JPH07235744A - Increased high-temperature elongation copper foil for printing circuit and its manufacture - Google Patents

Increased high-temperature elongation copper foil for printing circuit and its manufacture

Info

Publication number
JPH07235744A
JPH07235744A JP3628094A JP3628094A JPH07235744A JP H07235744 A JPH07235744 A JP H07235744A JP 3628094 A JP3628094 A JP 3628094A JP 3628094 A JP3628094 A JP 3628094A JP H07235744 A JPH07235744 A JP H07235744A
Authority
JP
Japan
Prior art keywords
copper
copper foil
glossy
clad laminate
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3628094A
Other languages
Japanese (ja)
Inventor
Mitsuyoshi Matsuda
光由 松田
Toshio Kurosawa
俊雄 黒澤
Takashi Natsume
隆 夏目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nikko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Co Ltd filed Critical Nikko Materials Co Ltd
Priority to JP3628094A priority Critical patent/JPH07235744A/en
Publication of JPH07235744A publication Critical patent/JPH07235744A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To develop a high-temperature elongation copper foil for printing circuits, which is less liable to break on a copper-clad laminate. CONSTITUTION:The copper foil has a glossy surface having a Vickers hardness of 65 or more on its glossy surface side after the manufacture of a copper-clad laminate, and the roughness on its glossy side is decreased to less than a central line average roughness of 0.15mum. Intrusion of foreign matters into the copper foil is suppressed by raising the surface hardness of the glossy surface after the manufacture of a copper-clad laminate, and catching foreign matter is lessened and mutual catching by the peaks of the glossy surface of the copper foil is also lessened. For increasing the hardness on the glossy side after the manufacture of a copper-clad laminate, there are methods of fitting a layer hard to recrystallize on the glossy side, performing alloy printing, performing plating so as to make an alloy with copper by diffusion by heat generated at the time of the manufacture of the copper-clad laminate, etc. For decreasing the roughness on the glossy side, there are methods of fining the polishing of a drum for manufacturing raw foil, plating copper or zinc on the glossy side of performing etching, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、印刷回路用高高温伸び
銅箔及びその製造方法に関するものであり、特には、銅
張積層板の製造工程中および製造後に銅箔の破れが発生
しないよう、光沢面側の銅張積層板製造後の硬度を高め
た印刷回路用高高温伸び銅箔、更には加えて表面粗さを
も低減させた、平滑で且つ銅張積層板製造後の硬度を高
めた印刷回路用高高温伸び銅箔及びその製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-temperature and high-strength copper foil for printed circuits and a method for manufacturing the same, and more particularly, to prevent breakage of the copper foil during and after the manufacturing process of a copper clad laminate. , High-temperature stretched copper foil for printed circuits with increased hardness after production of the copper-clad laminate on the glossy side, and also reduced surface roughness in addition to the smoothness after production of the copper-clad laminate The present invention relates to an enhanced high temperature stretched copper foil for printed circuits and a method for manufacturing the same.

【0002】[0002]

【従来の技術】銅及び銅合金箔(以下、銅箔と称する)
は、電器・電子関連産業の発展に大きく寄与しており、
特に印刷回路材として不可欠の存在となっている。印刷
回路用銅箔は一般に、合成樹脂ボード、フィルム等の基
材に接着剤を介して或いは接着剤を使用せずに高温高圧
下で積層接着して銅張積層板を製造し、その後目的とす
る回路を形成するべく必要な回路を印刷した後、不要部
を除去するエッチング処理が施される。最終的に、所要
の素子が半田付けされて、エレクトロニクスデバイス用
の種々の印刷回路板を形成する。印刷回路板用銅箔に対
する品質要求は、樹脂基材と接着される面(粗化面)と
非接着面(光沢面)とで異なり、それぞれに多くの方法
が提唱されている。
2. Description of the Related Art Copper and copper alloy foils (hereinafter referred to as copper foils)
Contributes greatly to the development of the electrical and electronic related industries,
In particular, it is indispensable as a printed circuit material. Copper foil for printed circuits is generally manufactured by laminating and adhering to a substrate such as a synthetic resin board or a film via an adhesive under high temperature and high pressure without using an adhesive to produce a copper clad laminate, and then the purpose After printing the necessary circuit to form the circuit, an etching process for removing unnecessary parts is performed. Finally, the required elements are soldered to form various printed circuit boards for electronic devices. Quality requirements for a copper foil for a printed circuit board are different between a surface (roughened surface) bonded to a resin substrate and a non-bonded surface (glossy surface), and many methods have been proposed for each.

【0003】銅張積層板の製造方法としては、ホットプ
レス法や近時では連続法が採用されている。例えば、ホ
ットプレス法による紙基材フェノール樹脂銅張積層板の
製造を例にとると、フェノール樹脂の合成、紙基材への
フェノール樹脂の含浸及び乾燥を行ってプリプレグを製
造し、最後に、所定数量のプリプレグと銅箔とを組み合
わせ、多段式プレス機により熱圧成形を行い、解板、耳
切りを行い、次工程へと送られる。連続法の場合、片面
銅張積層板及び両面銅張積層板が製造されている。例え
ば、紙基材ポリエステル樹脂銅張積層板の場合、複数個
のロール状原紙から原紙が繰り出され、それぞれ個別に
紙処理、樹脂含浸工程を経て、複数枚の樹脂含浸紙はロ
ール対によって積層される。次いで接着剤塗布工程を経
た銅箔、片面の場合は銅箔とキャリアがラミネートされ
る。この積層およびラミネート工程で製品厚みを制御す
る。次に硬化炉へ送り込まれ、樹脂の硬化反応が起こ
り、硬化する。硬化後定尺切断、アフターキュアおよび
端面の研摩工程を経て、さらに外観検査、特性検査を実
施し製品となる。原紙、銅箔およびキャリアなどのロー
ル状原料は、逐次新しいロールへ接続され、継続的な運
転が実施される。片面と両面の相違点は、片面の場合、
下方よりキャリアフィルムを繰り出し、樹脂硬化後この
キャリアを引き剥し、巻取るのに対し、両面の場合は下
方からも接着剤塗布工程を経て銅箔を繰り出す点であ
り、他の工程は、片面も両面も同等である。その他、ガ
ラス−エポキシ樹脂基板等に関しても同様の工程で製造
される。
As a method of manufacturing a copper clad laminate, a hot pressing method or a continuous method has recently been adopted. For example, taking the production of a paper-based phenolic resin copper-clad laminate by a hot pressing method as an example, a prepreg is produced by synthesizing a phenolic resin, impregnating a paper-based resin with a phenolic resin and drying, and finally, A predetermined number of prepregs and copper foil are combined, thermocompression molding is performed by a multi-stage press, stripping and edge cutting are performed, and the next step is sent. In the case of the continuous method, single-sided copper-clad laminates and double-sided copper-clad laminates are manufactured. For example, in the case of a paper-based polyester resin copper-clad laminate, a base paper is fed out from a plurality of roll-shaped base papers, and a plurality of resin-impregnated papers are laminated by a roll pair through a paper treatment and a resin impregnation step, respectively. It Next, the copper foil that has undergone the adhesive application step, and in the case of one side, the copper foil and the carrier are laminated. The product thickness is controlled in this laminating and laminating process. Next, it is sent to a curing furnace, where a curing reaction of the resin occurs and the resin is cured. After curing, the product is subjected to regular length cutting, after-curing and polishing of the end face, and further visual inspection and characteristic inspection to obtain a product. Roll-shaped raw materials such as base paper, copper foil and carrier are successively connected to new rolls and continuously operated. The difference between one side and both sides is that in the case of one side,
The carrier film is fed from below, the carrier is peeled off after resin curing, and wound up, whereas in the case of both sides, the copper foil is also fed from below through the adhesive application step, and the other steps are also on one side. Both sides are the same. In addition, the glass-epoxy resin substrate and the like are manufactured in the same process.

【0004】銅張積層板製造時に、樹脂含浸基材が絶縁
層となる際の硬化収縮や樹脂の熱膨張などの樹脂の動き
による絶縁層内部の歪の発生、及びこれに伴う印刷回路
板の反りやねじれの発生を抑制するためには、高温時の
伸び率の高い銅箔を用いればよいことが知られている。
例えば、特開平5−243698号の記載に従えば、
「従来の金属箔張り積層板の連続製造方法において用い
られている金属箔は、高温時の伸び率が小さい。たとえ
ば180℃での伸び率が1〜8%程度である。このため
樹脂含浸基材が絶縁層となる際の硬化収縮や樹脂の熱膨
張など樹脂の動きに追従できず絶縁層内部に歪みが生じ
やすくなる。この歪みが金属箔張り積層板に反りやねじ
れ現象を起こさせる。特に、長尺の金属箔を用いて連続
的に製造された金属箔張り積層板では、その製造時に金
属箔を常に引張りながら積層一体化するため伸び率が小
さいと緩和しろが少ないため一層著しい反りやねじれ現
象を起こさせる。また、両面金属箔張り積層板の場合、
片面の金属箔のみを除去すると、絶縁層の歪みのために
反り、ねじれが大きくなる。また、絶縁層内部の歪みの
ため、金属箔を除去した時の寸法変化率が大きくなるな
どの問題を有していた。」として、「連続的に製造され
る金属箔張り積層板の反り、ねじれの少ないものを、さ
らに寸法安定性に優れたものとなる金属箔張り積層板及
びその製造方法を提供すること」を課題として、150
℃〜200℃での金属箔の伸び率が10〜50%である
金属箔を用いることを記載している。
During the production of a copper-clad laminate, strain inside the insulating layer due to movement of the resin such as curing shrinkage when the resin-impregnated base material serves as an insulating layer or thermal expansion of the resin, and the accompanying distortion of the printed circuit board. It is known that a copper foil having a high elongation at high temperature may be used to suppress the occurrence of warpage and twist.
For example, according to the description in JP-A-5-243698,
"The metal foil used in the conventional method for continuously producing a metal foil-clad laminate has a small elongation at high temperature. For example, the elongation at 180 ° C is about 1 to 8%. When the material becomes an insulating layer, it cannot follow the movement of the resin such as curing shrinkage and thermal expansion of the resin, so that distortion easily occurs inside the insulating layer, which causes the metal foil-clad laminate to warp or twist. In particular, in a metal foil-clad laminated sheet that is continuously manufactured using a long metal foil, the metal foil is always pulled and integrated during the manufacturing process so that the elongation is small and the relaxation margin is small, so the warpage is more remarkable. In addition, in the case of a double-sided metal foil-clad laminate,
If only one side of the metal foil is removed, the warp due to the distortion of the insulating layer and the twist becomes large. Further, due to the strain inside the insulating layer, there is a problem that the dimensional change rate becomes large when the metal foil is removed. "Providing a metal foil-clad laminate and a method for producing the same, which is capable of producing a metal foil-clad laminate having a small amount of warp and twist, which is further excellent in dimensional stability." As 150
It describes to use a metal foil having an elongation of 10 to 50% at a temperature of ℃ to 200 ℃.

【0005】銅箔の場合、180℃引張り:抗張力10
〜20kg/mm2 、伸び:10〜50%の、例えばS
TCS箔(日鉱グールド・フォイル(株)製)と呼ばれ
る高高温伸び銅箔が得られている。
In the case of copper foil, tensile at 180 ° C .: Tensile strength 10
-20 kg / mm 2 , elongation: 10-50%, for example S
A high temperature stretched copper foil called TCS foil (manufactured by Nikko Gould Foil Co., Ltd.) has been obtained.

【0006】[0006]

【発明が解決しようとする課題】この種の高高温伸び銅
箔は、銅張積層板製造時にかかる熱により再結晶がおこ
り、硬度が低下してしまう。このため、従来からの印刷
回路用高高温伸び銅箔では、銅張積層板製造後、積載搬
送時の振動等で銅張積層板が動く際、例えば切断時に発
生した樹脂粉等の異物が混入してまた表面に引っかか
り、銅箔中に食い込みやすくなるため、銅箔の破れが発
生しやすくなるという問題点があった。また、両面銅張
積層板の場合、光沢面側の山どうしの引っかかりでも同
様の銅箔の破れが発生しやすかった。
The high-temperature and high-strength copper foil of this type is recrystallized by the heat applied during the production of the copper-clad laminate, and its hardness is lowered. Therefore, in the conventional high-temperature and high-strength copper foil for printed circuits, after the copper-clad laminate is manufactured, when the copper-clad laminate moves due to vibration during loading and conveying, foreign matter such as resin powder generated during cutting is mixed. Moreover, the surface of the copper foil is easily caught in the copper foil and is likely to break into the copper foil. Further, in the case of a double-sided copper-clad laminate, similar tearing of the copper foil was likely to occur even if the mountains on the glossy side were caught.

【0007】本発明は上記の欠点を解決することを課題
としたものである。即ち、本発明の課題は、銅張積層板
製造後、銅箔の破れの発生を抑制できる印刷回路用高高
温伸び銅箔を開発することにある。
The present invention aims to solve the above-mentioned drawbacks. That is, an object of the present invention is to develop a high-temperature stretchable copper foil for a printed circuit, which can suppress the occurrence of breakage of the copper foil after manufacturing the copper-clad laminate.

【0008】[0008]

【課題を解決するための手段】上記欠点を解決するた
め、本発明者等が鋭意検討した結果、銅張積層板製造後
に露出する面、すなわち、光沢面側の銅張積層板製造後
の表面硬度をビッカース硬度で65以上にまで高めるこ
とにより混入する樹脂粉等の異物の食い込みを防止し、
銅箔の破れを抑制することができ、更には一見平滑には
見えるがまだなお表面に粗さが残存しており、これが樹
脂粉等の異物の引っかかりや光沢面側の山どうしの引っ
かかりの原因ともなっており、高高温伸び銅箔の光沢面
側の粗さを中心線平均粗さRaで表してRa:0.15
μm以下に低減させることにより、こうした引っかかり
を激減させることができ、銅箔の破れの発生を抑制でき
ることを見出した。この知見に基づいて、本発明は、
(1)高高温伸び銅箔において、該高高温伸び銅箔が銅
張積層板製造後の光沢面側のビッカース硬度が65以上
となる光沢面を具備することを特徴とする印刷回路用高
高温伸び銅箔並びに(2)高高温伸び銅箔において、該
高高温伸び銅箔が光沢面側の粗さを中心線平均粗さRa
で表してRa:0.15μm以下に低減することにより
平滑とされ、同時に銅張積層板製造後の光沢面側のビッ
カース硬度が65以上となる光沢面を具備することを特
徴とする印刷回路用高高温伸び銅箔を提供する。更に、
本発明はまた、高高温伸び銅箔の光沢面側に銅張積層板
製造時の熱により再結晶されにくい層をつけるか、高高
温伸び銅箔の光沢面側に合金めっきを施すか、もしくは
高高温伸び銅箔の光沢面側に銅張積層板製造時の熱によ
り拡散して銅と合金を作るようなめっきを施すことによ
り銅張積層板製造後の光沢面側のビッカース硬度が65
以上となる光沢面を具備する印刷回路用高高温伸び銅箔
を製造する方法をも提供する。
Means for Solving the Problems As a result of intensive studies made by the present inventors in order to solve the above-mentioned drawbacks, as a result, the surface exposed after the production of the copper-clad laminate, that is, the surface after the production of the copper-clad laminate on the gloss side By increasing the hardness to a Vickers hardness of 65 or more, it is possible to prevent the intrusion of foreign matter such as mixed resin powder,
It is possible to prevent the copper foil from breaking, and at first glance it looks smooth, but there is still roughness on the surface, which is the cause of foreign matter such as resin powder being caught or between the mountains on the glossy side. Also, the roughness on the glossy side of the high-temperature and high-strength copper foil is expressed by the center line average roughness Ra, Ra: 0.15.
It has been found that such a catch can be drastically reduced and the occurrence of tearing of the copper foil can be suppressed by reducing the thickness to less than or equal to μm. Based on this finding, the present invention
(1) High-temperature and high-strength copper foil, wherein the high-temperature and high-strength copper foil is provided with a glossy surface having a Vickers hardness of 65 or more on the glossy side after the copper-clad laminate is manufactured. In the stretched copper foil and (2) high-temperature and high-temperature stretched copper foil, the high-temperature and high-strength stretched copper foil has a roughness on a glossy surface side as a center line average roughness Ra.
The printed circuit is characterized by having a Ra of 0.15 μm or less to make it smooth, and at the same time, having a glossy surface with a Vickers hardness of 65 or more on the glossy side after the production of the copper clad laminate. Provide high temperature stretched copper foil. Furthermore,
The present invention also provides a layer on the glossy side of the high-temperature stretched copper foil that is difficult to recrystallize due to heat during the production of the copper-clad laminate, or performs alloy plating on the glossy side of the high-temperature stretched copper foil, or The Vickers hardness on the glossy side of the high-temperature stretched copper foil is 65 after the copper-clad laminate is produced by plating the glossy side of the high-temperature stretched copper foil so that it is diffused by heat during the production of the copper-clad laminate to form an alloy with copper.
Also provided is a method for producing a high-temperature stretched copper foil for a printed circuit, which has a glossy surface as described above.

【0009】[0009]

【作用】印刷回路用高高温伸び銅箔の光沢面側の銅張積
層板製造後の表面硬度がビッカース硬度で65以上と高
くされるため、樹脂粉等の異物の銅箔中への食い込みが
抑制され、銅箔の破れの発生が抑制され、更には印刷回
路用高高温伸び銅箔の光沢面側の粗さを中心線平均粗さ
Raで表してRa:0.15μm以下に低減させること
により、樹脂粉等の異物が入り込んでも、引っかかりが
少なく、コロの様な働きをし、銅箔中に食い込みにくく
なる。また、銅箔光沢面の山どうしの引っかかりも少な
くなる。従って、銅箔の破れの発生が抑制される。光沢
面側の銅張積層板製造後の硬度を上昇させるには、光沢
面側に銅張積層板製造時の熱により再結晶されにくい層
をつける、光沢面側に合金めっきを施す、光沢面側に銅
張積層板製造時の熱により拡散して銅と合金を作るよう
なめっきを施す等を含む幾つかの方法が存在する。ま
た、印刷回路用銅箔の光沢面側の粗さを低減させるに
は、電解銅箔原箔製造用ドラムの研磨を細かくする、光
沢面側にめっきを施す、光沢面側をエッチングする等を
含む幾つかの方法が存在する。
[Function] Since the surface hardness of the high-temperature-stretched copper foil for printed circuits on the glossy side of the copper-clad laminate is increased to 65 or more in terms of Vickers hardness, foreign matter such as resin powder is prevented from penetrating into the copper foil. The occurrence of breakage of the copper foil is suppressed, and further, the roughness on the glossy side of the high-temperature stretched copper foil for printed circuits is expressed by the center line average roughness Ra, and Ra is reduced to 0.15 μm or less. Even if foreign matter such as resin powder enters, it is less likely to get caught and acts like a roller, making it difficult to bite into the copper foil. In addition, there is less chance of catching between the shiny surfaces of the copper foil. Therefore, the occurrence of breakage of the copper foil is suppressed. To increase the hardness of the glossy side after the copper-clad laminate is manufactured, attach a layer on the glossy side that is not easily recrystallized by the heat during the production of the copper-clad laminate, or apply alloy plating to the glossy side. There are several methods, including plating the side to diffuse with the heat during manufacture of the copper clad laminate to form an alloy with copper. In addition, in order to reduce the roughness of the glossy side of the printed circuit copper foil, the polishing of the electrolytic copper foil raw foil manufacturing drum should be done finely, the glossy side should be plated, the glossy side should be etched, etc. There are several ways to include.

【0010】[0010]

【発明の具体的な説明】本発明において使用する銅箔
は、高高温伸び銅箔である。高高温伸び銅箔は、180
℃引張り:抗張力10〜20kg/mm2 、伸び:10
〜50%により特性付けられるものであり、例えば、日
鉱グールド・フォイル(株)製のSTCS箔が例示され
る。
DETAILED DESCRIPTION OF THE INVENTION The copper foil used in the present invention is a high temperature stretched copper foil. High-temperature stretched copper foil is 180
Tensile strength at 10 ° C: Tensile strength 10 to 20 kg / mm 2 , elongation: 10
It is characterized by ˜50%, and examples thereof include STCS foil manufactured by Nikko Gould Foil Co., Ltd.

【0011】本発明自体は高高温伸び銅箔の光沢面に関
与するが、参考までに銅箔粗化面についても述べてお
く。通常、銅箔の、樹脂基材と接着する面即ち粗化面に
は積層後の銅箔の引き剥し強さを向上させることを目的
として、脱脂後の銅箔の表面に例えば銅のふしこぶ状の
電着を行なう銅粗化処理が施される。こうした銅のふし
こぶ状の電着はいわゆるヤケ電着により容易にもたらさ
れる。銅粗化処理の例としては、例えば次の条件が採用
され得る。 〔銅粗化処理条件〕 Cu :5〜50g/l H2 SO4 :10〜100g/l As :0.01〜5g/l 液温 :室温〜50℃ Dk :5〜80A/dm2 時間 :1〜30秒
Although the present invention pertains to the glossy surface of the high-temperature and high-strength copper foil, the roughened surface of the copper foil will be described for reference. Usually, on the surface of the copper foil that is bonded to the resin substrate, that is, the roughened surface, for the purpose of improving the peeling strength of the copper foil after lamination, the surface of the copper foil after degreasing, for example, is made of copper Roughening treatment is performed to perform electrodeposition in the form of strips. Such copper kinky electrodeposition is easily brought about by so-called burn electrodeposition. As an example of the copper roughening treatment, for example, the following conditions can be adopted. [Doaraka processing conditions] Cu: 5~50g / l H 2 SO 4: 10~100g / l As: 0.01~5g / l liquid temperature: room temperature ~50 ℃ D k: 5~80A / dm 2 hours : 1 to 30 seconds

【0012】粗化処理後に、粒子の脱落を防止するため
のかぶせ層として薄い銅めっきが行われる。例えば次の
条件が採用され得る。 〔かぶせ銅薄層めっき条件〕 Cu :30〜100g/l H2 SO4 :10〜200g/l 液温 :室温〜75℃ Dk :5〜60A/dm2 時間 :1〜30秒
After the roughening treatment, thin copper plating is performed as a cover layer for preventing the particles from falling off. For example, the following conditions can be adopted. [Cover thin copper layer plating conditions] Cu: 30~100g / l H 2 SO 4: 10~200g / l liquid temperature: room temperature ~75 ℃ D k: 5~60A / dm 2 Time: 1-30 seconds

【0013】粗化面にCu、Cr、Ni、Fe、Co及
びZnから選択される1種乃至2種以上の単一金属層又
は合金層を形成するトリート処理を行なうことが好まし
い。合金めっきの例としては、Cu−Ni、Cu−C
o、Cu−Ni−Co、Cu−Znその他を挙げること
が出来る(詳細は、特公昭56−9028号、特開昭5
4−13971号、特開平2−292895号、特開平
2−292894号、特公昭51−35711号、特公
昭54−6701号等を参照のこと)。こうしたトリー
ト処理は、銅箔の最終性状を決定するものとしてまた障
壁としての役割を果たす。
It is preferable to perform a treatment for forming a single metal layer or an alloy layer of one or more selected from Cu, Cr, Ni, Fe, Co and Zn on the roughened surface. Examples of alloy plating include Cu-Ni and Cu-C.
o, Cu-Ni-Co, Cu-Zn and others (for details, see Japanese Examined Patent Publication No. 56-9028, Japanese Patent Laid-Open No. Sho 5-9).
4-13971, JP-A-2-292895, JP-A-2-292894, JP-B-51-35711, JP-B-54-6701 and the like). Such treat treatment serves as a determinant and barrier to the final properties of the copper foil.

【0014】さて、本発明が関係する光沢面において
は、まず、銅張積層板製造後の光沢面の硬度を増大する
処理が行われるか或いは銅張積層板製造中再結晶されに
くい生箔が製箔される。銅張積層板製造後の光沢面側の
硬度をビッカース硬度が65以上、好ましくは70以
上、特には75以上に上昇させるもしくは維持するに
は、(1)光沢面側に合金めっきを施す、(2)光沢面
側に銅張積層板製造時の熱により拡散して銅と合金を作
るようなめっきを施す、または(3)光沢面側に銅張積
層板製造時の熱により再結晶されにくい層をつけるとい
ったむ幾つかの方法が可能である。それぞれの具体例を
挙げておく:
Now, in the glossy surface to which the present invention relates, first, a raw foil which is hard to be recrystallized during the production of the copper-clad laminate is produced by a treatment for increasing the hardness of the glossy surface after the production of the copper-clad laminate. It is foiled. In order to increase or maintain the Vickers hardness of 65 or more, preferably 70 or more, particularly 75 or more, on the glossy side after the production of the copper-clad laminate, (1) alloy plating is applied to the glossy side ( 2) The shiny side is plated to form an alloy with copper by diffusing due to the heat during the production of the copper clad laminate, or (3) The gloss side is less likely to be recrystallized by the heat during the production of the copper clad laminate. Several methods are possible, such as layering. Here are specific examples of each:

【0015】(1)合金めっきを施す場合: めっき金属:Cu−Zn、Cu−Ni等の合金めっきを
施す。Cu−Znめっき条件をの例を以下に示す。 〔Cu−Znめっき条件〕 Cu :40〜80g/l Zn :0.5〜5.5g/l NaCN:10〜30g/l NaOH:40〜100g/l 温度 :60〜80℃ Dk :1〜10A/dm2 時間 :1〜10秒
(1) When alloy plating is applied: Plating metal: Alloy plating such as Cu-Zn and Cu-Ni is applied. An example of Cu-Zn plating conditions is shown below. [Cu-Zn plating conditions] Cu: 40 to 80 g / l Zn: 0.5 to 5.5 g / l NaCN: 10 to 30 g / l NaOH: 40 to 100 g / l Temperature: 60 to 80 ° C Dk : 1 to 10 A / dm 2 hours: 1 to 10 seconds

【0016】(2)熱により拡散して銅と合金を作るよ
うなめっきを施す場合:めっき金属として、Zn、S
n、Zn−Ni、Zn−Co等がめっきされる。Znめ
っきの場合のめっき条件の具体例を以下に挙げる: 〔Znめっき〕 Zn :15〜70g/l pH :2.5〜4.5 温度 :40〜60℃ Dk :0.05〜2A/dm2 時間 :1〜10秒
(2) When plating is performed so as to diffuse by heat to form an alloy with copper: Zn, S as plating metals
n, Zn-Ni, Zn-Co, etc. are plated. Specific examples of plating conditions in the case of Zn plating are given below: [Zn plating] Zn: 15 to 70 g / l pH: 2.5 to 4.5 Temperature: 40 to 60 ° C. Dk : 0.05 to 2 A / dm 2 hours: 1 to 10 seconds

【0017】(3)再結晶されにくい層をつける。例え
ば、生箔製箔初期にアノードをつけ足し、低Dk で製箔
し、その後通常の操業条件で操作を行う。電着応力が低
いために、再結晶されにくい電着膜が形成される。
(3) Add a layer that is not easily recrystallized. For example, an anode is added in the initial stage of the raw foil forming process to form a low D k foil, and then the operation is performed under normal operating conditions. Since the electrodeposition stress is low, an electrodeposition film that is difficult to recrystallize is formed.

【0018】更に必要に応じ、光沢面の平滑性を更に向
上するための表面粗さ低減処理が上記銅張り積層板製造
後の硬度上昇のためのめっき前に或いはその後に上記生
箔製箔後に施すことができる。引っかかりを低減し、銅
箔の破れの発生を抑制するには、中心線平均粗さRa:
0.15μm以下に低減させることが必要である。これ
は、例えば銅めっき或いは亜鉛めっきを行うことにより
或いはエッチングを行うことにより実施される。銅めっ
き及び亜鉛めっきの条件例を挙げておく。 〔Cuめっき条件〕 Cu :30〜100g/l H2 SO4 :10〜200g/l 温度 :室温〜75℃ Dk :0.5〜60A/dm2 時間 :1〜30秒 〔Znめっき条件〕 Zn :15〜70g/l pH :2.5〜4.5g/l 温度 :40〜60℃ Dk :0.05〜2A/dm2 時間 :1〜10秒 付着量は通常0.01〜20mg/dm2 、好ましくは
0.05〜10mg/dm2 、特には0.5〜5mg/
dm2 である。この銅めっきによって元の銅箔光沢面に
点在した0.1〜0.3μm範囲のピットは完全に消失
し、全面がめっき操作によって生成した微粒銅乃至亜鉛
で覆われていることが30,000倍の走査電子顕微鏡
(SEM)像で確認された。
Further, if necessary, a surface roughness reducing treatment for further improving the smoothness of the glossy surface may be performed before the plating for increasing the hardness after the production of the copper-clad laminate or after the raw foil making. Can be given. To reduce the catching and suppress the occurrence of tearing of the copper foil, the center line average roughness Ra:
It is necessary to reduce the thickness to 0.15 μm or less. This is done, for example, by copper plating or zinc plating or by etching. Examples of conditions for copper plating and zinc plating are given below. [Cu plating conditions] Cu: 30~100g / l H 2 SO 4: 10~200g / l Temperature: room temperature ~75 ℃ D k: 0.5~60A / dm 2 Time: 1-30 sec [Zn plating conditions] Zn: 15 to 70 g / l pH: 2.5 to 4.5 g / l Temperature: 40 to 60 ° C. Dk : 0.05 to 2 A / dm 2 hours: 1 to 10 seconds Adhesion amount is usually 0.01 to 20 mg / Dm 2 , preferably 0.05 to 10 mg / dm 2 , especially 0.5 to 5 mg /
dm 2 . By this copper plating, the pits in the range of 0.1 to 0.3 μm scattered on the original shiny surface of the copper foil are completely disappeared, and the entire surface is covered with fine copper or zinc produced by the plating operation. It was confirmed by a scanning electron microscope (SEM) image at a magnification of 000.

【0019】光沢面の平滑性を更に向上するための表面
粗さ低減処理として、エッチングも有用である。このエ
ッチングにおいては、特にエッチングの浴種、方法等を
限定するものではない。エッチング方法としては、乾式
(ブラスト、イオン照射)と湿式(化学的方法、電気化
学的方法)に大別されるが、精度、経済性等から、化学
エッチングが最も便宜である。エッチング浴種について
も特に限定するものではないが、銅材等のエッチング液
として良く知られている過硫酸アンモンの水溶液、硫酸
−過酸化水素水溶液等が好適である。エッチング量は、
充分な平滑性を創出できればよく、エッチング液の濃
度、浴温、時間、撹拌状態等によって決まる。一般に、
0.01〜2.5μmのエッチング量で充分である。こ
のための過硫酸アンモンの濃度、浴温、時間、撹拌条件
は一義的には定められないが、過硫酸アンモン濃度:1
0g/l、浴温:25℃、液撹拌線速:1m/秒、及び
エッチング時間:5秒の条件で、エッチング量は0.0
3μmとなる。エッチング液がH22 /H2 SO4
2 O比(wt%)=20.7/2.6/76.7の場
合、エッチング量:2μm程度で好結果が得られた。
Etching is also useful as a surface roughness reducing treatment for further improving the smoothness of the glossy surface. In this etching, the kind of etching bath, method, etc. are not particularly limited. The etching method is roughly classified into a dry method (blasting, ion irradiation) and a wet method (chemical method, electrochemical method), but chemical etching is the most convenient in terms of accuracy and economy. The type of etching bath is also not particularly limited, but an ammonium persulfate aqueous solution, a sulfuric acid-hydrogen peroxide aqueous solution, and the like, which are well known as etching solutions for copper materials and the like, are suitable. The etching amount is
It suffices if sufficient smoothness can be created, and it depends on the concentration of the etching solution, the bath temperature, the time, the stirring state, and the like. In general,
An etching amount of 0.01 to 2.5 μm is sufficient. The concentration of ammonium persulfate, bath temperature, time, and stirring conditions for this purpose are not uniquely determined, but the concentration of ammonium persulfate: 1
The etching amount was 0.0 under the conditions of 0 g / l, bath temperature: 25 ° C., linear liquid stirring speed: 1 m / sec, and etching time: 5 sec.
It becomes 3 μm. The etching solution is H 2 O 2 / H 2 SO 4 /
When the H 2 O ratio (wt%) = 20.7 / 2.6 / 76.7, good results were obtained with an etching amount of about 2 μm.

【0020】この他、銅箔製造時の銅が電着するドラム
の研磨を細かくすることが推奨される。通常#400研
磨ベルト仕上げを#1000研磨ベルト仕上げに変更す
ることにより、高高温伸び銅箔表面の平滑化が図れる。
In addition, it is recommended to finely grind the drum on which copper is electrodeposited during the production of copper foil. By changing the normal # 400 polishing belt finish to the # 1000 polishing belt finish, the surface of the high-temperature stretched copper foil can be smoothed.

【0021】銅張積層板製造後の光沢面の硬度を上昇さ
せるためのめっき時に、その電解条件を調整することに
より、光沢面の平滑化を同時に達成することも可能であ
る。
It is also possible to achieve smoothing of the glossy surface at the same time by adjusting the electrolytic conditions during the plating for increasing the hardness of the glossy surface after the copper clad laminate is manufactured.

【0022】この後、必要に応じて耐熱酸化処理を施
す。耐熱酸化処理は、公知の方法のいずれをも使用する
ことができる。例えば、Znめっきがその代表例であ
る。その電解条件を挙げておく。 〔Znめっき条件〕 ZnSO4 ・7H2 O:50〜350g/l pH(硫酸) :2.5〜4.5 液温 :40〜60℃ Dk :0.05〜0.4A/dm2 時間 :10〜30秒 Zn付着量は一般に15〜1500μg/dm2 、好ま
しくは15〜400μg/dm2 とされる。
After that, a heat resistant oxidation treatment is applied if necessary. For the heat resistant oxidation treatment, any known method can be used. For example, Zn plating is a typical example. The electrolysis conditions are listed below. [Zn plating conditions] ZnSO 4 · 7H 2 O: 50~350g / l pH ( sulfate): 2.5 to 4.5 Liquid temperature: 40~60 ℃ D k: 0.05~0.4A / dm 2 hours : 10 to 30 seconds The Zn deposition amount is generally 15 to 1500 μg / dm 2 , and preferably 15 to 400 μg / dm 2 .

【0023】この他、耐熱酸化性(大気中、100℃以
上×30分、好ましくは200℃以上×30分、特に好
ましくは240℃以上×30分の条件の下で酸化等の変
色を防止すること)を高めるためにZnとNi、Co、
V、W、Mo、Sn、Cr等から選択される1種以上の
金属よりなるZn合金めっき処理等が提唱され、成果を
おさめている。
In addition to the above, thermal oxidation resistance (discoloration such as oxidation under the conditions of 100 ° C. or more × 30 minutes, preferably 200 ° C. or more × 30 minutes, particularly preferably 240 ° C. or more × 30 minutes in the atmosphere is prevented. Zn and Ni, Co,
A Zn alloy plating treatment of one or more kinds of metals selected from V, W, Mo, Sn, Cr and the like has been proposed and achieved.

【0024】例えば、Zn−Ni合金処理を例にとる
と、これは、好ましくはZn−Ni電解めっき浴を使用
して、好ましくは50〜97重量%Zn及び3〜50重
量%Niの組成のZn−Ni合金層を100〜500μ
g/dm2 の付着量でごく薄く形成するようにして実施
される。Ni量が3重量%未満では耐熱酸化性の所要の
向上が得られない。他方Ni量が50重量%を超える
と、半田濡れ性が悪化すると共に、耐熱酸化性もまた悪
化する。Zn−Ni合金層の付着量が100μg/dm
2 未満では、耐熱酸化性の向上が得られない。他方50
0μg/dm2 を超えると、Zn等の拡散により導電性
が悪化する。Zn−Ni合金層は銅箔光沢面の耐熱酸化
性を高め、しかも半田濡れ性、レジスト密着性といった
他の特性を損なうことはない。付着量は外観が銅色とあ
まり変わらないようにするためにも上記のような薄いも
のとされる。Zn−Co合金処理についても同様であ
る。
Taking the Zn-Ni alloy treatment as an example, this preferably uses a Zn-Ni electroplating bath, preferably of a composition of 50-97 wt% Zn and 3-50 wt% Ni. Zn-Ni alloy layer 100-500μ
It is carried out so as to form a very thin film with an adhesion amount of g / dm 2 . If the amount of Ni is less than 3% by weight, the required improvement in thermal oxidation resistance cannot be obtained. On the other hand, when the amount of Ni exceeds 50% by weight, the solder wettability deteriorates and the thermal oxidation resistance also deteriorates. Adhesion amount of Zn-Ni alloy layer is 100 μg / dm
If it is less than 2 , the improvement of the thermal oxidation resistance cannot be obtained. The other 50
When it exceeds 0 μg / dm 2 , conductivity is deteriorated due to diffusion of Zn and the like. The Zn-Ni alloy layer enhances the thermal oxidation resistance of the glossy surface of the copper foil and does not impair other properties such as solder wettability and resist adhesion. The adhered amount is made thin as described above so that the appearance is not so different from the copper color. The same applies to the Zn-Co alloy treatment.

【0025】Zn−Niめっき浴及びZn−Coめっき
浴の組成及び条件例は次の通りである: 〔Zn−Ni(乃至Zn−Co)めっき浴条件〕 Zn :5〜50g/l Ni(乃至Co):1〜50g/l pH :2.5〜4 温度 :30〜60℃ 電流密度 :0.5〜5A/dm2 めっき時間 :0.1〜10秒
Compositions and examples of conditions of the Zn-Ni plating bath and the Zn-Co plating bath are as follows: [Zn-Ni (or Zn-Co) plating bath conditions] Zn: 5 to 50 g / l Ni (or Co): 1 to 50 g / l pH: 2.5 to 4 Temperature: 30 to 60 ° C. Current density: 0.5 to 5 A / dm 2 Plating time: 0.1 to 10 seconds

【0026】その後、こうした耐熱酸化処理層の上又は
耐熱酸化処理層のない光沢面にCr系防錆処理が施され
る。Cr系防錆層とは、(1)クロム酸化物の単独皮膜
処理或いは(2)クロム酸化物と亜鉛及び(又は)亜鉛
酸化物との混合皮膜処理或いは(3)それらの組合せに
より形成されたクロム酸化物を主体とする防錆層を云
う。
Thereafter, a Cr-based rust preventive treatment is applied to the heat-resistant oxidation-treated layer or the glossy surface without the heat-resistant oxidation-treated layer. The Cr-based anticorrosion layer is formed by (1) a single film treatment of chromium oxide, (2) mixed film treatment of chromium oxide and zinc and / or zinc oxide, or (3) a combination thereof. This is a rust preventive layer mainly composed of chromium oxide.

【0027】クロム酸化物の単独皮膜処理に関しては、
浸漬クロメート又は電解クロメートいずれでも良い。耐
候性が要求されるときには、電解クロメートが好まし
い。浸漬クロメート或いは電解クロメートの条件は斯界
で確立されている条件に従う。例えば、浸漬クロメート
及び電解クロメート処理の条件例は次の通りである: (A)浸漬クロメート処理: K2 Cr27 :0.5〜1.5g/l pH :1.4〜5.0 温度 :20〜60℃ 時間 :3〜10秒 (B)電解クロメート処理: K2 Cr27 :0.2〜20g/l (Na2 Cr27 ,CrO3 ) 酸 :りん酸,硫酸,有機酸 pH :1.0〜3.5 液温 :20〜40℃ Dk :0.1〜0.5A/dm
2 時間 :10〜60秒 Cr付着量は、50μg/dm2 以下、好ましくは15
〜30μg/dm2 である。
Regarding the single coating of chromium oxide,
Either immersion chromate or electrolytic chromate may be used. When weather resistance is required, electrolytic chromate is preferable. The conditions of immersion chromate or electrolytic chromate follow the conditions established in the art. For example, examples of conditions for immersion chromate and electrolytic chromate treatment are as follows: (A) Immersion chromate treatment: K 2 Cr 2 O 7 : 0.5 to 1.5 g / l pH: 1.4 to 5.0 Temperature: 20 to 60 ° C. Time: 3 to 10 seconds (B) Electrolytic chromate treatment: K 2 Cr 2 O 7 : 0.2 to 20 g / l (Na 2 Cr 2 O 7 , CrO 3 ) acid: phosphoric acid, sulfuric acid , Organic acid pH: 1.0 to 3.5 Liquid temperature: 20 to 40 ° C. D k : 0.1 to 0.5 A / dm
2 hours: 10 to 60 seconds Cr adhesion amount is 50 μg / dm 2 or less, preferably 15
˜30 μg / dm 2 .

【0028】クロム酸化物と亜鉛/亜鉛酸化物との混合
物皮膜処理とは、亜鉛塩又は酸化亜鉛とクロム酸塩とを
含むめっき浴を用いて電気めっきにより亜鉛又は酸化亜
鉛とクロム酸化物とより成る亜鉛−クロム基混合物の防
錆層を被覆する処理であり、電解亜鉛・クロム処理と呼
ばれる。めっき浴としては代表的に、K2 Cr27
Na2 Cr27 等の重クロム酸塩やCrO3 等の少な
くとも一種と、水溶性亜鉛塩、例えばZnO、ZnSO
4 ・7H2 O等の少なくとも一種と、水酸化アルカリと
の混合水溶液が用いられる。代表的なめっき浴組成と電
解条件例は次の通りである: (C)電解亜鉛・クロム処理 K2 Cr27 (Na2 Cr27 又はCrO3 ) :2〜10g/l NaOH又はKOH :10〜50g/l ZnO又は ZnSO4 ・7H2 O:0.05〜10g/l pH :7〜13 浴温 :20〜80℃ 電流密度 :0.05〜5A/dm2 時間 :5〜30秒 アノード :Pt−Ti板、ステンレス鋼板
等 クロム酸化物はクロム量として15μg/dm2 以上そ
して亜鉛は30μg/dm2 以上の被覆量が要求され
る。粗面側と光沢面側とで厚さを異ならしめても良い。
こうした防錆方法は、特公昭58−7077、61−3
3908、62−14040等に記載されている。クロ
ム酸化物単独の皮膜処理及びクロム酸化物と亜鉛/亜鉛
酸化物との混合物皮膜処理の組合せも有効である。
The treatment of a mixture of chromium oxide and zinc / zinc oxide is carried out by electroplating zinc or zinc oxide and chromium oxide by electroplating using a plating bath containing zinc salt or zinc oxide and chromate. This is a treatment for coating the rust preventive layer of the zinc-chromium group mixture, which is called electrolytic zinc-chromium treatment. The plating bath is typically K 2 Cr 2 O 7 ,
At least one dichromate such as Na 2 Cr 2 O 7 or CrO 3 and a water-soluble zinc salt such as ZnO or ZnSO
4 - at least one 7H 2 O, etc., a mixed aqueous solution of alkali hydroxide is used. Typical plating bath compositions and examples of electrolysis conditions are as follows: (C) Electrolytic zinc / chromium treatment K 2 Cr 2 O 7 (Na 2 Cr 2 O 7 or CrO 3 ): 2 to 10 g / l NaOH or KOH: 10 to 50 g / l ZnO or ZnSO 4 · 7H 2 O: 0.05~10g / l pH: 7~13 bath temperature: 20 to 80 ° C. current density: 0.05~5A / dm 2 Time: 5 30 seconds Anode: Pt-Ti plate, stainless steel plate, etc. Chromium oxide is required to have a chromium amount of 15 μg / dm 2 or more, and zinc is required to have a coating amount of 30 μg / dm 2 or more. The rough surface side and the glossy surface side may have different thicknesses.
Such rust prevention method is disclosed in Japanese Examined Patent Publication Sho 58-7077, 61-3.
3908, 62-14040 and the like. Combinations of chromium oxide alone coating and chromium oxide and zinc / zinc oxide mixture coating are also effective.

【0029】最後に、必要に応じ、銅箔と樹脂基板との
接着力の改善を主目的として、防錆層上の少なくとも粗
化面にシランカップリング剤を塗布するシラン処理が施
される。塗布方法は、シランカップリング剤溶液のスプ
レーによる吹付け、コーターでの塗布、浸漬、流しかけ
等いずれでもよい。例えば、特公昭60−15654号
は、銅箔の粗面側にクロメート処理を施した後シランカ
ップリング剤処理を行なうことによって銅箔と樹脂基板
との接着力を改善することを記載している。詳細はこれ
を参照されたい。
Finally, if necessary, a silane treatment for applying a silane coupling agent to at least the roughened surface of the rust-preventive layer is performed for the main purpose of improving the adhesive force between the copper foil and the resin substrate. The coating method may be spraying of a silane coupling agent solution, coating with a coater, dipping, pouring, or the like. For example, Japanese Examined Patent Publication No. 60-15654 describes that the adhesion between the copper foil and the resin substrate is improved by subjecting the rough surface side of the copper foil to a chromate treatment and then a silane coupling agent treatment. . For details, refer to this.

【0030】銅張積層板製造のための基材としては、ガ
ラスなどの無機繊維、紙等が使用されそして含浸樹脂と
してはフェノール樹脂、エポキシ樹脂、ポリイミド樹
脂、不飽和ポリエステル樹脂等が使用される。最初に述
べたように、銅張積層板の製造方法としては、ホットプ
レス法や近時では連続法が採用されている。例えば、ホ
ットプレス法による紙基材フェノール樹脂銅張積層板の
製造の場合、紙基材へのフェノール樹脂の含浸及び乾燥
を行ってプリプレグを製造し、所定数量のプリプレグと
銅箔とを組み合わせ、ステンレス鏡面板と交互に組み合
わせ、更にその外側にクッション材を当て、多段式プレ
ス機の熱盤間に挿入して熱圧成形を行う。プレス条件
は、フェノール樹脂の場合約160℃×100〜150
kg/cm2であり、エポキシ樹脂やポリイミド樹脂の
場合約180〜260℃×25〜80kg/cm2 であ
る。加熱後冷却し、解板、耳切りして、一定の検査後製
品となる。連続法の場合、片面銅張積層板及び両面銅張
積層板が製造されている。例えば、紙基材ポリエステル
樹脂銅張積層板の場合、複数個のロール状原紙から原紙
が繰り出され、それぞれ個別に紙処理、樹脂含浸工程を
経て、複数枚の樹脂含浸紙はロール対によって積層され
る。次いで接着剤塗布工程を経た銅箔、片面の場合は銅
箔とキャリアがラミネートされる。この積層およびラミ
ネート工程で製品厚みを制御する。次に硬化炉へ送り込
まれ、樹脂を硬化する。樹脂硬化後このキャリアを引き
剥し、巻取る。硬化後定尺切断、アフターキュアおよび
端面の研摩工程を経て、さらに一定の検査後製品とな
る。両面の場合には、下方からも接着剤塗布工程を経て
銅箔を繰り出し、同様に処理される。その他、ガラス−
エポキシ樹脂基板等に関しても同様の工程で製造され
る。長尺帯状積層体の硬化は樹脂の種類によって硬化温
度、硬化時間を選択することができるが、硬化は無圧乃
至20kg/cm2 水準とされる。
Inorganic fibers such as glass, paper and the like are used as the base material for producing the copper clad laminate, and phenol resin, epoxy resin, polyimide resin, unsaturated polyester resin and the like are used as the impregnating resin. . As mentioned at the beginning, the hot press method and the recent continuous method have been adopted as the method for producing a copper clad laminate. For example, in the case of producing a paper-based phenolic resin copper-clad laminate by a hot pressing method, a prepreg is produced by impregnating a paper-based phenolic resin and drying, and combining a predetermined amount of prepreg and a copper foil, Alternately combined with stainless steel mirror plate, apply cushioning material to the outside of the plate and insert it between the hot plates of the multi-stage press to perform thermo-compression molding. The pressing conditions are about 160 ° C x 100-150 for phenol resin.
kg / cm 2 , and in the case of an epoxy resin or a polyimide resin, it is about 180 to 260 ° C. × 25 to 80 kg / cm 2 . After heating, it is cooled, and then the plate is removed and the edges are trimmed. In the case of the continuous method, single-sided copper-clad laminates and double-sided copper-clad laminates are manufactured. For example, in the case of a paper-based polyester resin copper-clad laminate, a base paper is fed out from a plurality of roll-shaped base papers, and a plurality of resin-impregnated papers are laminated by a roll pair through a paper treatment and a resin impregnation step, respectively. It Next, the copper foil that has undergone the adhesive application step, and in the case of one side, the copper foil and the carrier are laminated. The product thickness is controlled in this laminating and laminating process. Next, it is sent to a curing oven to cure the resin. After curing the resin, the carrier is peeled off and wound up. After curing, the product is subjected to fixed length cutting, after-curing and polishing of the end face, and then a product after a certain amount of inspection is obtained. In the case of both sides, the copper foil is fed from the lower side through the adhesive applying step and is treated in the same manner. Other, glass-
Epoxy resin substrates and the like are manufactured in the same process. The curing temperature and curing time of the long strip-shaped laminate can be selected depending on the type of resin, but the curing is pressureless to 20 kg / cm 2 .

【0031】こうして得られた銅張積層板は、本発明に
従えば高高温伸び銅箔の光沢面側に銅張積層板製造時の
熱により再結晶されにくい層をつけるか、高高温伸び銅
箔の光沢面側に合金めっきを施すか、もしくは高高温伸
び銅箔の光沢面側に銅張積層板製造時の熱により拡散し
て銅と合金を作るようなめっきを施してあるから、銅張
積層板製造後の光沢面側のビッカース硬度は65以上で
あり、また光沢面の平滑性とあいまって、その後の取扱
中銅箔の破れが生じにくい。
According to the present invention, the copper-clad laminate thus obtained is provided with a layer which is hard to be recrystallized by heat during the production of the copper-clad laminate, or a high-temperature stretched copper foil is provided on the glossy side of the high-temperature stretched copper foil. The shiny side of the foil is alloy-plated, or the shiny side of the high-temperature and high-strength copper foil is plated to form an alloy with copper by diffusing due to the heat generated during the production of the copper-clad laminate. The Vickers hardness on the glossy surface side after the production of the stretched laminated plate is 65 or more, and, together with the smoothness of the glossy surface, the copper foil is unlikely to break during subsequent handling.

【0032】[0032]

【実施例】以下、実施例及び比較例を挙げて本発明を更
に詳しく説明する。なお、各実施例及び比較例で得られ
た印刷回路板の評価方法は次による。 1.硬度測定 装置:AKASHI MVK−E Hardness
Tester 荷重:25g 圧着:15秒 n=3の平均 2.表面粗さ測定 装置:粗さ計:コサカ製;万能表面形状測定機(SE3
C) 3.銅箔の破れ 8cm×8cm,9cm×8cmの基板を用意し(以
下、それぞれ基板A,基板Bとする)、基板Aを下に固
定し、その上にひもを付けた基板Bを置く。その上に、
15kgの錘を載せる。その後、基板Bを50mm/秒
の一定速度で、50mm引っ張る。この時、基板A及び
基板B(初めに接触していた8cm×8cm部)に発生
した破れの個数の和を測定する。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples. The method of evaluating the printed circuit boards obtained in each of the examples and comparative examples is as follows. 1. Hardness measuring device: AKASHI MVK-E Hardness
Tester Load: 25 g Crimping: 15 seconds Average of n = 3 1. Surface roughness measurement device: roughness meter: made by Kosaka; universal surface shape measuring machine (SE3
C) 3. Breaking of copper foil Prepare substrates of 8 cm × 8 cm and 9 cm × 8 cm (hereinafter referred to as substrate A and substrate B, respectively), fix the substrate A below, and place the substrate B with a string on it. in addition,
Place a 15 kg weight. After that, the substrate B is pulled by 50 mm at a constant speed of 50 mm / sec. At this time, the sum of the number of breakages generated in the substrate A and the substrate B (8 cm × 8 cm portion which was in contact at the beginning) is measured.

【0033】(実施例1)厚さ18μmの高高温伸び銅
箔(STCS箔:日鉱グールド・フォイル(株)製)の
光沢面にCu:65g/l、Zn:4.5g/l、Na
CN:12g/l、NaOH:70g/l、温度:75
℃の電解液を用い、電流密度8A/dm2で6.3秒電
解を行い、厚さ約0.1μmのCu−Znめっきを施し
た。そして、このCu−Znめっき上にCrO3 :5g
/l、ZnSO4 ・7H2 O:5g/l、NaOH:2
0g/l、pH=10、温度:60℃の電解亜鉛・クロ
ム防錆液を用い、電流密度0.6A/dm2 で12秒電
解を行った。この銅箔を180℃×30分の熱処理によ
り、ガラス−エポキシ樹脂基板に接着させ、銅張積層板
を製造後、銅箔の光沢面の硬度を測定すると共に、上記
銅箔破れの評価を行った。結果を表1に示す。
(Example 1) Cu: 65 g / l, Zn: 4.5 g / l, Na on a glossy surface of a high-temperature and high-strength copper foil (STCS foil: manufactured by Nikko Gould Foil Co., Ltd.) having a thickness of 18 μm
CN: 12 g / l, NaOH: 70 g / l, temperature: 75
Electrolysis was performed at a current density of 8 A / dm 2 for 6.3 seconds using an electrolytic solution at a temperature of ℃, and Cu-Zn plating having a thickness of about 0.1 μm was applied. Then, CrO 3 on the Cu-Zn-plated: 5g
/ L, ZnSO 4 · 7H 2 O: 5g / l, NaOH: 2
Electrolysis was carried out for 12 seconds at a current density of 0.6 A / dm 2 using an electrolytic zinc / chromium rust preventive solution of 0 g / l, pH = 10, temperature: 60 ° C. This copper foil is heat-treated at 180 ° C. for 30 minutes to adhere it to a glass-epoxy resin substrate, and after manufacturing a copper-clad laminate, the hardness of the glossy surface of the copper foil is measured and the copper foil breakage is evaluated. It was The results are shown in Table 1.

【0034】(比較例)実施例1のCu−Znめっき工
程を省いた以外は、実施例1と同様に行った。結果を表
1に示す。
Comparative Example The same procedure as in Example 1 was carried out except that the Cu—Zn plating step in Example 1 was omitted. The results are shown in Table 1.

【0035】[0035]

【表1】 [Table 1]

【0036】(実施例2)実施例1において、Cu−Z
nめっき前に、硫酸酸性硫酸銅溶液からなる銅めっき液
を用いて電流密度1.0A/dm2 の条件で2.2秒電
解めっきを行い、光沢面の平滑化を行った。表面粗さは
中心線平均粗さで0.15μm以下となった。結果は更
に良くなった。
(Example 2) In Example 1, Cu-Z
Before n-plating, a copper plating solution made of a sulfuric acid-acidified copper sulfate solution was used for electrolytic plating for 2.2 seconds at a current density of 1.0 A / dm 2 to smooth the glossy surface. The surface roughness was a center line average roughness of 0.15 μm or less. The result is even better.

【0037】[0037]

【発明の効果】以上説明したように、本発明により、銅
張積層板製造後、高高温伸び銅箔の破れの発生を抑制で
きるという利点がある。
As described above, according to the present invention, it is possible to suppress the occurrence of breakage of the high temperature stretched copper foil after the copper clad laminate is manufactured.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高高温伸び銅箔において、該高高温伸び
銅箔が光沢面側の銅張積層板製造後のビッカース硬度が
65以上となる光沢面を具備することを特徴とする印刷
回路用高高温伸び銅箔。
1. A printed circuit, comprising a high-temperature and high-strength copper foil having a glossy surface having a Vickers hardness of 65 or more after the copper-clad laminate is produced on the glossy surface side. High-temperature stretched copper foil.
【請求項2】 高高温伸び銅箔において、該高高温伸び
銅箔が光沢面側の粗さを中心線平均粗さRaで表してR
a:0.15μm以下に低減することにより平滑とさ
れ、同時に銅張積層板製造後の光沢面側のビッカース硬
度が65以上となる光沢面を具備することを特徴とする
印刷回路用高高温伸び銅箔。
2. A high-temperature and high-strength copper foil, wherein the high-temperature and high-strength copper foil expresses a roughness on a glossy side by a center line average roughness Ra.
a: A high-temperature elongation for a printed circuit characterized by having a glossy surface that is made smooth by reducing the thickness to 0.15 μm or less and at the same time has a Vickers hardness of 65 or more on the glossy side after the copper-clad laminate is manufactured. Copper foil.
【請求項3】 高高温伸び銅箔の光沢面側に銅張積層板
製造時の熱により再結晶されにくい層をつけるか、高高
温伸び銅箔の光沢面側に合金めっきを施すか、もしくは
高高温伸び銅箔の光沢面側に銅張積層板製造時の熱によ
り拡散して銅と合金を作るようなめっきを施すことによ
り銅張積層板製造後の光沢面側のビッカース硬度が65
以上となる光沢面を具備する印刷回路用高高温伸び銅箔
を製造する方法。
3. A high-temperature stretched copper foil is provided with a layer on the glossy side which is not easily recrystallized by heat during the production of a copper-clad laminate, or an alloy plating is applied to the glossy side of the high-temperature stretched copper foil, or The Vickers hardness on the glossy side of the high-temperature stretched copper foil is 65 after the copper-clad laminate is produced by plating the glossy side of the high-temperature stretched copper foil so that it is diffused by heat during the production of the copper-clad laminate to form an alloy with copper.
A method for producing a high-temperature stretched copper foil for a printed circuit, which has a glossy surface as described above.
JP3628094A 1993-12-28 1994-02-10 Increased high-temperature elongation copper foil for printing circuit and its manufacture Pending JPH07235744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3628094A JPH07235744A (en) 1993-12-28 1994-02-10 Increased high-temperature elongation copper foil for printing circuit and its manufacture

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-349509 1993-12-28
JP34950993 1993-12-28
JP3628094A JPH07235744A (en) 1993-12-28 1994-02-10 Increased high-temperature elongation copper foil for printing circuit and its manufacture

Publications (1)

Publication Number Publication Date
JPH07235744A true JPH07235744A (en) 1995-09-05

Family

ID=26375313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3628094A Pending JPH07235744A (en) 1993-12-28 1994-02-10 Increased high-temperature elongation copper foil for printing circuit and its manufacture

Country Status (1)

Country Link
JP (1) JPH07235744A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185384A (en) * 2008-02-01 2009-08-20 Ls Mtron Ltd High flexible copper foil with low roughness and, manufacturing method therefor
JP2011014721A (en) * 2009-07-02 2011-01-20 Sumitomo Metal Mining Co Ltd Flexible copper-clad laminate and method of manufacturing the same, and flexible wiring board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185384A (en) * 2008-02-01 2009-08-20 Ls Mtron Ltd High flexible copper foil with low roughness and, manufacturing method therefor
JP2011014721A (en) * 2009-07-02 2011-01-20 Sumitomo Metal Mining Co Ltd Flexible copper-clad laminate and method of manufacturing the same, and flexible wiring board

Similar Documents

Publication Publication Date Title
EP0930811B1 (en) Composite copper foil, process for preparing the same, and copper-clad laminate and printed wiring board using the same
KR101614624B1 (en) Copper foil with carrier
JP2849059B2 (en) Processing method of copper foil for printed circuit
JP3295308B2 (en) Electrolytic copper foil
KR100859614B1 (en) Composite copper foil and method for production thereof
US6497806B1 (en) Method of producing a roughening-treated copper foil
TWI422484B (en) Printed wiring board with copper foil
JPH05235542A (en) Copper foil for printed circuit board and manufacture thereof
KR100595381B1 (en) Composite copper foil, process for preparing the same, and copper-clad laminate and printed wiring board using the same
US5989727A (en) Electrolytic copper foil having a modified shiny side
US6495022B2 (en) Method of producing copper foil for fine wiring
JP3392066B2 (en) Composite copper foil, method for producing the same, copper-clad laminate and printed wiring board using the composite copper foil
JP4612978B2 (en) Composite copper foil and method for producing the same
JPH02113591A (en) Manufacture of printed-wiring board
JP5814168B2 (en) Copper foil with carrier
JP5298252B1 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JPH07235744A (en) Increased high-temperature elongation copper foil for printing circuit and its manufacture
JPH07202368A (en) High-temperature expansion copper foil for printed circuit
EP1089603A2 (en) Copper foil bonding treatment with improved bond strength and resistance to undercutting
JP4698957B2 (en) Electrolytic copper foil and electrolytic polishing method for electrolytic copper foil glossy surface
JPH0851281A (en) Method for manufacture high-temperature large-expansion copper foil for printed circuit
JP2011014651A (en) Copper foil for printed wiring board
JP2011129685A (en) Environmentally friendly copper foil for printed wiring board
JPH0654829B2 (en) Method of treating copper foil for printed circuits
JP6329727B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040210

Free format text: JAPANESE INTERMEDIATE CODE: A02