を達
成するために、本発明においては、溶銑を昇温させると
共に初期造滓を行なう昇温・造滓期(以下、単に昇温・
造滓期と言う)及び金属酸化物を装入して還元する溶融
還元期を通じて、前記各期におけるスラグ中のマグネシ
ア含有率がその期のスラグ中のマグネシアの飽和溶解度
よりも1%〜20%過剰になるように、マグネシア含有
物質を添加する。
In order to achieve the above object, in the present invention, in the temperature rising / smelting period (hereinafter, simply referred to as temperature rising
Through the slag reduction period) and the smelting reduction period in which a metal oxide is charged and reduced, the magnesia content in the slag in each period is 1% to 20% of the saturated solubility of magnesia in the slag in that period. The magnesia-containing substance is added so as to be in excess.

【0007】本発明においては、スラグ中に溶解してい
るマグネシアの含有率を、常に、飽和領域に維持する。
このため、スラグ中に多量のマグネシア含有物質を添加
し、スラグ中のマグネシア含有率が飽和溶解度を超える
範囲になるように、換言すれば、スラグ中に固体のマグ
ネシア含有物質が存在するようにする。このようにし
て、スラグ中のマグネシア含有率を、常時、過飽和領域
にしておくと、炉体耐火物からのマグネシアの溶出が抑
制され、マグネシアの溶出に起因する炉体耐火物の溶損
が大幅に緩和される。
In the present invention, the content ratio of magnesia dissolved in the slag is always maintained in the saturated region.
Therefore, a large amount of the magnesia-containing substance is added to the slag so that the magnesia content in the slag exceeds the saturation solubility, in other words, the solid magnesia-containing substance is present in the slag. . In this way, if the magnesia content in the slag is always in the supersaturated region, the elution of magnesia from the furnace refractory is suppressed, and the melting loss of the furnace refractory due to the magnesia elution is significantly reduced. Is alleviated.

【0008】本発明におけるスラグ中のマグネシア含有
率は、飽和溶解度よりも1%〜20%過剰の範囲に維持
されるが、この値を概念的に示せば、図2の斜線を付し
た範囲となる。すなわち、スラグ中のマグネシア含有率
は、ニッケル鉱石の精錬では31%〜50%(飽和溶解
度30%の場合)、クロム鉱石の精錬では18%〜37
%(飽和溶解度17%の場合)となる。なお、マグネシ
アの飽和溶解度はスラグ組成や温度によって変わるの
で、図2においては、本発明におけるスラグ中のマグネ
シア含有率の一例を示した。
The magnesia content in the slag according to the present invention is maintained in a range of 1% to 20% in excess of the saturated solubility, but if this value is conceptually shown, it is as shown by the hatched range in FIG. Become. That is, the magnesia content in slag is 31% to 50% in the case of refining nickel ore (when the saturation solubility is 30%), and 18% to 37 in the case of refining chromium ore.
% (When the saturation solubility is 17%). Since the saturated solubility of magnesia changes depending on the slag composition and temperature, FIG. 2 shows an example of the magnesia content in the slag according to the present invention.

【0009】スラグ中のマグネシア含有率が飽和溶解度
よりも20%以上高い状態になると、スラグ中に固体の
まま存在するマグネシア含有物質の量が多くなって(固
相率が高くなって)スラグの流動性が悪くなり、還元不
足やスロッピングなど操業上のトラブルが発生する。
又、そのマグネシア含有率が飽和溶解度に対し1%未満
になると、耐火物の溶損速度が急激に大きくなる。
When the magnesia content in the slag becomes 20% or more higher than the saturation solubility, the amount of the magnesia-containing substance remaining in the slag as a solid increases (the solid phase ratio increases). Flowability deteriorates, causing operational problems such as insufficient reduction and sloping.
When the magnesia content is less than 1% of the saturated solubility, the melting rate of the refractory material increases rapidly.

【0010】炉体耐火物の溶損を抑制するためには、金
属酸化物を溶融還元する前の段階である昇温・造滓期に
おいても、スラグ中のマグネシア含有率を飽和溶解度以
上にしなければならない。このため、溶銑の昇温開始
後、短時間の間に、スラグ中のマグネシア含有率を飽和
濃度まで上昇させなければならない。
In order to suppress the melting loss of the refractory material of the furnace body, the magnesia content in the slag must be equal to or higher than the saturation solubility even in the temperature rising / slagging stage which is a stage before the smelting reduction of the metal oxide. I have to. Therefore, the magnesia content in the slag must be increased to the saturation concentration within a short time after the start of the temperature rise of the hot metal.

【0011】そこで、各種マグネシア含有物質の溶解試
験を行なった。この溶解試験は、マグネシア含有物質を
添加した際に、マグネシアの飽和溶解度が33%になる
ように組成を調整したスラグに、マグネシア含有物質と
して、マグネシアクリンカー、マグネシアを主成分とす
るマグネシア煉瓦屑、軽焼マグネサイト、軽焼ドロマイ
ト、マグカーボン煉瓦屑、及びマグクロ煉瓦屑を個別に
添加し、それぞれのスラグ中のマグネシア含有率を25
%にした。次いで、これらのスラグをカーボンるつぼに
入れて1650℃で溶解させた。更に、マグネシアが飽
和状態に維持されるように、逐次マグネシア含有物質を
少量ずつ添加し、所定時間毎の溶解度を求めた。なお、
各マグネシア含有物質は直径10〜15mmに整粒したも
のを使用した。この試験の結果は図3に示す。
Therefore, dissolution tests of various magnesia-containing substances were conducted. In this dissolution test, when a magnesia-containing substance was added, a slag whose composition was adjusted so that the saturation solubility of magnesia was 33%, as a magnesia-containing substance, a magnesia clinker, magnesia brick scrap containing magnesia as a main component, Light burned magnesite, light burned dolomite, magcarbon brick scraps, and magcro brick scraps were added individually, and the magnesia content in each slag was set to 25
%. Then, these slags were put into a carbon crucible and melted at 1650 ° C. Further, the magnesia-containing substance was added little by little so that the magnesia was maintained in a saturated state, and the solubility was determined at predetermined time intervals. In addition,
Each magnesia-containing substance was used after being sized to a diameter of 10 to 15 mm. The results of this test are shown in FIG.

【0012】この図によれば、軽焼マグネサイト、マグ
ネシアクリンカー、マグネシア煉瓦屑、軽焼ドロマイト
は溶解速度が速く、短時間で飽和濃度又はその近傍に達
したが、マグカーボン煉瓦屑、マグクロ煉瓦屑は溶解速
度が遅く、飽和濃度に達するのに長時間を要することが
分かった。
According to this figure, light-burning magnesite, magnesia clinker, magnesia brick scraps, and light-burning dolomite reached a saturated concentration or its vicinity in a short period of time, but magcarbon bricks and magcro bricks It was found that the debris has a slow dissolution rate and it takes a long time to reach the saturated concentration.

【0013】従って、昇温・造滓期に添加するマグネシ
ア含有物質としては、マグネシアクリンカー、マグネシ
ア煉瓦屑、軽焼マグネサイト、及び軽焼ドロマイトのう
ちから選定されたものを使用するのがよい。これらのマ
グネシア含有物質の添加に際しては、上記マグネシア含
有物質群のうちの1種を単独で使用してもよく、又、2
種以上を使用してもよい。
Therefore, as the magnesia-containing substance to be added during the temperature raising / slagging period, it is preferable to use one selected from magnesia clinker, magnesia brick waste, light burned magnesite, and light burned dolomite. When adding these magnesia-containing substances, one of the above magnesia-containing substances may be used alone, or 2
More than one species may be used.

【0014】[0014]

【実施例】本発明の方法によってニッケル鉱石及びクロ
ム鉱石の溶融還元を実施した結果について説明する。
EXAMPLES The results of smelting reduction of nickel ore and chromium ore by the method of the present invention will be described.

【0015】まず、ニッケル鉱石についての実施例を説
明する。 (実施例1)図1と同様の構成で、マグカーボン煉瓦で
ライニングされた溶融還元炉1に、初期溶銑として脱硫
及び脱燐の予備処理がなされた溶銑60tを装入し、底
吹き羽口3から攪拌ガスとして窒素ガスを吹き込み、上
吹き酸素ランス2から酸素を吹き込んで溶銑を昇温させ
ると共に、初期造滓材を添加した。この昇温・造滓期
に、マグネシアクリンカーの粉砕品を添加し、この段階
で生成するスラグ中のマクネシア含有率が38%に維持
されるようにした。なお、この昇温・造滓期のスラグに
おけるマグネシアの飽和溶解度は、温度が1520℃の
場合、33%であった。
First, an example of nickel ore will be described. (Embodiment 1) With the same construction as that shown in FIG. 1, a molten reduction furnace 1 lined with magcarbon brick was charged with 60 t of hot metal which had been subjected to a pretreatment of desulfurization and dephosphorization as initial hot metal, and a bottom blown tuyere Nitrogen gas was blown as a stirring gas from No. 3, oxygen was blown from the top-blowing oxygen lance 2 to raise the temperature of the hot metal, and an initial slagging material was added. A crushed product of magnesia clinker was added during this temperature rising / slagging period so that the Mcnesia content rate in the slag produced at this stage was maintained at 38%. The saturation solubility of magnesia in the slag during the temperature rising / slagging period was 33% when the temperature was 1520 ° C.

【0016】溶銑の温度が1520℃まで上昇した段階
で、ニッケル鉱石(Ni含有率2%)を1.7〜1.8
t/min 、炭材としてコークスを0.7t/min の装入
速度で原料装入を行い、ニッケル鉱石を溶融還元させ
た。この原料装入に伴ってスラグ中のマグネシア含有率
が低下するので、原料と共にマグネシアクリンカー及び
マグカーボン煉瓦屑の粉砕品を添加し、スラグ中のマグ
ネシア含有率が38%に維持されるようにした。なお、
上記溶融還元期におけるスラグのマグネシア飽和溶解度
は33%であった。上述のような操業を5タップした
後、炉腹部における耐火物の損耗を調べたところ、平均
の損耗速度は0.06mm/時であり、極めて良好な結果
であった。
When the temperature of the hot metal rises to 1520 ° C., nickel ore (Ni content 2%) is added to 1.7 to 1.8.
The raw material was charged at a charging rate of t / min and coke as a carbon material of 0.7 t / min to smelt and reduce the nickel ore. Since the content of magnesia in the slag decreases with the charging of this raw material, a crushed product of magnesia clinker and magcarbon brick waste was added together with the raw material so that the magnesia content in the slag was maintained at 38%. . In addition,
The magnesia saturated solubility of the slag in the smelting reduction period was 33%. When the wear of the refractory material in the furnace abdomen was examined after 5 taps of the above-mentioned operation, the average wear rate was 0.06 mm / hour, which was a very good result.

【0017】上記実施例の昇温・造滓期及び溶融還元期
の各期の操業においては、昇温・造滓期には造滓材など
の装入量に基づいて生成スラグの組成を算定し、又、溶
融還元期には原料及び造滓材などの装入量に基づいて生
成スラグの組成を算定し、それぞれの期におけるスラグ
組成と操業管理温度に基づいてマグネシアの飽和溶解度
を求めた。そして、この飽和溶解度に操業上の余裕値を
加算してマグネシアの予定含有率を求め、このマグネシ
アの予定含有率に基づいてマグネシアクリンカー及びマ
グカーボン煉瓦屑の装入量を決定した。
In the operation in each of the temperature raising / slagging period and the smelting reduction period of the above-mentioned embodiment, the composition of the generated slag is calculated based on the charging amount of the slag material etc. in the temperature raising / slagging period. In addition, during the smelting reduction period, the composition of the generated slag was calculated based on the amounts of raw materials and slag material charged, and the saturated solubility of magnesia was calculated based on the slag composition and operation control temperature in each period. . Then, an operation margin value was added to the saturated solubility to obtain a planned content rate of magnesia, and the charging amounts of magnesia clinker and magcarbon brick waste were determined based on the planned content rate of magnesia.

【0018】そして、操業終了後に、定期的に試料採取
しておいたスラグ中のマグネシア含有率を分析し、その
分析値及び操業温度から、マグネシア含有率が飽和溶解
度以上になっていたことを確認した。又、採取したスラ
グの顕微鏡観察を行なった結果、固体マグネシアの微細
な粒子が存在していることも確認した。
After the operation was completed, the magnesia content rate in the slag sampled periodically was analyzed, and it was confirmed from the analysis value and the operation temperature that the magnesia content rate was equal to or higher than the saturated solubility. did. As a result of microscopic observation of the collected slag, it was confirmed that fine particles of solid magnesia were present.

【0019】上記実施例において、マグネシアクリンカ
ー及びマグカーボン煉瓦屑の装入量を決定する元となる
マグネシアの飽和溶解度は、次のようにして求めた。図
4はMgO−FeO−SiO2 の3元系状態図である。
この図において、例えば、FeOが10%、操業温度が
1520℃である場合、MgOが飽和するスラグの組成
はA点であって、A点におけるMgOは約33%とな
る。そして、このA点のMgO値を操業時におけるマグ
ネシアの飽和溶解度であるものとし、操業開始時のマグ
ネシアクリンカー及びマグカーボン煉瓦屑の装入量を算
定した。
In the above examples, the saturated solubility of magnesia, which is the basis for determining the charging amounts of magnesia clinker and magcarbon brick waste, was determined as follows. Figure 4 is a ternary phase diagram of the MgO-FeO-SiO 2.
In this figure, for example, when FeO is 10% and the operating temperature is 1520 ° C., the composition of the slag in which MgO is saturated is point A, and MgO at point A is about 33%. Then, assuming that the MgO value at point A is the saturated solubility of magnesia at the time of operation, the charging amount of magnesia clinker and magcarbon brick waste at the start of operation was calculated.

【0020】なお、スラグ中のマグネシア含有率を飽和
溶解度よりも過剰にするために、操業中にスラグ分析等
の測定を行い、この測定に基づいて逐次マグネシアクリ
ンカー及びマグカーボン煉瓦屑の装入量を調節すれば、
より精度の高い制御が可能になるが、マグネシアの予定
含有率とその飽和溶解度の差が大きい場合には、このよ
うな調節は必ずしも必要ではなく、所定量のマグネシア
クリンカー及びマグカーボン煉瓦屑を装入するだけで
も、マグネシア含有率が飽和溶解度を下回る状態になる
ことはない。
Incidentally, in order to make the magnesia content in the slag exceed the saturation solubility, measurements such as slag analysis are carried out during the operation, and based on this measurement, the charging amount of the magnesia clinker and the magcarbon brick waste is successively added. If you adjust
Although more precise control is possible, if the difference between the expected content of magnesia and its saturated solubility is large, such adjustment is not always necessary, and a predetermined amount of magnesia clinker and magcarbon brick waste are installed. Even if only added, the magnesia content does not fall below the saturated solubility.

【0021】(比較例1)実施例1と同じ溶融還元炉1
を使用し、原料装入も実施例1と同じ装入速度で行い、
ニッケル鉱石を溶融還元させた。但し、昇温・造滓期に
は、マグネシア含有物質の添加は行なわなかった。この
時点におけるスラグ中のマグネシア含有率は25%で、
飽和溶解度には達していなかった。そして、原料装入時
には、10〜15分毎に0.2tonの割合でマグカーボ
ン煉瓦屑の粉砕品を添加した。この溶融還元期における
スラグ中のマグネシア含有率は約27%であり、飽和溶
解度(33%)に達していなかった。この操業を5タッ
プした後、炉腹部における耐火物の損耗を調べたとこ
ろ、平均損耗速度は0.5mm/時であり、実施例の場合
の約8倍であった。
Comparative Example 1 The same smelting reduction furnace 1 as in Example 1
And the raw material is charged at the same charging rate as in Example 1,
The nickel ore was smelt-reduced. However, the magnesia-containing substance was not added during the temperature rising / slagging period. The magnesia content in the slag at this point was 25%,
Saturated solubility was not reached. Then, at the time of charging the raw material, a crushed product of magcarbon brick waste was added at a rate of 0.2 ton every 10 to 15 minutes. The magnesia content in the slag during this smelting reduction period was about 27%, which did not reach the saturated solubility (33%). After 5 taps of this operation, when the wear of the refractory material in the furnace abdomen was examined, the average wear rate was 0.5 mm / hour, which was about 8 times that in the example.

【0022】(比較例2)実施例1と同じ溶融還元炉1
を使用し、原料装入も実施例1と同じ装入速度で行い、
ニッケル鉱石を溶融還元させた。但し、昇温・造滓期に
は、マグネシア含有物質の添加は行なわなかった。造滓
終了時点におけるスラグ中のマグネシア含有率は25%
で、飽和溶解度(33%)には達していなかった。そし
て、原料装入時には、マグカーボン煉瓦屑の粉砕品を添
加し、スラグ中のマグネシア含有率が38%(飽和溶解
度は33%)になるようにした。
Comparative Example 2 The same smelting reduction furnace 1 as in Example 1
And the raw material is charged at the same charging rate as in Example 1,
The nickel ore was smelt-reduced. However, the magnesia-containing substance was not added during the temperature rising / slagging period. Magnesia content in slag at the end of slag is 25%
Therefore, the saturated solubility (33%) was not reached. Then, at the time of charging the raw materials, a crushed product of magcarbon brick scraps was added so that the magnesia content in the slag was 38% (saturation solubility was 33%).

【0023】この操業を5タップした後、炉腹部におけ
る耐火物の損耗を調べたところ、平均損耗速度は0.1
2mm/時であり、この値は比較例1の値よりも良好であ
ったが、実施例1の値に対しては2倍であった。
After 5 taps of this operation, when the wear of the refractory in the furnace abdomen was examined, the average wear rate was 0.1.
The value was 2 mm / hour, which was better than the value of Comparative Example 1, but was twice the value of Example 1.

【0024】次に、クロム鉱石の実施例について説明す
る。 (実施例2)図1と同様の構成で、マグカーボン煉瓦で
ライニングされた溶融還元炉1に、初期溶銑として脱硫
及び脱燐の予備処理がなされた溶銑90tを装入し、底
吹き羽口3から攪拌ガスとして窒素ガスを吹き込み、上
吹き酸素ランス2から酸素を吹き込んで溶銑を昇温させ
ると共に、初期造滓材を添加した。この昇温・造滓期
に、マグネシアクリンカーの粉砕品を添加し、この段階
で生成するスラグ中のマクネシア含有率が22%になる
ようにした。
Next, examples of chromium ore will be described. (Embodiment 2) With the same construction as that shown in FIG. 1, 90 t of hot metal which has been subjected to a pretreatment of desulfurization and dephosphorization as initial hot metal is charged into a smelting reduction furnace 1 lined with magcarbon brick, and a bottom-blown tuyere Nitrogen gas was blown as a stirring gas from No. 3, oxygen was blown from the top-blowing oxygen lance 2 to raise the temperature of the hot metal, and an initial slagging material was added. A crushed product of magnesia clinker was added during this temperature rising / slagging period so that the slag produced at this stage had a Mcnesia content of 22%.

【0025】なお、この昇温・造滓期におけるスラグの
マグネシア飽和溶解度は、温度が1630℃の場合、1
8%であった。溶銑温度が1630℃まで上昇した段階
で、クロム鉱石(Cr含有率30%)を0.6〜0.7
t/min 、炭材としてコークスを0.7t/min の装入
速度で原料装入を行った。この原料装入に伴ってマグネ
シア含有率が低下するので、マグネシアクリンカー及び
マグカーボン煉瓦屑の粉砕品を添加し、スラグ中のマグ
ネシア含有率が22%になるようにした。なお、このス
ラグにおけるマグネシアの飽和溶解度は18%であっ
た。
Incidentally, the magnesia saturated solubility of slag during this temperature rising / slagging period is 1 when the temperature is 1630 ° C.
It was 8%. When the hot metal temperature increased to 1630 ° C., the chromium ore (Cr content 30%) was added to 0.6 to 0.7.
The raw material was charged at a charging rate of t / min and coke as a carbon material of 0.7 t / min. Since the magnesia content decreases with the charging of this raw material, a crushed product of magnesia clinker and magcarbon brick waste was added so that the magnesia content in the slag was 22%. The saturated solubility of magnesia in this slag was 18%.

【0026】上述のような操業を5タップした後、炉腹
部における耐火物の損耗を調べたところ、平均の損耗速
度は0.16mm/時であり、この値はクロム鉱石を溶融
還元した際の結果としては、極めて良好な値であった。
After 5 taps of the above-mentioned operation, the wear of the refractory in the furnace abdomen was examined, and the average wear rate was 0.16 mm / hour. This value was obtained when the chromium ore was melt-reduced. As a result, the value was extremely good.

【0027】(比較例3)実施例2と同じ溶融還元炉1
を使用し、原料装入も実施例2と同じ装入速度で行い、
クロム鉱石を溶融還元させた。但し、昇温・造滓期に
は、マグネシア含有物質の添加は行なわなかった。この
時点におけるスラグ中のマグネシア含有率は16%で、
飽和溶解度(18%)には達していなかった。そして、
原料装入時には、10〜15分毎に0.2tonの割合で
マグカーボン煉瓦屑の粉砕品を添加した。この溶融還元
期におけるスラグ中のマグネシア含有率は約16%で、
飽和溶解度(18%)には達していなかった。この操業
を5タップした後、炉腹部における耐火物の損耗を調べ
たところ、平均損耗速度は1.2mm/時であり、実施例
2の場合の7.5倍であった。
Comparative Example 3 The same smelting reduction furnace 1 as in Example 2
And using the same charging rate as in Example 2,
Chromium ore was melt-reduced. However, the magnesia-containing substance was not added during the temperature rising / slagging period. The magnesia content in the slag at this point was 16%,
The saturated solubility (18%) was not reached. And
When charging the raw materials, a crushed product of magcarbon brick waste was added at a rate of 0.2 ton every 10 to 15 minutes. The magnesia content in the slag during this smelting reduction period was about 16%,
The saturated solubility (18%) was not reached. After 5 taps of this operation, when the wear of the refractory in the furnace abdominal part was examined, the average wear rate was 1.2 mm / hour, which was 7.5 times that in the case of Example 2.

【0028】(比較例4)実施例1と同じ溶融還元炉1
を使用し、原料装入も実施例1と同じ装入速度で行い、
クロム鉱石を溶融還元させた。但し、昇温・造滓期に
は、マグネシア含有物質の添加は行なわなかった。この
時点におけるスラグ中のマグネシア含有率は15%で、
飽和溶解度(18%)には達していなかった。そして、
原料装入時には、原料と共にマグネシアクリンカー及び
マグカーボン煉瓦屑の粉砕品を添加し、スラグ中のマグ
ネシア含有率が22%(飽和溶解度は18%)になるよ
うにした。この操業を5タップした後、炉腹部における
耐火物の損耗を調べたところ、平均損耗速度は0.32
mm/時であり、実施例2の場合の2倍であった。
(Comparative Example 4) The same smelting reduction furnace 1 as in Example 1
And the raw material is charged at the same charging rate as in Example 1,
Chromium ore was melt-reduced. However, the magnesia-containing substance was not added during the temperature rising / slagging period. The magnesia content in the slag at this point was 15%,
The saturated solubility (18%) was not reached. And
At the time of charging the raw materials, a crushed product of magnesia clinker and magcarbon brick waste was added together with the raw materials so that the magnesia content in the slag was 22% (saturation solubility was 18%). After 5 taps of this operation, when the wear of the refractory in the furnace abdomen was examined, the average wear rate was 0.32.
mm / hour, which was twice the value in Example 2.

【0029】上記の実施例及び比較例の結果をまとめる
と、次の如くである。昇温・造滓期及び溶融還元期の全
期にわたって、スラグ中のマグネシア含有率を飽和溶解
度以上にして操業した実施例1及び実施例2において
は、炉体耐火物の損耗速度が非常に小さく、極めて良好
の結果が得られた。
The results of the above Examples and Comparative Examples are summarized as follows. In Examples 1 and 2 in which the magnesia content in the slag was operated at the saturated solubility or higher over the entire period of the temperature rising / slagging period and the smelting reduction period, the wear rate of the furnace body refractory was very small. , Very good results were obtained.

【0030】これに対し、昇温・造滓期及び溶融還元期
の何れの期にも、スラグ中のマグネシア含有率が飽和溶
解度に達しない状態で操業した比較例1及び比較例3に
おいては、炉体耐火物の損耗速度は非常に大きな値とな
った。
On the other hand, in Comparative Example 1 and Comparative Example 3 in which the magnesia content in the slag did not reach the saturated solubility at any of the temperature raising / slagging period and the smelting reduction period, The wear rate of the furnace refractories became very large.

【0031】又、溶融還元期におけるスラグ中のマグネ
シア含有率だけを飽和溶解度以上にして操業した比較例
2及び比較例4においては、炉体耐火物の損耗速度は上
記比較例1及び比較例3の場合よりもかなり小さくなっ
たが、実施例1及び実施例2に対しては約2倍程度の値
になった。このことは、昇温・造滓期における炉体耐火
物の損耗抑制策が大きな効果を上げていることを示して
いる。
Further, in Comparative Examples 2 and 4 in which only the magnesia content in the slag in the smelting reduction period was operated at the saturation solubility or higher, the wear rate of the refractory body of the furnace body was the above Comparative Examples 1 and 3. Although the value was considerably smaller than that in Example 1, the value was about twice that of Examples 1 and 2. This indicates that the measures to suppress the wear of the refractory body of the furnace body during the temperature rising / slagging period have been greatly effective.

【0032】次に、煉瓦屑の添加量だけを種々変え、上
記実施例、比較例と同様の条件でニッケル鉱石の溶融還
元を行った結果を図5に示す。図5によれば、スラグ中
のマグネシア含有率が高くなるに従って、耐火物の損耗
速度は小さくなるが、その含有率が飽和溶解度に達する
までの範囲においては、損耗速度の低下度合はあまり大
きくない。又、その含有率が飽和溶解度を超えていて
も、飽和点の近傍においては、耐火物の損耗速度は急激
に低下するものの、未だかなり大きな値になっている。
Next, FIG. 5 shows the results of smelting reduction of nickel ore under the same conditions as in the above-mentioned Examples and Comparative Examples, while changing only the amount of brick waste added. According to FIG. 5, the wear rate of the refractory decreases as the magnesia content in the slag increases, but the degree of decrease in the wear rate is not so large in the range until the content reaches the saturated solubility. . Even if the content exceeds the saturation solubility, the wear rate of the refractory material rapidly decreases in the vicinity of the saturation point, but it is still a considerably large value.

【0033】しかし、スラグ中のマグネシア含有率が飽
和溶解度よりも1%以上大きくなると、耐火物の損耗速
度は非常に小さくなり、更に、この値が3%以上になる
と、損耗速度は極めて小さくなると共に略一定になる。
このように、マグネシア含有率が飽和点に達していて
も、その近傍における損耗速度がなお大きいのは、次の
ような理由によるものと思われる。
However, when the magnesia content in the slag exceeds the saturation solubility by 1% or more, the wear rate of the refractory becomes very small, and when this value becomes 3% or more, the wear rate becomes extremely small. Becomes almost constant with.
As described above, the reason why the wear rate is still high in the vicinity of the saturation point even when the magnesia content rate reaches the saturation point is considered as follows.

【0034】すなわち、マグネシア含有率が飽和点の近
傍である場合には、固体状態で存在するマグネシア含有
物質の量が僅かであるので、スラグ組成の変化や温度変
化などによるマグネシア溶解度の変動に対応したマグネ
シアの供給が速やかに行われないためであろうと思われ
る。
That is, when the magnesia content is in the vicinity of the saturation point, the amount of the magnesia-containing substance existing in the solid state is small, so that the change in the magnesia solubility due to the change in the slag composition or the temperature change can be dealt with. This is probably because the supplied magnesia was not supplied promptly.

【0035】[0035]

【発明の効果】本発明は、スラグ中にマグネシア含有物
質を添加し、溶銑を昇温させると共に初期造滓を行なう
昇温・造滓期及び金属酸化物を装入して還元する溶融還
元期を通じて、スラグ中のマグネシア含有率を飽和溶解
度よりも過剰の状態に維持する金属酸化物の溶融還元方
法である。
INDUSTRIAL APPLICABILITY According to the present invention, a magnesia-containing substance is added to slag to raise the temperature of the hot metal and the initial smelting is performed at a temperature raising / slagging period and a smelting reduction period at which a metal oxide is charged and reduced. Is a method for smelting and reducing metal oxides in which the content of magnesia in slag is maintained in excess of the saturation solubility.

【0036】本発明を実施すれば、スラグ中の溶解マグ
ネシアの量が、昇温・造滓期及び溶融還元期を通じて、
常に、飽和状態になるように維持されるので、炉体耐火
物からのマグネシアの溶出が極めて僅かになり、マグネ
シアの溶出に起因する耐火物の損耗が著しく減少する。
従って、炉体の寿命が飛躍的に長くなる。
When the present invention is carried out, the amount of dissolved magnesia in the slag is changed during the heating / slagging period and the smelting reduction period.
Since it is always maintained in a saturated state, the elution of magnesia from the furnace refractory becomes extremely small, and the wear of the refractory due to the elution of magnesia is significantly reduced.
Therefore, the life of the furnace body is significantly extended.

【0037】又、昇温・造滓期には、マグネシアクリン
カー等のように、速やかに溶解するマグネシア含有物質
を添加するので、昇温・造滓期における炉体耐火物の損
耗が減少し、炉体の寿命が更に一層延びる。
Further, in the heating / slagging period, since a magnesia-containing substance that dissolves quickly, such as magnesia clinker, is added, the wear of the furnace refractory during the heating / slagging period is reduced, The life of the furnace body is further extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】溶融還元炉の一例を示す図である。FIG. 1 is a diagram showing an example of a smelting reduction furnace.

【図2】本発明におけるスラグ中のマグネシア含有率の
例を示す図である。
FIG. 2 is a diagram showing an example of magnesia content in slag according to the present invention.

【図3】各種マクネシア含有物質の溶解試験結果を示す
図である。
FIG. 3 is a diagram showing the results of dissolution tests of various Mcnesia-containing substances.

【図4】MgO−FeO−SiO2 の3元系状態図であ
る。
FIG. 4 is a ternary phase diagram of MgO—FeO—SiO 2 .

【図5】スラグ中のマグネシア含有率と炉体耐火物の損
耗速度との関係を示す図である。
FIG. 5 is a diagram showing a relationship between a magnesia content rate in slag and a wear rate of a furnace refractory material.

【符号の説明】[Explanation of symbols]

1 溶融還元炉 2 上吹き酸素ランス 3 底吹き羽口 10 溶湯 11 溶融スラグ 1 Smelting reduction furnace 2 Top blown oxygen lance 3 Bottom blown tuyere 10 Molten metal 11 Molten slag

───────────────────────────────────────────────────── フロントページの続き (72)発明者 水上 秀昭 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 渡辺 敦 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 加藤 久樹 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 田辺 治良 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hideaki Mizukami Inventor, Marunouchi 1-2-2, Chiyoda-ku, Tokyo Japan Steel Pipe Co., Ltd. (72) Atsushi Watanabe 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Date Main Steel Pipe Co., Ltd. (72) Inventor Hisaki Kato 1-2-2 Marunouchi, Chiyoda-ku, Tokyo Japan Steel Pipe Co., Ltd. (72) Inventor Jiryo Tanabe 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Japan Steel Pipe Within the corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 マグネシア系耐火物がライニングされた
溶融還元炉を使用し、この溶融還元炉中の溶湯に酸素を
吹き込みながら金属酸化物を炭材と共に装入して還元す
る金属酸化物の溶融還元方法において、溶銑を昇温させ
ると共に初期造滓を行なう昇温・造滓期及び金属酸化物
を装入して還元する溶融還元期を通じて、前記各期にお
けるスラグ中のマグネシア含有率がその期のスラグ中の
マグネシアの飽和溶解度よりも1%〜20%過剰になる
ように、マグネシア含有物質を添加することを特徴とす
る金属酸化物の溶融還元方法。
1. A smelting reduction furnace lined with a magnesia refractory is used, and a metal oxide is charged together with carbonaceous material while reducing oxygen by blowing oxygen into the molten metal in the smelting reduction furnace. In the reduction method, the magnesia content rate in the slag in each of the above-mentioned stages is increased during the heating / slagging period in which the hot metal is heated and the initial slag is formed and the smelting reduction period in which the metal oxide is charged and reduced. The smelting reduction method for metal oxides, wherein the magnesia-containing substance is added so that the saturation solubility of magnesia in the slag is 1% to 20%.
【請求項2】 昇温・造滓期に添加するマグネシア含有
物質が、マグネシアクリンカー、マグネシア煉瓦屑、軽
焼マグネサイト、及び軽焼ドロマイトのうちから選定さ
れた1種又は2種以上のものであることを特徴とする請
求項1記載の金属酸化物の溶融還元方法。 【0003】
2. The magnesia-containing substance to be added during the temperature rising / slagging period is one or more selected from magnesia clinker, magnesia brick scrap, light burned magnesite, and light burned dolomite. The method for smelting reduction of metal oxide according to claim 1, wherein [0003]
JP6029595A 1994-02-28 1994-02-28 Metal oxide smelting reduction method Expired - Fee Related JP2803558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6029595A JP2803558B2 (en) 1994-02-28 1994-02-28 Metal oxide smelting reduction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6029595A JP2803558B2 (en) 1994-02-28 1994-02-28 Metal oxide smelting reduction method

Publications (2)

Publication Number Publication Date
JPH07238309A true JPH07238309A (en) 1995-09-12
JP2803558B2 JP2803558B2 (en) 1998-09-24

Family

ID=12280439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6029595A Expired - Fee Related JP2803558B2 (en) 1994-02-28 1994-02-28 Metal oxide smelting reduction method

Country Status (1)

Country Link
JP (1) JP2803558B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002012570A3 (en) * 2000-08-09 2002-04-18 Kobe Steel Ltd Method for producing metallic iron

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734144A (en) * 1993-07-20 1995-02-03 Nkk Corp Smelting reduction method for meal oxide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734144A (en) * 1993-07-20 1995-02-03 Nkk Corp Smelting reduction method for meal oxide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002012570A3 (en) * 2000-08-09 2002-04-18 Kobe Steel Ltd Method for producing metallic iron
US6592647B2 (en) 2000-08-09 2003-07-15 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for producing metallic iron

Also Published As

Publication number Publication date
JP2803558B2 (en) 1998-09-24

Similar Documents

Publication Publication Date Title
CN107779540A (en) A kind of converter list slag melting method of high-silicon molten iron
Harada et al. Development of the molten slag reduction process-1 characteristics of closed type DC arc furnace for molten slag reduction
CN104232845A (en) Argon oxygen decarburization (AOD) slag-making method during smelting of sulfur-containing free-cutting stainless steel
JP2803558B2 (en) Metal oxide smelting reduction method
JP3254831B2 (en) Metal oxide smelting reduction method
JP3106870B2 (en) A smelting method that suppresses erosion of refractories
JPS6250545B2 (en)
US4925489A (en) Process for melting scrap iron, sponge iron and/or solid pig iron
JP3353550B2 (en) Converter refractory erosion control method
JP2598658B2 (en) How to dissolve iron-containing cold materials
JP3511808B2 (en) Stainless steel smelting method
CN110423856A (en) A kind of smelting process of low temperature, hot metal containing low silicon dephosphorization catch carbon
CN115572787B (en) Process method for reducing thermal state slag through slag splashing protection
JP3603969B2 (en) Method for producing hot metal containing chromium and / or nickel
EP1524322A2 (en) Method of liquid steel production with slag recycling in a converter, equipment to employ the method
SU652222A1 (en) Method of treating rough ferronickel
RU2177508C1 (en) Method of steel melting in converter
JP2002275521A (en) Method for dephosphorizing molten high carbon steel
JP2842185B2 (en) Method for producing molten stainless steel by smelting reduction
JPH116006A (en) Sub raw material charging method into converter
JPH09157765A (en) Smelting reduction method of chromium ore
JPS6379910A (en) Prevention of slag mixing into tapping steel flow
JPH0635604B2 (en) Blast furnace operation method
JPH09194958A (en) Method for restraining wearing of magnesia-base refractory
JP3788392B2 (en) Method for producing high Cr molten steel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080717

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090717

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100717

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100717

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110717

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110717

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees