JPH0475302B2 - - Google Patents

Info

Publication number
JPH0475302B2
JPH0475302B2 JP62076042A JP7604287A JPH0475302B2 JP H0475302 B2 JPH0475302 B2 JP H0475302B2 JP 62076042 A JP62076042 A JP 62076042A JP 7604287 A JP7604287 A JP 7604287A JP H0475302 B2 JPH0475302 B2 JP H0475302B2
Authority
JP
Japan
Prior art keywords
amorphous
powder
metal
rolling
metal tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62076042A
Other languages
Japanese (ja)
Other versions
JPS63243235A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7604287A priority Critical patent/JPS63243235A/en
Priority to EP87118309A priority patent/EP0271095A3/en
Priority to US07/131,715 priority patent/US4820141A/en
Publication of JPS63243235A publication Critical patent/JPS63243235A/en
Publication of JPH0475302B2 publication Critical patent/JPH0475302B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、アモルフアス合金粉粒物(以下アモ
ルフアス粉粒物と略称する)から、理論密度ある
いはそれに近い密度を有し、かつ所望の厚さを有
する例えばプレート状の立体成形物(所望の厚さ
を有する例えばプレート状の立体成形物を本明細
書では立体成形物と略記する)を成形する方法に
関する。更に詳しくは、アモルフアスは優れた物
理的.化学的特性を有するが、強冷して製造する
ため粉粒物の形で得られることが多い。しかし粉
粒物では使用分野の制約を伴う。本発明は、アモ
ルフアスが有する優れた物理的.化学的特性を損
うことなく、アモルフアス粉粒物を立体成形物に
成形する方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention is directed to the production of amorphous amorphous alloy powder (hereinafter abbreviated as amorphous aluminium powder) having a theoretical density or a density close to it, and a desired thickness. The present invention relates to a method for molding, for example, a plate-shaped three-dimensional molded article (for example, a plate-shaped three-dimensional molded article having a desired thickness is abbreviated as a three-dimensional molded article herein). More specifically, amorphous has excellent physical properties. Although it has chemical properties, it is often obtained in the form of powder and granules because it is produced by intense cooling. However, powder and granular materials are subject to restrictions in the field of use. The present invention is characterized by the excellent physical properties of amorphous amorphous. The present invention relates to a method for forming amorphous amorphous powder into a three-dimensional molded product without impairing its chemical properties.

[従来の技術] 粉末を容器に入れて圧延する方法としては、特
公昭55−1323号、特公昭57−41521号、特公昭60
−58289号、及び特開昭56−45289号の技術が知ら
れている。即ちこれらは、粉末を金属容器に装填
し、そのまゝあるいは一旦焼結した後、粉末が焼
結し易く又粉末や容器の変形抵抗も小さくなる高
温に加熱して、熱間圧延を行い成形体を得る方法
であり、従つてこれらの方法では容器の強度はさ
ほど高くなつても十分で又能率よく成形体が得ら
れる利点はあるが、この方法では粉末を高温に昇
温するため、アモルフアスが有する優れた物理
的.化学的特性が失われる場合があるために適当
ではない。またアモルフアス合金の粉末を、衝撃
圧着する方法も開示されている(例えば日本金属
学会講演概要集、1984年、10月発行、541頁)が、
銃弾の衝突による衝撃や火薬の爆発力を利用する
もので、環境問題、成形体の寸法にたいする制約
などがあり、工業的に採用するには問題が多い。
[Prior art] Methods of placing powder in a container and rolling it are disclosed in Japanese Patent Publication No. 1323-1983, Japanese Patent Publication No. 41521-1987, and Japanese Patent Publication No. 41521-1983.
-58289 and Japanese Unexamined Patent Publication No. 56-45289 are known. In other words, these materials are made by loading the powder into a metal container, heating it as is or after sintering it, then heating it to a high temperature that facilitates sintering of the powder and reduces the deformation resistance of the powder and container, followed by hot rolling and shaping. Therefore, in these methods, even if the strength of the container is very high, it is sufficient and the compact can be obtained efficiently, but in this method, the powder is heated to a high temperature, so has excellent physical properties. It is not suitable because chemical properties may be lost. A method of impact-bonding amorphous alloy powder has also been disclosed (for example, Japan Institute of Metals Lecture Abstracts, October 1984, p. 541).
It uses the impact of bullet collisions and the explosive power of gunpowder, and there are many problems with its industrial use, such as environmental issues and restrictions on the dimensions of the molded product.

[発明が解決しようとする問題点] 本発明は、ミクロ組織の特徴に起因して優れた
物理的.化学的性質を有するアモルフアス粉粒物
を、その優れた物性を保持したまゝ、立体成形物
に工業的規模で成形することを目的としている。
特願昭61−294664号は、本願出願人が昭和61年12
月12日に出願した、粉粒物、箔、細線から立体成
形物を成形する方法の特許出願である。即ち特願
昭61−294664号は、粉粒物又は箔又は細線など
を、成形に耐える十分な強さの金属製容器に内蔵
した後、該金属製容器を、前記内蔵物の特性保持
温度で強制的に圧延する事により、内蔵する粉粒
物や箔や細線を立体成形物に成形する方法であ
り、アモルフアス粉粒物はこの方法によつて立体
成形物に成形される。本特許出願は、アモルフア
ス粉粒物について、この発明を工業的に実施する
に適した方法を提供するものである。
[Problems to be Solved by the Invention] The present invention has excellent physical properties due to the characteristics of the microstructure. The purpose is to mold amorphous powder particles with chemical properties into three-dimensional molded products on an industrial scale while maintaining their excellent physical properties.
Patent Application No. 61-294664 was filed by the applicant in December 1986.
This is a patent application filed on April 12th for a method for forming three-dimensional molded objects from powder, foil, and thin wire. That is, Japanese Patent Application No. 61-294664 discloses that after embedding powder, granular material, foil, thin wire, etc. in a metal container with sufficient strength to withstand molding, the metal container is heated to a temperature at which the properties of the embeddings are maintained. This is a method of forming built-in particulate matter, foil, or thin wire into a three-dimensional molded object by forcibly rolling it, and an amorphous powder or granule material is molded into a three-dimensional molded object by this method. This patent application provides a method suitable for industrially implementing the present invention regarding amorphous powder and granules.

[問題点を解決するための手段] 本発明は、金属帯を連続的に管状に曲げ加工す
る成形工程と、該曲げ成形された金属帯の端部を
連続的に接合する溶接工程と、溶接によつて成形
された金属管内にアモルフアス合金粉粒物を連続
的に充填する充填工程と、アモルフアス合金粉粒
物を内蔵せしめた金属管を該アモルフアス合金の
結晶化温度直下に加熱する加熱工程と、該加熱体
を圧延することにより内蔵せしめたアモルフアス
合金粉粒物をアモルフアス合金の立体成形物とす
る圧延工程とよりなる、アモルフアス合金粉粒物
の成形方法である。
[Means for Solving the Problems] The present invention includes a forming process of continuously bending a metal strip into a tubular shape, a welding process of continuously joining the ends of the bent metal band, and a welding process. a filling step of continuously filling the amorphous amorphous alloy powder into a metal tube formed by the method; and a heating step of heating the metal tube containing the amorphous aluminous alloy powder to just below the crystallization temperature of the amorphous amorphous alloy. , a method for forming an amorphous alloy powder comprising a rolling step of rolling the heated body to form a three-dimensional amorphous alloy compact from the amorphous alloy powder contained therein.

第1図は本発明の成形工程と、溶接工程と、充
填工程の例を示す図である。
FIG. 1 is a diagram showing an example of the forming process, welding process, and filling process of the present invention.

1は金属帯で、フオーミングロール2によつて
管状に成形される。金属帯は本発明の圧延工程で
十分な強さを有する金属帯で、例えばオーステナ
イト系ステンレス鋼は強度が大きく好ましい。管
状に成形された金属帯の端部は溶接機3によつて
溶接して金属管とする。溶接方法としては、例え
ば電子ビーム溶接は母材への熱影響が小さく、優
れた溶接部が得られるために好ましい。例えば金
属帯がオーステナイト系ステンレス鋼で、溶接方
法が電子ビーム溶接の場合は、靭性の低下がない
ので溶接後の熱処理は要しないが、必要な場合は
溶接直後に溶接部に適した熱処理を施す。第1図
で4はアモルフアス粉粒物槽で、5は供給管であ
り、アモルフアス粉粒物6は溶接部の前面から供
給し溶接部の後面の溶接した金属管内7に充填さ
れる。第1図は、アモルフアス粉粒物6を供給管
5を介して充填する例であるが、このような充填
方法はアモルフアス粉粒物が溶接機3からの熱影
響をうけないため好ましいものである。
1 is a metal band, which is formed into a tubular shape by forming rolls 2; The metal strip is a metal strip having sufficient strength in the rolling process of the present invention, and for example, austenitic stainless steel is preferred because of its high strength. The ends of the metal strip formed into a tubular shape are welded by a welding machine 3 to form a metal tube. As a welding method, for example, electron beam welding is preferable because it has a small thermal effect on the base metal and produces an excellent welded part. For example, if the metal strip is made of austenitic stainless steel and the welding method is electron beam welding, no heat treatment is required after welding as there is no decrease in toughness, but if necessary, heat treatment appropriate for the welded area should be applied immediately after welding. . In FIG. 1, 4 is an amorphous amorphous powder tank, 5 is a supply pipe, and the amorphous amorphous powder 6 is supplied from the front side of the welded part and filled into the welded metal pipe 7 at the rear face of the welded part. FIG. 1 shows an example of filling the amorphous amorphous granules 6 through the supply pipe 5, and this filling method is preferable because the amorphous granules are not affected by heat from the welding machine 3. .

金属管内のアモルフアス粉粒物の充填密度は、
例えばアモルフアス粉粒物槽からの供給速度と、
金属管内のアモルフアス粉粒物のレベル6−1を
制御して、金属管全長にわたつて均等に充填す
る。尚アモルフアス粉粒物のレベル6−1は例え
ばγ線センサーによつて金属管外から検出する事
ができ、又充填密度を大きく望む際は金属管に外
側から微振動を与えればよい。
The packing density of amorphous amorphous powder in a metal tube is
For example, the feed rate from the amorphous powder tank,
The level 6-1 of the amorphous powder in the metal tube is controlled to uniformly fill the entire length of the metal tube. The level 6-1 of the amorphous amorphous powder can be detected from outside the metal tube using, for example, a gamma ray sensor, and if a high packing density is desired, slight vibrations may be applied to the metal tube from the outside.

第2図は本発明の圧延工程を示す図である。 FIG. 2 is a diagram showing the rolling process of the present invention.

本発明は、アモルフアス粉粒物6を、肉厚の十
分大きな強度の高い金属管7に入れ、金属管とと
もに圧延を行うものである。この際金属管は内容
物が圧下により展延するとともに塑性変形する。
金属管はその変形抵抗が内蔵物の変形抵抗よりも
大きい。金属管は強度が高くしかも展延性を有す
るもので、従つて圧延では大きな圧下力が必要と
なるが、これが内蔵物であるアモルフアス粉粒物
の稠密化をもたらすことになる。
In the present invention, amorphous amorphous powder 6 is placed in a metal tube 7 having a sufficiently large wall thickness and high strength, and rolling is performed together with the metal tube. At this time, the metal tube is plastically deformed as the contents are expanded by rolling down.
The deformation resistance of the metal tube is greater than the deformation resistance of built-in objects. Metal tubes have high strength and malleability, and therefore require a large rolling force during rolling, which results in densification of the amorphous powder particles contained therein.

内蔵物は金属管に拘束されているために強制的
にロールへ噛み込まれる。噛み込みに際して内蔵
物には押し戻されようとする圧力が生ずるが、こ
の圧力に対して金属管は変形しない強度を持つこ
とが必要である。内蔵物の流動による噛み込みの
不良は金属管の端部を封ずることにより阻止され
ている。
Since the built-in contents are restrained by the metal tube, they are forcibly bitten into the roll. When the internal components are bitten, pressure is generated that tends to push them back, but the metal tube must have the strength to resist deformation against this pressure. Failure to engage due to the flow of built-in materials is prevented by sealing the end of the metal tube.

圧延は結晶化温度直下の温度で行う。例えばア
モルフアスFe79、Si8B13(原子%でFe:79、Si:
8、B:13)合金箔より作つた粉末は、その結晶
化温度520℃の直下の温度で圧延を行う。この温
度は通常の焼結温度や熱間圧延温度よりも低温で
ある。この温度で成形するとアモルフアスの優れ
た物理的、化学的特性が損なわれることなく保持
される。ただし、結晶化温度付近で長時間保持す
ると内蔵物(アモルフアス合金)の優れた特性が
損なわれることがある。従つて昇熱手段として例
えばホツトバスは急速加熱ができるために望まし
く、又圧延後も同様の理由で急冷することが望ま
しい。
Rolling is performed at a temperature just below the crystallization temperature. For example, amorphous Fe79, Si8B13 (at % Fe: 79, Si:
8, B: 13) The powder made from alloy foil is rolled at a temperature just below its crystallization temperature of 520°C. This temperature is lower than normal sintering and hot rolling temperatures. When molded at this temperature, the excellent physical and chemical properties of amorphous amorphous are maintained without loss. However, if kept near the crystallization temperature for a long time, the excellent properties of the built-in material (amorphous alloy) may be lost. Therefore, as a heating means, for example, a hot bath is preferable because it can rapidly heat the material, and it is also desirable to rapidly cool the material after rolling for the same reason.

本発明でいうアモルフアス粉粒物とは金属と半
金属、または金属と金属の合金で、主として融体
急冷法で作製されるアモルフアス粉粒物をいう。
金属と半金属の合金において金属とは冷えばFe、
Co、Ni、Cr、Mo、V、Nb、Zr、Tiなどの1種
または2種以上、半金属はB、Si、C、P、Ge
などの1種または2種以上である。金属と金属の
合金の場合、金属の組合せの例として、Fe−Ti、
Fe−Zr、Cu−Tiなどがある。
The amorphous amorphous powder or granule in the present invention refers to an amorphous amorphous powder or granule that is an alloy of a metal and a metalloid, or a metal and a metal, and is mainly produced by a melt quenching method.
In alloys of metals and metalloids, when the metal cools, it becomes Fe,
One or more of Co, Ni, Cr, Mo, V, Nb, Zr, Ti, etc., semimetals are B, Si, C, P, Ge
One or more of the following. In the case of metal-metal alloys, examples of metal combinations include Fe-Ti,
Examples include Fe-Zr and Cu-Ti.

融体急冷法には直接アモルフアス粉粒物の作製
が可能な、アトマイズ法、キヤビテーシヨン法、
液中噴霧法、プラズマ溶射法がある。アモルフア
スの粉粒物はまた薄帯や線を作製した後これをボ
ールミルなどで粉砕しても得られる。
Melt quenching methods include atomization method, cavitation method, which can directly produce amorphous amorphous powder and granules.
There are submerged spraying methods and plasma spraying methods. Amorphous powder or granules can also be obtained by producing ribbons or wires and then pulverizing them with a ball mill or the like.

[作用] 本発明では、金属管にアモルフアス粉粒物を内
蔵せしめる。金属管は円筒形状の容器であるた
め、後述の緻密化圧縮によつて、粉粒物の充填密
度を大幅に上昇させることができる。第3図Aの
点線の扁平形状は、実線の円を、周長を変えない
で、上下に直径の1/2高さとなるまで圧縮した図
形である。この際扁平形状の面積は円の面積の約
68%で、この圧縮によつて面積は約32%減少す
る。
[Function] In the present invention, amorphous amorphous powder is incorporated into the metal tube. Since the metal tube is a cylindrical container, the packing density of the granular material can be significantly increased by densification compression, which will be described later. The flat shape indicated by the dotted line in FIG. 3A is a shape obtained by compressing the circle indicated by the solid line vertically to a height of 1/2 of the diameter without changing the circumference. In this case, the area of the flat shape is approximately the area of the circle.
68%, this compression reduces the area by about 32%.

第3図Bの点線の矩形は、実線の正方形を、周
長を変えないで、上下に高さが1/2になるまで圧
縮した図形で、矩形の面積は正方形の面積の75%
で、この圧縮によつて面積は25%減少する。本発
明では圧延に先立ち、内蔵物の充填密度を上昇さ
せるために、金属管を上下方向に圧縮する緻密化
圧縮を行う。この緻密化圧縮により、金属管の横
断面の形状は、第3図Aの円形から扁平形状とな
るが、この際の充填密度の上昇(断面積の減少)
は、他の形状の金属容器、例えば断面形状が第3
図Bの正方形の金属容器に比べて大きく、従つて
本発明の金属管は他の形状の金属容器に比べて、
緻密化圧縮の際、アモルフアス粉粒物の充填密度
を上昇せしめるのに適している。
The dotted line rectangle in Figure 3B is a solid line square compressed vertically to 1/2 of its height without changing its perimeter, and the rectangle's area is 75% of the square's area.
This compression reduces the area by 25%. In the present invention, prior to rolling, densification compression is performed to compress the metal tube in the vertical direction in order to increase the packing density of the built-in components. Due to this densification and compression, the cross-sectional shape of the metal tube changes from the circular shape shown in Figure 3A to a flattened shape, but at this time the packing density increases (the cross-sectional area decreases).
is a metal container with another shape, for example, a third cross-sectional shape.
It is larger than the square metal container shown in Figure B, and therefore the metal tube of the present invention is larger than other shaped metal containers.
Suitable for increasing the packing density of amorphous amorphous powder during compaction.

本発明の金属容器は断面が円形で隅部がない金
属管であるために、アモルフアス粉粒物は断面に
一様な密度で充填される。又長尺の金属容器であ
るために、例えば緻密化圧縮も圧延によるため能
率がよく、又長尺物であるため内蔵したアモルフ
アスを立体成形物とする圧延も高能率で且つ高い
歩留とすることができる。
Since the metal container of the present invention is a metal tube with a circular cross section and no corners, the cross section is filled with amorphous powder at a uniform density. In addition, since it is a long metal container, for example, densification compression is performed by rolling, which is efficient.Also, since it is a long product, rolling of the built-in amorphous aluminium into a three-dimensional molded product is also highly efficient and yields high. be able to.

本発明では、強制的噛み込みによる圧延を利用
しているため、従来の静水圧による粉末成形法
(HIP、CIPなど)では起り得ない、粉粒物どう
しの剪断的な変形(こすれ合い)が起きる。また
強度の高い金属製容器と共に圧延されるため、大
きな圧下力を内蔵物が受けることとなり、従つて
粒子等の大きな変形も起る。その結果内蔵物相互
の強制的密着性の点で極めて優れた成形体を得る
ことができる。この事実は又本発明の方法が、従
来の焼結法や熱間圧延法によるよりもはるかに低
い温度で、理論密度あるいはそれに近い密度の成
形体を作り得る結果をもたらす。アモルフアス粉
は昇温すると優れた性質が失われるが、本発明で
は低温で密度の高い成形体ができるため、その優
れた物理的.化学的特性は立体成形物となつても
維持される。本発明では、金属管内を真空密閉し
て圧延してもよいが、金属管内の空気や、例えば
不活性ガス雰囲気下で製造した金属管内の不活性
ガスは、ガス抜き用の細孔を設けて管の両端を封
じれば緻密化圧縮の際に大部分が管外に放出され
る。
In the present invention, since rolling by forced biting is used, shear deformation (rubbing) of powder particles against each other, which cannot occur with conventional hydrostatic pressure powder compacting methods (HIP, CIP, etc.), is avoided. get up. Furthermore, since the container is rolled together with a high-strength metal container, the internal components are subjected to a large rolling force, resulting in large deformation of the particles. As a result, it is possible to obtain a molded article which is extremely excellent in forcible adhesion between the built-in parts. This fact also results in the method of the present invention being able to produce compacts having a density at or close to the theoretical density at a much lower temperature than conventional sintering or hot rolling methods. Amorphous amorphous powder loses its excellent properties when heated, but in the present invention, a compact with high density can be formed at a low temperature, so its excellent physical properties are improved. The chemical properties are maintained even when the product is made into a three-dimensional molded product. In the present invention, the inside of the metal tube may be vacuum-sealed and rolled, but the air inside the metal tube or the inert gas inside the metal tube manufactured under an inert gas atmosphere may be removed by providing gas vent pores. If both ends of the tube are sealed, most of the material will be released outside the tube during densification and compression.

[実施例] 厚さ5mm、長さ5mのSUS304の鋼帯を、成形
ロールで外径35mm、内径25mmの管状に曲げ加工
し、第1図の方法で、金属帯の端部を電子ビーム
溶接で順次接合し、接合に際して溶接部の全面か
ら供給管を介して、アモルフアス合金
(Fe79Si8B13)の帯状箔を粉砕した粉体を溶接部
の後面のアルゴンガスを充満したステンレス鋼管
内に充填し、長さ5mのアモルフアス粉を内蔵し
たステンレス鋼管を製作した。このステンレス鋼
管の両端をガス抜き用の細孔を設けて封じ、圧延
により20mm厚さに緻密化圧縮した後、510℃に保
たれたソルトバス中に2分間浸漬し、すぐさま1
段パスにより11mm厚さに圧延した。圧延はロール
径約300mmの圧延機で、約0.1m/sの圧延速度で
行つた。ロール通過後に圧延物はすぐさま水冷し
た。冷却後ステンレス部を取除き、厚み約3.5mm、
巾約35mmのアモルフアス立体成形物を取り出し
た。この立体成形物をX線回析の結果、アモルフ
アス状態は保たれていることが判つた。
[Example] A SUS304 steel strip with a thickness of 5 mm and a length of 5 m was bent into a tubular shape with an outer diameter of 35 mm and an inner diameter of 25 mm using forming rolls, and the ends of the metal strip were electron beam welded using the method shown in Figure 1. At the time of joining, powder obtained by crushing a strip of amorphous alloy (Fe 79 Si 8 B 13 ) foil is passed through a supply pipe from the entire surface of the welded part into a stainless steel pipe filled with argon gas at the rear of the welded part. A 5 m long stainless steel pipe containing amorphous amorphous powder was manufactured. After sealing both ends of this stainless steel pipe with pores for gas venting and compacting it by rolling to a thickness of 20 mm, it was immersed in a salt bath maintained at 510°C for 2 minutes, and immediately
It was rolled to a thickness of 11 mm using a step pass. The rolling was carried out using a rolling mill with a roll diameter of about 300 mm at a rolling speed of about 0.1 m/s. After passing through the rolls, the rolled product was immediately cooled with water. After cooling, the stainless steel part was removed and the thickness was approximately 3.5mm.
An amorphous three-dimensional molded product with a width of about 35 mm was taken out. As a result of X-ray diffraction of this three-dimensional molded product, it was found that the amorphous state was maintained.

[発明の効果] 本発明によつて、アモルフアスの立体成形物を
工業規模で、高い能率や歩留りで製造する事が可
能となる。
[Effects of the Invention] According to the present invention, it becomes possible to produce a three-dimensional amorphous molded product on an industrial scale with high efficiency and yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のアモルフアスを内蔵する金属
管の成形工程と溶接工程と充填工程を示す図、第
2図は本発明のアモルフアスを内蔵する金属管の
圧延工程を示す図、第3図は本発明の緻密化圧縮
の作用を説明する図である。 1:金属帯、2:フオーミングロール、3:溶
接機、4:アモルフアス粉粒物槽、5:供給管、
6:アモルフアス粉粒物、7:金属管、8:ロー
ル。
FIG. 1 is a diagram showing the forming process, welding process, and filling process of a metal tube containing amorphous acetate according to the present invention, FIG. It is a figure explaining the effect|action of densification compression of this invention. 1: Metal band, 2: Forming roll, 3: Welding machine, 4: Amorphous amorphous powder tank, 5: Supply pipe,
6: Amorphous amorphous powder, 7: Metal tube, 8: Roll.

Claims (1)

【特許請求の範囲】[Claims] 1 金属帯を連続的に管状に曲げ加工する成形工
程と、該曲げ成形された金属帯の端部を連続的に
接合する溶接工程と、溶接によつて成形された金
属管内にアモルフアス合金粉粒物を連続的に充填
する充填工程と、アモルフアス合金粉粒物を内蔵
せしめた金属管を該アモルフアス合金の結晶化温
度直下に加熱する加熱工程と、該加熱体を圧延す
ることにより内蔵せしめたアモルフアス合金粉粒
物をアモルフアス合金立体成形物とする圧延工程
とよりなるアモルフアス合金粉粒物の成形方法。
1. A forming process in which a metal strip is continuously bent into a tubular shape, a welding process in which the ends of the bent metal strip are continuously joined, and amorphous alloy powder particles are added to the metal tube formed by welding. a filling step in which the material is continuously filled, a heating step in which the metal tube containing the amorphous amorphous alloy particles is heated to just below the crystallization temperature of the amorphous amorphous alloy, and the amorphous acetate contained in the amorphous acetate by rolling the heating body. A method for forming an amorphous amorphous alloy powder and granules, which comprises a rolling step of turning the alloy powder into an amorphous alloy three-dimensional molded product.
JP7604287A 1986-12-12 1987-03-31 Forming method for amorphous granular alloy material Granted JPS63243235A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP7604287A JPS63243235A (en) 1987-03-31 1987-03-31 Forming method for amorphous granular alloy material
EP87118309A EP0271095A3 (en) 1986-12-12 1987-12-10 Method for the manufacture of formed products from powders, foils, or fine wires
US07/131,715 US4820141A (en) 1986-12-12 1987-12-11 Method for the manufacture of formed products from powders, foils, or fine wires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7604287A JPS63243235A (en) 1987-03-31 1987-03-31 Forming method for amorphous granular alloy material

Publications (2)

Publication Number Publication Date
JPS63243235A JPS63243235A (en) 1988-10-11
JPH0475302B2 true JPH0475302B2 (en) 1992-11-30

Family

ID=13593742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7604287A Granted JPS63243235A (en) 1986-12-12 1987-03-31 Forming method for amorphous granular alloy material

Country Status (1)

Country Link
JP (1) JPS63243235A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5229407A (en) * 1975-09-02 1977-03-05 Miyamoto Kogyo Kk Process for production of titanium bars

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5229407A (en) * 1975-09-02 1977-03-05 Miyamoto Kogyo Kk Process for production of titanium bars

Also Published As

Publication number Publication date
JPS63243235A (en) 1988-10-11

Similar Documents

Publication Publication Date Title
US4050143A (en) Method of producing dense metal tubes or the like
US5445787A (en) Method of extruding refractory metals and alloys and an extruded product made thereby
US4820141A (en) Method for the manufacture of formed products from powders, foils, or fine wires
JPS61246303A (en) Production of composiite powder metallurgical billet
US3824097A (en) Process for compacting metal powder
WO2018083998A1 (en) Bioabsorbable medical device and method for producing same
JP6835036B2 (en) Titanium material
US4069042A (en) Method of pressing and forging metal powder
US4143208A (en) Method of producing tubes or the like and capsule for carrying out the method as well as blanks and tubes according to the method
JPH0475302B2 (en)
US3523354A (en) Method of producing large shapes
JPH0469222B2 (en)
JPH07238303A (en) Method for forming metallic target material having high melting point
JPS63213603A (en) Method for forming and working hardly workable material
JPS63149304A (en) Method for forming three-dimensional formed body from powdery or granular substance, foil or fine wire
JP2752858B2 (en) Manufacturing method of powder alloy billet
JP2860427B2 (en) Method for producing sintered body made of amorphous alloy powder
EP0252193A1 (en) Manufacture and consolidation of alloy metal powder billets
JPS61190008A (en) Production of hot extruded clad metallic pipe by powder metallurgical method
JPS5929082B2 (en) Blanks and their manufacturing methods in steel pipe manufacturing
JPS6296604A (en) Production of powder metallurgical product
JPS602941B2 (en) Processing method of Ni-W alloy ingot
JP3328620B2 (en) Method for producing low oxygen metal powder products
CA1050217A (en) Capsules from which elongate metal objects can be produced by extrusion
JPH05456B2 (en)