JPH07238303A - Method for forming metallic target material having high melting point - Google Patents
Method for forming metallic target material having high melting pointInfo
- Publication number
- JPH07238303A JPH07238303A JP5293094A JP5293094A JPH07238303A JP H07238303 A JPH07238303 A JP H07238303A JP 5293094 A JP5293094 A JP 5293094A JP 5293094 A JP5293094 A JP 5293094A JP H07238303 A JPH07238303 A JP H07238303A
- Authority
- JP
- Japan
- Prior art keywords
- capsule
- target material
- metal
- density
- melting point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Powder Metallurgy (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、半導体・フォトマス
ク、ハードディスク、抵抗膜などの薄膜製造過程におい
て使用される各種スパッタリングターゲット材の成形方
法、つまり原材料からの圧縮成形による塊状体である高
密度成形体の成形方法に係り、特に高融点であるため鋳
造法では作製が困難な材料、鋳造可能であっても鋳造欠
陥や凝固偏析による不揃いな結晶粒を避けることが困難
な材料、あるいは高純度を得るために高純度の原料を再
溶解することなく成形する必要がある材料等を高密度に
結晶粒の均一な塊状にかつ量産的に成形して高融点金属
ターゲット材とする方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming various sputtering target materials used in the process of manufacturing thin films such as semiconductors, photomasks, hard disks, and resistance films, that is, a high-density lump formed by compression molding of raw materials. With regard to the molding method of the molded body, it is a material that is difficult to produce by the casting method because of its high melting point, a material that is castable but difficult to avoid uneven crystal grains due to casting defects and solidification segregation, or high purity The present invention relates to a method for forming a high-melting-point metal target material by forming a material or the like that needs to be formed without remelting a high-purity raw material in order to obtain a high density into a uniform lump of crystal grains and in mass production.
【0002】[0002]
【従来の技術】従来、純金属のCr、W、Mo、Nbは
高融点を有するため鋳造法ではスパッタリングターゲッ
ト材に成形することが困難であった。したがって、この
ような高融点を有する純金属のCr、W、Mo、Nbや
これらの高融点金属の合金は等方性熱間静水圧プレス
(通称「HIP」という。)工法により成形されてい
る。しかしHIP工法は一般に工業的には時間とコスト
がかかり、量産に適しているとはいいがたい。また、特
殊な溶解鋳造法もごく一部に用いられているが、コスト
高であるとともに、凝固の際に生じる冷却速度の差異に
起因する不揃いな結晶粒の生成を避けがたい。2. Description of the Related Art Conventionally, since pure metals Cr, W, Mo and Nb have high melting points, it has been difficult to form a sputtering target material by a casting method. Therefore, Cr, W, Mo, Nb, which are pure metals having such a high melting point, and alloys of these refractory metals are molded by the isotropic hot isostatic pressing (commonly called "HIP") method. . However, the HIP method is generally industrially time-consuming and costly, and cannot be said to be suitable for mass production. Further, although a special melting and casting method is used only in part, it is costly and it is difficult to avoid the generation of uneven crystal grains due to the difference in cooling rate during solidification.
【0003】加えてHIP工法では装置の大きさに制約
があり、そのため製造されるターゲット材の大きさは最
大でも直径12インチ程度のもので、直径12インチ以
下の大きさのものに限られている。In addition, in the HIP method, there is a restriction on the size of the apparatus, and therefore the size of the target material to be manufactured is about 12 inches in diameter at the maximum, and is not limited to the diameter of 12 inches or less. There is.
【0004】また純金属のターゲット材はその純度とし
て3ナイン程度の高純度のものが要求される。耐火物を
用いる溶解鋳造工法では溶解温度が非常に高いため、耐
火物であるルツボとの反応が避けがたく、耐火物と金属
との反応生成物および酸素などの不純物として目的のタ
ーゲット材に混入し、高純度のターゲット材の製造は困
難であった。The pure metal target material is required to have a high purity of about 3 nines. Since the melting temperature is extremely high in the melting casting method using refractory, it is unavoidable to react with the crucible, which is a refractory, and it is mixed into the target material as impurities such as reaction products of refractory and metals and oxygen. However, it was difficult to manufacture a high-purity target material.
【0005】上述のごとき従来の溶解鋳造法は凝固の際
に生じる鋳塊の部位による冷却速度の差異に起因する不
揃いな結晶粒を避けがたく、したがって結晶粒径の均一
な塊状材料の製造方法の開発が望まれていた。In the conventional melt casting method as described above, it is difficult to avoid the uneven crystal grains caused by the difference in the cooling rate depending on the portion of the ingot generated during solidification, and therefore, the method for producing the agglomerated material having a uniform crystal grain size. Was desired to be developed.
【0006】上述のようにHIP工法は一般に工業的に
は時間とコストがかかり、量産に適しているとはいいが
たく、特に加熱開始から、加圧、冷却までの1サイクル
に要する時間は数時間を要し、より短時間で成形加工で
きる製造方法の開発が望まれていた。As described above, the HIP method generally takes time and cost industrially and is not suitable for mass production. Particularly, the time required for one cycle from the start of heating to pressurization and cooling is several times. It has been desired to develop a manufacturing method which requires time and can be molded in a shorter time.
【0007】[0007]
【発明が解決しようとする課題】本発明の解決しようと
する課題は、結晶粒径の均一な大径の高密度成形体、特
に高純度のターゲット材を短時間で量産する方法を提供
することである。SUMMARY OF THE INVENTION An object of the present invention is to provide a method for mass-producing a large-sized high-density compact having a uniform crystal grain size, particularly a high-purity target material in a short time. Is.
【0008】[0008]
【課題を解決するための手段】本発明の課題を解決する
ための手段は、電解法などで生成した1800℃以上
の高融点金属または合金の粉末若しくはブリケット状原
料の適量を、あるいは電解法により生成した1800℃
以上の高融点金属または合金の粉末を焼結して小塊状に
予備成形した材料の適量を、金属製のカプセルに適量収
容し、脱気密閉し、このカプセルを加熱して加圧圧縮用
金型内で強圧し、次いでこのカプセルを取り出して冷却
し、カプセルに由来する金属部分を除去して上記原料の
高密度成形体を得ることを特徴とする高融点金属ターゲ
ット材の成形方法であり、また、上記における金属製
のカプセルは可鍛性金属製のカプセルであることを特徴
とする請求項1記載の高融点金属ターゲット材の成形方
法であり、或いは、上記におけるカプセルの加熱温度
は1000℃以上の加熱温度であることを特徴とする高
融点金属ターゲット材の成形方法であり、さらに、上
記における加圧圧縮用金型内における強圧する圧力はF
kgf/mm2 {F=1.2×FT (ただしFT は1000℃
以上に加熱したカプセルの加熱温度における材料の強
度)}以上の圧力であることを特徴とする高融点金属タ
ーゲット材の成形方法である。The means for solving the problems of the present invention are to use an appropriate amount of powder or briquette-like raw material of a refractory metal or alloy having a melting point of 1800 ° C. or higher produced by an electrolysis method or by an electrolysis method. Generated 1800 ℃
An appropriate amount of the above-mentioned high-melting-point metal or alloy powder that has been sintered and preformed into small pieces is placed in a metal capsule in an appropriate amount, degassed and sealed, and the capsule is heated to produce a compression metal. A high-melting-point metal target material forming method characterized by obtaining a high-density formed body of the above raw material by removing the metal portion derived from the capsule by strongly pressing in a mold, then taking out and cooling this capsule, Also, the metal capsule in the above is a malleable metal capsule in the method for forming a high melting point metal target material according to claim 1, or the heating temperature of the capsule in the above is 1000 ° C. The method is a method for forming a high-melting-point metal target material, which is characterized in that the heating temperature is as described above.
kgf / mm 2 {F = 1.2 × F T (F T is 1000 ° C
The strength of the material at the heating temperature of the capsule heated above)} or more} is the method for forming a high melting point metal target material.
【0009】[0009]
【作用】本発明の高融点金属ターゲット材の成形方法に
おいては、アトマイズ法、粉砕法などの各種製法で作製
した粒状又は粉末状原料を可鍛性金属製カプセルに収容
密閉し、このカプセルを加熱して加圧圧縮用金型内で強
圧し、ついでこのカプセルを取り出して冷却し、カプセ
ルに由来する金属部分を除去して上記原料の均一な高密
度成形体を得ることを特徴とする。In the method for forming a high melting point metal target material of the present invention, granular or powdery raw materials produced by various production methods such as atomizing method and pulverizing method are enclosed and sealed in a malleable metal capsule, and the capsule is heated. Then, the mixture is subjected to strong pressure in a press-compression die, and then the capsule is taken out and cooled to remove the metal portion derived from the capsule to obtain a uniform high-density molded product of the above raw material.
【0010】ここで使用する可鍛性金属製カプセルとは
機械構造用鋼やステンレス鋼のように熱間で容易に組成
変形できる材質であればよく、安価にかつ容易に入手で
きるものであればよい。The malleable metal capsule used here may be any material that can be easily compositionally deformed by heat, such as machine structural steel and stainless steel, as long as it is inexpensive and easily available. Good.
【0011】原料を可鍛性金属製カプセルに充填する際
の充填密度は高い方がよく、通常真密度の50%以上で
ある。50%未満の充填密度であると加圧成形の際に可
鍛性金属製カプセルが座屈し目的とする塊状の高密度成
形体の内部に可鍛性金属製カプセルの一部が噛み込み不
純物として混入する危険性がある。The filling density of the raw material in the malleable metal capsule is preferably high, and usually 50% or more of the true density. If the packing density is less than 50%, the malleable metal capsule will buckle during pressure molding, and a part of the malleable metal capsule will be trapped inside the desired high-density molded body as impurities. There is a risk of contamination.
【0012】粒状または粉末状原料を充填したカプセル
を脱気密封する際の真空度は10-1Torr以下の真空
度であればよい。これより真空度が低く大気圧に近い圧
力のまま密封すると、次工程である熱間の加圧成形の前
の加熱昇温時にカプセルの内圧が上がって危険であり、
また、充填した高純度の原料がカプセル内部に残存して
いる酸素と反応して目的とする高密度成形体の酸素値が
高くなり、高純度の高密度成形体が得られない。The degree of vacuum for degassing and sealing the capsule filled with the granular or powdery raw material may be a vacuum degree of 10 -1 Torr or less. If the degree of vacuum is lower than this and the pressure is kept close to the atmospheric pressure, it is dangerous because the internal pressure of the capsule rises at the time of heating up before the hot pressing in the next step,
Further, the filled high-purity raw material reacts with oxygen remaining inside the capsule to increase the oxygen value of the target high-density molded article, so that a high-purity high-density molded article cannot be obtained.
【0013】純W、純Mo、純Nbの熱間の強度は図2
〜図4に示すように値が明らかにされている。カプセル
の加熱温度である1000℃における純Cr、純W、純
Mo、純Nbの強度は180MPa、200MPa、1
80MPa、65MPaであり、通常工業的に利用され
ている熱間加工技術の加圧の際に生じる圧力より低く、
この温度での熱間の塑性変形は可能であることがわか
る。したがって、温度1000℃以上に加熱したカプセ
ルをその温度での材料の強度より20%プラスした圧力
Fkgf/mm2 {F=1.2×FT (ただしFT は1000
℃以上に加熱したカプセルの加熱温度における強度)}
以上で強圧すれば、充填された原料は有効に塑性変形す
る。The hot strengths of pure W, pure Mo and pure Nb are shown in FIG.
~ The values are clarified as shown in Fig. 4. The strength of pure Cr, pure W, pure Mo, and pure Nb at the capsule heating temperature of 1000 ° C. is 180 MPa, 200 MPa, 1
80 MPa, 65 MPa, which is lower than the pressure generated during pressurization of hot working techniques that are usually used industrially,
It can be seen that hot plastic deformation is possible at this temperature. Therefore, pressure Fkgf / mm 2 {F = 1.2 × F T (where F T is 1000
Strength at heating temperature of capsules heated above ℃)}
If the above-mentioned strong pressure is applied, the filled raw material is effectively plastically deformed.
【0014】なお、カプセルの加熱温度の上限は言うま
でも無く、カプセル素材である金属の融点未満とする。Needless to say, the upper limit of the capsule heating temperature is lower than the melting point of the metal that is the capsule material.
【0015】[0015]
実施例1.約1インチ角の純Wのブリケットを外径20
6mm、肉厚4mm、長さ150mmの炭素鋼製のカプセルに
54kg充填し、2×10-2Torrの真空度でTIG溶
接により脱気密封した。このカプセルを1300℃に加
熱し、内径215mmのコンテナ内に挿入し、パンチを当
て、プレス機で総圧力2000トンを約5秒かけた。冷
却後輪切り状に切断して円板体とし、円板体の外周のカ
プセルに由来する金属部分をワイヤーカットで切除し、
その後平面研磨機で円板体の両面を研磨し、直径20
3.2mm通称8インチ用ターゲット材を得た。ターゲッ
ト材の一部を切り出し、その密度をアルキメデス法によ
り測定したところ、純Wの溶製材の密度と異なることな
く、また、結晶粒径は均一であった。Example 1. Approximately 1 inch square pure W briquette with an outer diameter of 20
54 kg of a 6 mm thick, 4 mm thick, 150 mm long carbon steel capsule was filled and degassed and sealed by TIG welding at a vacuum degree of 2 × 10 -2 Torr. The capsule was heated to 1300 ° C., inserted into a container having an inner diameter of 215 mm, punched, and a total pressure of 2000 tons was applied for about 5 seconds by a pressing machine. After cooling, it is cut into a disc shape into a disc body, and the metal portion derived from the capsule on the outer periphery of the disc body is cut off with a wire cut,
After that, both sides of the disc body are polished with a flat surface polishing machine to obtain a diameter of 20.
A target material for 3.2 mm, commonly called 8 inches, was obtained. When a part of the target material was cut out and the density thereof was measured by the Archimedes method, the density was not different from the density of the pure W ingot material, and the crystal grain size was uniform.
【0016】実施例2.約1インチ角の純Moのブリケ
ットを外径206mm、肉厚4mm、長さ150mmの炭素鋼
製のカプセルに28kg充填し、3×10-2Torrの真
空度でTIG溶接により脱気密封した。このカプセルを
1250℃に加熱し、内径215mmのコンテナ内に挿入
し、パンチを当て、プレス機で総圧力2000トンを約
5秒かけた。冷却後輪切り状に切断して円板体とし、円
板体の外周のカプセルに由来する金属部分をワイヤーカ
ットで切除し、その後平面研磨機で円板体の両面を研磨
し、直径203.2mm通称8インチ用ターゲット材を得
た。ターゲット材の一部を切り出し、その密度をアルキ
メデス法により測定したところ、純Moの溶製材の密度
と異なることなく、また、結晶粒径は均一であった。Example 2. About 1 inch square of pure Mo briquette was filled in 28 kg in a capsule made of carbon steel having an outer diameter of 206 mm, a wall thickness of 4 mm and a length of 150 mm, and degassed and sealed by TIG welding at a vacuum degree of 3 × 10 -2 Torr. The capsule was heated to 1250 ° C., inserted into a container having an inner diameter of 215 mm, punched, and a total pressure of 2000 tons was applied for about 5 seconds by a pressing machine. After cooling, it is cut into a disc shape to make a disc body, and the metal part derived from the capsule on the outer periphery of the disc body is cut by wire cutting, and then both sides of the disc body are polished by a plane polishing machine, and the diameter is 203.2 mm. A so-called 8-inch target material was obtained. When a part of the target material was cut out and the density thereof was measured by the Archimedes method, the density was not different from the density of the ingot material of pure Mo, and the crystal grain size was uniform.
【0017】実施例3.約1インチ角の純Nbのブリケ
ットを外径206mm、肉厚4mm、長さ150mmの炭素鋼
製のカプセルに24kg充填し、3×10-2Torrの真
空度でTIG溶接により脱気密封した。このカプセルを
1280℃に加熱し、内径215mmのコンテナ内に挿入
し、パンチを当て、プレス機で総圧力2000トンを約
5秒かけた。冷却後輪切り状に切断して円板体とし、円
板体の外周のカプセルに由来する金属部分をワイヤーカ
ットで切除し、その後平面研磨機で円板体の両面を研磨
し、直径203.2mm通称8インチ用ターゲット材を得
た。ターゲット材の一部を切り出し、その密度をアルキ
メデス法により測定したところ、純Nbの溶製材の密度
と異なることなく、また、結晶粒径は均一であった。Embodiment 3. About 1 inch square briquette of pure Nb was filled in a capsule made of carbon steel having an outer diameter of 206 mm, a wall thickness of 4 mm and a length of 150 mm (24 kg), and degassed and sealed by TIG welding at a vacuum degree of 3 × 10 -2 Torr. The capsule was heated to 1280 ° C., inserted into a container having an inner diameter of 215 mm, punched, and a total pressure of 2000 tons was applied for about 5 seconds by a press machine. After cooling, it is cut into a disc shape to make a disc body, and the metal part derived from the capsule on the outer periphery of the disc body is cut by wire cutting, and then both sides of the disc body are polished by a plane polishing machine, and the diameter is 203.2 mm. A so-called 8-inch target material was obtained. When a part of the target material was cut out and the density thereof was measured by the Archimedes method, the density was not different from the density of the pure Nb ingot material, and the crystal grain size was uniform.
【0018】実施例4.約1インチ角の純Crのブリケ
ットを外径206mm、肉厚4mm、長さ150mmの炭素鋼
製のカプセルに19.9kg充填し、2×10-2Torr
の真空度でTIG溶接により脱気密封した。このカプセ
ルを1100℃に加熱し、内径215mmのコンテナ内に
挿入し、パンチを当て、プレス機で総圧力2000トン
を約5秒かけた。冷却後輪切り状に切断して円板体と
し、円板体の外周のカプセルに由来する金属部分をワイ
ヤーカットで切除し、その後平面研磨機で円板体の両面
を研磨し、直径203.2mm通称8インチ用ターゲット
材を得た。ターゲット材の一部を切り出し、その密度を
アルキメデス法により測定したところ、純Crの溶製材
の密度と異なることなく、また、結晶粒径は均一であっ
た。図1に得られたターゲット材の顕微鏡写真を示す。
a)はビレット外周部のミクロ組織であり、b)はビレ
ット中心部のミクロ組織である。Example 4. About 1 inch square of pure Cr briquette was filled into a carbon steel capsule with an outer diameter of 206 mm, a wall thickness of 4 mm, and a length of 150 mm in an amount of 19.9 kg, and 2 × 10 -2 Torr.
It was degassed and sealed by TIG welding at a vacuum degree of. The capsule was heated to 1100 ° C., inserted into a container having an inner diameter of 215 mm, punched, and a total pressure of 2000 tons was applied for about 5 seconds by a pressing machine. After cooling, it is cut into a disc shape to make a disc body, and the metal part derived from the capsule on the outer periphery of the disc body is cut by wire cutting, and then both sides of the disc body are polished by a plane polishing machine, and the diameter is 203.2 mm. A so-called 8-inch target material was obtained. When a part of the target material was cut out and the density thereof was measured by the Archimedes method, the density was not different from the density of the pure Cr ingot material, and the crystal grain size was uniform. The micrograph of the obtained target material is shown in FIG.
a) is a microstructure of the billet outer peripheral portion, and b) is a microstructure of the billet central portion.
【0019】実施例5.約1インチ角の純Crのブリケ
ットを外径390mm、肉厚4mm、長さ200mmの炭素鋼
製のカプセルに99kg充填し、3×10-2Torrの真
空度でTIG溶接により脱気密封した。このカプセルを
1100℃に加熱し、内径405mmのコンテナ内に挿入
し、パンチを当て、プレス機で総圧2000トンを約1
0秒かけた。冷却後円柱体の外周のカプセルに由来する
金属部分を旋盤で除去し、輪切り状に切断して円板体と
し、その後平面研磨機で円板体の両面を研磨し、直径3
81mm通称15インチ用ターゲット材を得た。ターゲッ
ト材の一部を切り出し、その密度をアルキメデス法によ
り測定したところ、純Crの溶製材の密度と異なること
なく、また、結晶粒径は均一であった。Example 5. About 1 inch square of pure Cr briquette was filled in a carbon steel capsule having an outer diameter of 390 mm, a wall thickness of 4 mm and a length of 200 mm of 99 kg, and was degassed and sealed by TIG welding at a vacuum degree of 3 × 10 -2 Torr. This capsule is heated to 1100 ° C, inserted into a container with an inner diameter of 405 mm, punched, and a total pressure of 2000 tons is applied with a press machine to about 1
It took 0 seconds. After cooling, the metal part derived from the capsule on the outer periphery of the cylindrical body was removed by a lathe, and cut into a disc shape into a disc body, and then both sides of the disc body were polished by a flat surface polishing machine to obtain a diameter of 3
A target material for 81 mm, commonly called 15 inches, was obtained. When a part of the target material was cut out and the density thereof was measured by the Archimedes method, the density was not different from that of the pure Cr ingot material, and the crystal grain size was uniform.
【0020】実施例6.合金比率がCrが20重量%、
Moが80重量%の2元素からなり、融点が1870℃
であり、粒度が1mm以下のCrMo合金粉末を外径20
6mm、肉厚4mm、長さ150mmの炭素鋼製のカプセルに
30kg充填し、3×10-2Torrの真空度でTIG溶
接により脱気密封した。このカプセルを1200℃に加
熱し、内径215mmのコンテナ内に挿入し、パンチを当
て、プレス機で総圧2000トンを約10秒かけた。冷
却後円柱体の外周のカプセルに由来する金属部分を旋盤
で除去し、輪切り状に切断して円板体とし、その後平面
研磨機で円板体の両面を研磨し、直径203.2mm通称
8インチ用ターゲット材を得た。ターゲット材の一部を
切り出し、その密度をアルキメデス法により測定したと
ころ、CrMo合金の溶製材の密度と異なることなく、
また、結晶粒径は均一であった。Example 6. The alloy ratio is 20% by weight of Cr,
Mo is composed of two elements of 80% by weight and has a melting point of 1870 ° C.
And a CrMo alloy powder with a particle size of 1 mm or less has an outer diameter of 20
30 kg of a 6 mm thick, 4 mm thick, 150 mm long carbon steel capsule was filled and degassed and sealed by TIG welding at a vacuum degree of 3 × 10 -2 Torr. The capsule was heated to 1200 ° C., inserted into a container having an inner diameter of 215 mm, punched, and a total pressure of 2000 tons was applied for about 10 seconds by a pressing machine. After cooling, the metal part derived from the capsule on the outer periphery of the cylindrical body was removed by a lathe, and cut into a disk shape into a disk body, and then both surfaces of the disk body were polished by a flat surface polishing machine, and a diameter of 203.2 mm, commonly known as 8 I got a target material for inches. When a part of the target material was cut out and its density was measured by the Archimedes method, the density was not different from that of the CrMo alloy ingot,
The crystal grain size was uniform.
【0021】実施例7.合金比率がCrが10重量%、
Moが90重量%の2元素からなり、融点が1700℃
であり、粒度が1mm以下のCrMo合金粉末を外径20
6mm、肉厚4mm、長さ150mmの炭素鋼製のカプセルに
23kg充填し、3×10-2Torrの真空度でTIG溶
接により脱気密封した。このカプセルを1200℃に加
熱し、内径215mmのコンテナ内に挿入し、パンチを当
て、プレス機で総圧2000トンを約10秒かけた。冷
却後円柱体の外周のカプセルに由来する金属部分を旋盤
で除去し、輪切り状に切断して円板体とし、その後平面
研磨機で円板体の両面を研磨し、直径203.2mm通称
8インチ用ターゲット材を得た。ターゲット材の一部を
切り出し、その密度をアルキメデス法により測定したと
ころ、CrMo合金の溶製材の密度と異なることなく、
また、結晶粒径は均一であった。Example 7. The alloy ratio is 10% by weight of Cr,
Mo is composed of 90% by weight of two elements and has a melting point of 1700 ° C.
And a CrMo alloy powder with a particle size of 1 mm or less has an outer diameter of 20
23 kg of a 6 mm thick, 4 mm thick, 150 mm long carbon steel capsule was filled and degassed and sealed by TIG welding at a vacuum degree of 3 × 10 -2 Torr. The capsule was heated to 1200 ° C., inserted into a container having an inner diameter of 215 mm, punched, and a total pressure of 2000 tons was applied for about 10 seconds by a press machine. After cooling, the metal part derived from the capsule on the outer periphery of the cylindrical body was removed by a lathe, and cut into a disk shape into a disk body, and then both surfaces of the disk body were polished by a flat surface polishing machine, and a diameter of 203.2 mm, commonly known as 8 I got a target material for inches. When a part of the target material was cut out and its density was measured by the Archimedes method, the density was not different from that of the CrMo alloy ingot,
The crystal grain size was uniform.
【0022】実施例8.約1インチ角の純Crのブリケ
ットを外寸が縦70mm、横235mm、肉厚4mm、長さ2
00mmの炭素鋼製のカプセルに11.7kg充填し3×1
0-2Torrの真空度でTIG溶接により脱気密封し
た。このカプセルを1100℃に加熱し、内寸が縦75
mm、横245mmのコンテナ内に挿入し、パンチを当て、
プレス機で総圧2000トンを約10秒かけた。このビ
レットをコンテナから取り出し、冷却後直方体を切断機
により板状に切り出し、更に板の外周部を切断し、その
後平面研磨機で板の両面を研磨し、縦50.8mm、横2
03.2mm、厚さ6mmの通称2インチ×10インチ用タ
ーゲット材を得た。ターゲット材の一部を切り出し、そ
の密度をアルキメデス法により測定したところ、純Cr
の溶製材の密度と異なることなく、また、結晶粒は均一
であった。Example 8. Approximately 1 inch square pure Cr briquette with external dimensions of 70mm in height, 235mm in width, 4mm in wall thickness and 2 in length.
Filling 11.7 kg in a capsule made of carbon steel of 00 mm, 3 × 1
It was degassed and sealed by TIG welding at a vacuum degree of 0 -2 Torr. This capsule is heated to 1100 ° C and the inside dimension is 75
mm, insert it in the container of 245 mm in width, hit the punch,
A total pressure of 2000 tons was applied for about 10 seconds with the press machine. This billet is taken out of the container, and after cooling, a rectangular parallelepiped is cut into a plate shape by a cutting machine, the outer peripheral portion of the plate is further cut, and then both sides of the plate are polished by a flat surface polishing machine, and the length is 50.8 mm, width 2
A target material for 2 inch x 10 inch having a thickness of 03.2 mm and a thickness of 6 mm was obtained. A part of the target material was cut out and its density was measured by the Archimedes method.
The density was not different from the density of the ingot, and the crystal grains were uniform.
【0023】実施例9.約1インチ角の純Crのブリケ
ットを外径390mm、肉厚4mm、長さ200mmの炭素鋼
製のカプセルに99kg充填し3×10-2Torrの真空
度でTIG溶接により脱気密封した。このカプセルを1
100℃に加熱し、内径405mmのコンテナ内に挿入
し、パンチを当て、プレス機で総圧2000トンを約1
0秒かけた。このビレットをコンテナから取り出し、外
周部をプレス機の金敷きの上で、縦280mm、横420
mm、厚さ142mmにプレスした。冷却後直方体を切断機
により板状に切り出し、更に板の外周部を切断し、その
後平面研磨機で板の両面を研磨し、縦254mm、横38
1mm、厚さ6mmの通称10インチ×15インチ用ターゲ
ット材を得た。ターゲット材の一部を切り出し、その密
度をアルキメデス法により測定したところ、純Crの溶
製材の密度と異なることなく、また、結晶粒は均一であ
った。Example 9. About 1 inch square of pure Cr briquette was filled into a carbon steel capsule having an outer diameter of 390 mm, a wall thickness of 4 mm and a length of 200 mm of 99 kg, which was degassed and sealed by TIG welding at a vacuum degree of 3 × 10 -2 Torr. 1 capsule
Heat to 100 ° C, insert into a container with an inner diameter of 405 mm, apply a punch, and press the press to a total pressure of 2000 tons of about 1
It took 0 seconds. Take this billet out of the container, and put the outer circumference on the anvil of a press machine in a length of 280 mm and a width of 420 mm.
mm, thickness 142 mm. After cooling, the rectangular parallelepiped is cut into a plate shape with a cutting machine, the outer peripheral portion of the plate is further cut, and then both sides of the plate are polished with a flat surface polishing machine to obtain a length of 254 mm and a width of 38 mm.
A target material having a size of 1 mm and a thickness of 6 mm for commonly known 10 inches × 15 inches was obtained. When a part of the target material was cut out and the density thereof was measured by the Archimedes method, the density was not different from that of the pure Cr ingot material, and the crystal grains were uniform.
【発明の効果】以上説明したように、本発明は粒状又は
粉末状原料を可鍛性金属製カプセルに収容密閉し、この
カプセルを加熱して加圧圧縮用金型内で強圧し、ついで
このカプセルを取り出して冷却し、カプセルに由来する
金属部分を除去して上記原料の均一な高密度成形体を得
るものであるので、溶製法における結晶粒の不揃いは無
く、結晶粒径の均一な塊状の高密度成形体であるターゲ
ット材が得られ、また、HIP工法におけるような時間
とコストを要すること無く、本発明は短時間と低コスト
で高密度成形体を得ることができ、量産に適している。
また、本発明によると、12インチ以上の大径の高密度
成形体であるターゲット材を容易に製造することができ
る。As described above, according to the present invention, the granular or powdery raw material is housed and sealed in a malleable metal capsule, and the capsule is heated and strongly pressed in a press-compression die, and then The capsule is taken out and cooled, and the metal part derived from the capsule is removed to obtain a uniform high-density molded product of the above-mentioned raw material, so that there is no irregularity of crystal grains in the melting method, and a uniform crystal grain size is obtained. The target material which is a high-density molded body can be obtained, and the present invention can obtain a high-density molded body in a short time and at low cost without requiring time and cost as in the HIP method, and is suitable for mass production. ing.
Further, according to the present invention, it is possible to easily manufacture a target material that is a high-density molded body having a large diameter of 12 inches or more.
【図1】純Crターゲット材の金属組織を示す顕微鏡写
真で、a)はビレット周辺部b)はビレット中心部のミ
クロ組織を示す。FIG. 1 is a photomicrograph showing the metallographic structure of a pure Cr target material, where a) shows the microstructure around the billet and b) shows the microstructure at the center of the billet.
【図2】純Wの温度と強度の関係を示すグラフである。FIG. 2 is a graph showing the relationship between temperature and strength of pure W.
【図3】純Moの温度と強度の関係を示すグラフであ
る。FIG. 3 is a graph showing the relationship between temperature and strength of pure Mo.
【図4】純Nbの温度と強度の関係を示すグラフであ
る。FIG. 4 is a graph showing a relationship between temperature and strength of pure Nb.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 義和 兵庫県姫路市飾磨区中島字一文字3007番地 山陽特殊製鋼株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshikazu Tanaka 3007 Nakajima, Nakajima, Shikama-ku, Himeji City, Hyogo Prefecture Sanyo Special Steel Co., Ltd.
Claims (4)
上の高融点金属または合金の粒状または粉末状原料を適
量収容して脱気密封し、このカプセルを加熱して加圧圧
縮用金型内で強圧し、ついでこのカプセルを取り出して
冷却し、カプセルに由来する金属部分を除去して上記原
料の高密度成形体を得ることを特徴とする高融点金属タ
ーゲット材の成形方法。1. An appropriate amount of a granular or powdery raw material of a high melting point metal or alloy having a melting point of 1800 ° C. or more is contained in a metal capsule and degassed and hermetically sealed, and the capsule is heated to be pressurized and compressed in a mold. A high-melting-point metal target material forming method, characterized in that a high-density formed body of the above raw material is obtained by removing the metal part derived from the capsule by removing the metal part derived from the capsule.
セルであることを特徴とする請求項1記載の高融点金属
ターゲット材の成形方法。2. The method for molding a high melting point metal target material according to claim 1, wherein the metal capsule is a malleable metal capsule.
℃以上であることを特徴とする請求項1又は2のいずれ
かに記載の高融点金属ターゲット材の成形方法。3. The heating temperature for heating the capsule is 1000.
3. The method for forming a refractory metal target material according to claim 1, wherein the temperature is not less than 0 ° C.
f/mm2 {F=1.2×FT (ただしFT は1000℃以
上に加熱したカプセルの加熱温度における材料の強
度)}以上の圧力であることを特徴とする請求項1ない
し3のいずれかに記載の高融点金属ターゲット材の成形
方法。4. The pressure for applying a strong pressure in the pressure compression mold is Fkg.
The pressure of f / mm 2 {F = 1.2 × F T (where F T is the strength of the material at the heating temperature of the capsule heated to 1000 ° C. or more)} or more}. A method for forming a refractory metal target material according to any one of claims.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5293094A JPH07238303A (en) | 1994-02-25 | 1994-02-25 | Method for forming metallic target material having high melting point |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5293094A JPH07238303A (en) | 1994-02-25 | 1994-02-25 | Method for forming metallic target material having high melting point |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07238303A true JPH07238303A (en) | 1995-09-12 |
Family
ID=12928569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5293094A Pending JPH07238303A (en) | 1994-02-25 | 1994-02-25 | Method for forming metallic target material having high melting point |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07238303A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007154248A (en) * | 2005-12-05 | 2007-06-21 | Sanyo Special Steel Co Ltd | METHOD FOR MANUFACTURING Co-BASED SPUTTERING TARGET MATERIAL CONTAINING OXIDE |
JP2009149996A (en) * | 1998-06-29 | 2009-07-09 | Toshiba Corp | Sputter target |
WO2014115379A1 (en) * | 2013-01-25 | 2014-07-31 | 住友金属鉱山株式会社 | CYLINDRICAL Cu-Ga ALLOY SPUTTERING TARGET AND PRODUCTION METHOD THEREFOR |
CN109465451A (en) * | 2018-12-11 | 2019-03-15 | 四川航空工业川西机器有限责任公司 | A kind of rapid cooling system based on jet-driven 1800 DEG C |
-
1994
- 1994-02-25 JP JP5293094A patent/JPH07238303A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009149996A (en) * | 1998-06-29 | 2009-07-09 | Toshiba Corp | Sputter target |
JP2007154248A (en) * | 2005-12-05 | 2007-06-21 | Sanyo Special Steel Co Ltd | METHOD FOR MANUFACTURING Co-BASED SPUTTERING TARGET MATERIAL CONTAINING OXIDE |
WO2014115379A1 (en) * | 2013-01-25 | 2014-07-31 | 住友金属鉱山株式会社 | CYLINDRICAL Cu-Ga ALLOY SPUTTERING TARGET AND PRODUCTION METHOD THEREFOR |
JP2014141722A (en) * | 2013-01-25 | 2014-08-07 | Sumitomo Metal Mining Co Ltd | CYLINDRICAL Cu-Ga ALLOY SPUTTERING TARGET AND PRODUCTION METHOD THEREOF |
CN105008578B (en) * | 2013-01-25 | 2017-03-22 | 住友金属矿山株式会社 | CYLINDRICAL Cu-Ga ALLOY SPUTTERING TARGET AND PRODUCTION METHOD THEREFOR |
CN109465451A (en) * | 2018-12-11 | 2019-03-15 | 四川航空工业川西机器有限责任公司 | A kind of rapid cooling system based on jet-driven 1800 DEG C |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3982934A (en) | Method of forming uniform density articles from powder metals | |
JP4405610B2 (en) | Manufacturing method of sputtering target | |
US5445787A (en) | Method of extruding refractory metals and alloys and an extruded product made thereby | |
EP1019556B1 (en) | Process for manufacturing precious metal artefacts | |
JPH07238303A (en) | Method for forming metallic target material having high melting point | |
KR20090132799A (en) | Method for manufacturing magnesium-alloy by using complex powder metallurgy process | |
US5108698A (en) | Method of making plate-shaped material | |
JPS6058289B2 (en) | Manufacturing method of high chromium alloy material | |
JPS5837362B2 (en) | Manufacturing method for glass molding molds | |
JPH01306507A (en) | Manufacture of plate-like material | |
JP3993066B2 (en) | Method for producing sputtering target | |
JP2860427B2 (en) | Method for producing sintered body made of amorphous alloy powder | |
JP2752858B2 (en) | Manufacturing method of powder alloy billet | |
SU884856A1 (en) | Method of producing articles from tungstem-free hard alloys | |
JP2009013471A (en) | Ru TARGET MATERIAL, AND METHOD FOR PRODUCING THE SAME | |
JP3514104B2 (en) | Method for manufacturing a profile for thermoelectric element chip fabrication | |
EP0127312A1 (en) | A process for the consolidation of metal powder | |
JPH0225565A (en) | Production of sputtering target material | |
JP2740692B2 (en) | Mold | |
JPH028301A (en) | Manufacture of metal material by powder canning process | |
JPH0448008A (en) | Hot isostatic pressing method for rare earth intermetallic compound | |
JPH0475302B2 (en) | ||
JPS6363308B2 (en) | ||
JPH04301002A (en) | Method for compacting powder | |
JPH11229003A (en) | Production of copper-nickel-iron alloy wire rod or sheet for magnetic scale |