JPH07235414A - Magnetic brick - Google Patents

Magnetic brick

Info

Publication number
JPH07235414A
JPH07235414A JP6051334A JP5133494A JPH07235414A JP H07235414 A JPH07235414 A JP H07235414A JP 6051334 A JP6051334 A JP 6051334A JP 5133494 A JP5133494 A JP 5133494A JP H07235414 A JPH07235414 A JP H07235414A
Authority
JP
Japan
Prior art keywords
magnetic
powder
brick
clay
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6051334A
Other languages
Japanese (ja)
Inventor
Toshiaki Hata
俊明 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP6051334A priority Critical patent/JPH07235414A/en
Publication of JPH07235414A publication Critical patent/JPH07235414A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To manufacture a magnetic brick which does not need compression for molding while incorporating heat resistance, and holding sufficient magnetic force and strength with possibility of molding in a desired shape and to manufacture the brick in which no crack occurs in a product when the brick is mounted on a clay product such as a pottery, etc. CONSTITUTION:The magnetic brick comprises 10wt.% of clay powder, and 90wt.% of magnetic powder which is calcined or powdered after primarily burning. A magnetic material-clay mixture powder containing a composition in which 0-90wt.% of the powder which is calcined and then powdered is added to the clay powder is so laminated as to have a composition gradient of magnetic material content in a laminating direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粘土粉末と、仮焼また
は本焼後粉砕処理済みの磁性体粉末を水と共に混合し、
その混合物に成形、乾燥、焼結の各過程を施すことによ
り製造されることを特徴とする磁気レンガに関する。
BACKGROUND OF THE INVENTION The present invention is to mix clay powder and magnetic powder which has been calcinated or pulverized after main baking with water,
The present invention relates to a magnetic brick manufactured by subjecting the mixture to molding, drying and sintering processes.

【0002】[0002]

【従来の技術】磁石は我々の生活の中に深くとけ込んで
いる。代表的な磁石としてバリウムフェライト、ストロ
ンチウムフェライトなどの原料粉末を圧縮及び成形後、
焼結する焼結磁石が知られているが、その焼結磁石の製
造行程である圧縮の行程では大規模な圧縮装置が必要で
あり、また磁性体粉末を充てんするための金型も圧縮に
充分に耐え得る材料で設計しなければならないなど費用
の面において問題を抱えている。
2. Description of the Related Art Magnets are deeply embedded in our lives. After compressing and molding raw material powders such as barium ferrite and strontium ferrite as typical magnets,
Sintered magnets that sinter are known, but a large-scale compression device is required in the compression process, which is the manufacturing process of the sintered magnets, and the die for filling the magnetic powder is also compressed. There are problems in terms of cost, such as having to design a material that can withstand enough.

【0003】その他の磁石として、ナイロンなどの合成
樹脂と組合せたボンド磁石が知られている。近年、ボン
ド磁石など異なる性質の材料の長所を生かした複合材料
の必要性が高まっており、ボンド磁石を例にとれば、磁
性体粉末のみで磁石を製造しようとした場合、複雑な形
状の磁石を製造することが困難であったが、磁性体粉末
とナイロンなどの合成樹脂とを組合せることにより、複
雑な形状をした磁石でも製造することが可能になった。
しかしながら合成樹脂を用いているために熱による変形
は避けられず、高温時における機械的強度の低下の問題
も抱えている。
As other magnets, a bond magnet combined with a synthetic resin such as nylon is known. In recent years, there is an increasing need for composite materials that take advantage of the different properties of materials such as bonded magnets. Taking bonded magnets as an example, when magnets are manufactured using only magnetic powder, magnets with complicated shapes are required. Was difficult to manufacture, but by combining magnetic powder and a synthetic resin such as nylon, it was possible to manufacture even a magnet having a complicated shape.
However, since a synthetic resin is used, deformation due to heat is unavoidable, and there is also a problem of deterioration of mechanical strength at high temperature.

【0004】本発明者は前記焼結磁石とボンド磁石の問
題を解決するため、磁性体粉末に粘土粉末を添加するこ
とにより、耐熱性を持たせながらかつ成形のための圧縮
を必要としない、磁気レンガなるものを製造しようと試
みた。磁気レンガとは磁性体の能力を持ち合わせたレン
ガのことであるが、この磁気レンガは粘土粉末と磁性体
粉末の組成割合によって性質が大きく変化する。磁気レ
ンガ中の磁性体粉末の割合が高い場合は、製造者が意図
する形状に成形することが困難になるという問題を抱え
ており、また反対に磁気レンガ中の磁性体粉末の割合が
低い場合は、磁気レンガの磁力を充分に得ることができ
なくなると共に、磁気レンガ製造行程の一つである乾燥
において収縮率が増し、寸法精度が著しく低下するとい
う問題を抱えていた。
In order to solve the problems of the sintered magnet and the bonded magnet, the present inventor adds clay powder to the magnetic powder so as to have heat resistance and does not require compression for molding. I tried to make something called a magnetic brick. A magnetic brick is a brick that has the ability of a magnetic substance, and the properties of this magnetic brick change greatly depending on the composition ratio of clay powder and magnetic substance powder. If the proportion of magnetic powder in the magnetic brick is high, there is a problem that it will be difficult to mold into the shape intended by the manufacturer, and conversely if the proportion of magnetic powder in the magnetic brick is low. Has a problem in that the magnetic force of the magnetic brick cannot be sufficiently obtained, and the shrinkage rate increases during the drying process which is one of the magnetic brick manufacturing processes, resulting in a significant decrease in dimensional accuracy.

【0005】また、磁気レンガの主成分は粘土粉末と磁
性体粉末であるため、この2成分の特徴を活用した磁気
レンガの応用例として、磁気レンガを陶磁器等の粘土製
品に取り付ける例が挙げられるが、その場合に磁気レン
ガを取り付けようとしてもその製造行程で、磁性体粉末
と粘土粉末の収縮率に差があるため、製品接合部に亀裂
が発生するという問題を抱えていた。
Further, since the main components of magnetic bricks are clay powder and magnetic powder, as an application example of magnetic bricks utilizing the characteristics of these two components, there is an example of attaching magnetic bricks to clay products such as ceramics. However, in this case, even if a magnetic brick is attached, there is a problem that cracks occur at the product joint portion due to the difference in shrinkage ratio between the magnetic powder and the clay powder in the manufacturing process.

【0006】[0006]

【発明が解決しようとしている課題】本発明の目的は、
請求項1及び請求項2において、意図する形状に成形が
可能で十分な磁力と強度を保持しながら、かつ耐熱性を
持たせながら成形のための圧縮を必要しない磁気レンガ
を製造することにあり、さらに請求項3において磁気レ
ンガを陶磁器等の粘土製品に取り付けた場合、製品に亀
裂が発生しない磁気レンガを製造することにある。
The object of the present invention is to:
In Claim 1 and Claim 2, there is a need for manufacturing a magnetic brick that can be molded into an intended shape while maintaining a sufficient magnetic force and strength and having heat resistance while not requiring compression for molding. Further, in claim 3, when the magnetic brick is attached to a clay product such as ceramics, it is to produce a magnetic brick in which cracks do not occur in the product.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、請求項1及び請求項2において、本発明者は粘土
粉末10重量%と、仮焼または本焼後粉砕処理済みの磁性
体粉末90重量%の組成にすることにより、上記の課題を
解決することに成功した。また請求項3において、粘土
粉末に仮焼後粉砕処理済みの磁性体粉末を 0〜90重量%
添加した組成からなる磁性体−粘土混合粉末を、磁性体
含有量が積層方向に組成勾配を持つように積層させたこ
とより、上記の課題を解決することに成功した。
In order to achieve the above-mentioned object, in the present invention, in claim 1 and claim 2, the present inventor has used 10% by weight of clay powder and a magnetic substance which has been calcinated or pulverized after the main calcination. We succeeded in solving the above problems by making the composition of powder 90% by weight. In claim 3, 0 to 90% by weight of the magnetic powder that has been calcinated and pulverized into clay powder.
The magnetic substance-clay mixed powder having the added composition was laminated in such a manner that the magnetic substance content has a composition gradient in the laminating direction, whereby the above problems were successfully solved.

【0008】[0008]

【作用】請求項1及び請求項2において、粘土粉末10重
量%と仮焼または本焼後粉砕処理済みの磁性体粉末90重
量%の組成にすることにより、耐熱性を持ちながら成形
のための圧縮を必要せず、図1に示されるように、意図
する形状に成形しながらかつ十分な強度を保持し、さら
に図2に示されるように、磁気レンガ製造行程の一つで
ある乾燥における収縮率を極めて低率に抑えながら磁気
レンガを製造することが可能になった。また図3に示さ
れるように、成形のための圧縮を必要とする磁性体粉末
組成率 100%の磁気レンガを除いて、粘土粉末10重量%
と、仮焼または本焼後粉砕処理済みの磁性体粉末90重量
%の組成にすることにより、20mm×30mm× 5mmの試験片
において 220ガウス以上の磁力を発生し、その他の組成
率よりも非常に高い磁力を持つ磁気レンガを製造するこ
とが可能になった。
According to the first and second aspects, the composition of 10% by weight of the clay powder and 90% by weight of the magnetic powder which has been calcinated or calcinated and then pulverized is used for molding while maintaining heat resistance. As shown in FIG. 1, it does not require compression, retains sufficient strength while being formed into an intended shape, and further, as shown in FIG. 2, shrinkage during drying, which is one of the magnetic brick manufacturing processes. It has become possible to manufacture magnetic bricks while keeping the rate extremely low. In addition, as shown in FIG. 3, 10% by weight of clay powder is excluded, except for magnetic bricks having a magnetic powder composition rate of 100%, which requires compression for molding.
With a composition of 90% by weight of magnetic powder that has been calcinated or pulverized after main firing, a magnetic field of 220 Gauss or more is generated in a test piece of 20 mm × 30 mm × 5 mm, which is much higher than other composition ratios. It has become possible to manufacture magnetic bricks with extremely high magnetic force.

【0009】また請求項3において、磁気レンガを陶磁
器等の粘土製品に取り付けた場合、製品に亀裂が発生し
ない磁気レンガを製造する可能になった。
Further, in claim 3, when the magnetic brick is attached to a clay product such as ceramics, it is possible to manufacture a magnetic brick in which cracks do not occur in the product.

【0010】[0010]

【実施例】本発明の実施例は、磁性体粉末としてバリウ
ムフェライト磁性体を用いた場合の磁気レンガの製造方
法である。
EXAMPLE An example of the present invention is a method for producing a magnetic brick when a barium ferrite magnetic material is used as the magnetic material powder.

【0011】請求項1及び請求項2において、まず仮焼
または本焼後粉砕処理済みのバリウムフェライト磁性体
粉末と粘土粉末を、粘土粉末10重量%とバリウムフェラ
イト磁性体粉末90重量%になるようにそれぞれの重量を
測定し、その測定したバリウムフェライト磁性体粉末と
粘土粉末をそれぞれ充分に混合する。
In claim 1 and claim 2, the barium ferrite magnetic powder and the clay powder which have been calcinated or calcinated and then pulverized are made into 10% by weight of clay powder and 90% by weight of barium ferrite magnetic powder. The respective weights are measured, and the measured barium ferrite magnetic powder and the clay powder are sufficiently mixed.

【0012】次に、その混合したバリウムフェライト磁
性体粉末と粘土粉末に、水をバリウムフェライト磁性体
粉末と粘土粉末の混合粉末10gに対し 2g添加し、充分
に混合する。混合完了後、任意の形状の型において成形
し、その成形体の水分が完全に消失するまで約2日間充
分に乾燥させた後、焼結する。
Next, to the mixed barium ferrite magnetic material powder and clay powder, 2 g of water is added to 10 g of the mixed powder of barium ferrite magnetic material powder and clay powder, and they are thoroughly mixed. After the mixing is completed, the mixture is molded in a mold of an arbitrary shape, sufficiently dried for about 2 days until the water content of the molded body completely disappears, and then sintered.

【0013】焼結温度は、1000℃未満においては充分な
磁気特性及び緻密度を付与することが困難であり、1200
℃以上では一部に溶融や変形が発生し、さらに粒成長に
よる磁気特性や強度特性の低下が予想されるため、1000
℃〜1200℃にすることが必要であり、好ましくは1100℃
である。
If the sintering temperature is less than 1000 ° C., it is difficult to impart sufficient magnetic properties and compactness.
At temperatures above ℃, partly melted and deformed, and further deterioration of magnetic properties and strength properties due to grain growth is expected.
℃ ~ 1200 ℃ is necessary, preferably 1100 ℃
Is.

【0014】焼結時間は、 4時間未満では充分な磁気特
性及び緻密度を付与することが困難であり、6時間以上
では経済性及び作業性の観点から好ましくなくないた
め、4時間〜6時間にすることが必要であり、好ましくは
5時間である。最後に、成形体を着磁機によって着磁す
る。磁力は 220ガウス以上の磁力が得られた。
If the sintering time is less than 4 hours, it is difficult to impart sufficient magnetic properties and compactness, and if it is 6 hours or more, it is not preferable from the viewpoint of economy and workability. It is necessary, and preferably
5 hours. Finally, the molded body is magnetized by a magnetizer. The magnetic force was over 220 gauss.

【0015】以上のような実施例において得られた焼結
体の引張強さ及びヤング率をミネベア株式会社製 TCM-1
0000型万能引張圧縮試験機において測定した。測定方法
は20mm×30mm× 5mmの試験片を用いて4点支持により曲
げ試験を行い引張強さを測定し、さらに試験片にストレ
インゲージを取り付けることにより、ヤング率を求め
た。
The tensile strength and Young's modulus of the sintered bodies obtained in the above examples were measured by TCM-1 manufactured by Minebea Co., Ltd.
It was measured with a 0000 type universal tensile compression tester. A 20 mm × 30 mm × 5 mm test piece was used as a measuring method to perform a bending test with four-point support to measure the tensile strength, and a strain gauge was attached to the test piece to determine the Young's modulus.

【0016】結果を図1に示すが、磁気レンガを粘土粉
末10重量%と仮焼または本焼後粉砕処理済みの磁性体粉
末90重量%の組成にすることで、例えば仮焼または本焼
後粉砕処理済みの磁性体粉末10重量%組成の磁気レンガ
と比較すれば、引張強さにおいて1.8倍、ヤング率にお
いては3.1倍の強度になり、その他の組成の磁気レンガ
よりも非常に高い引張強さ、ヤング率を得られることが
明らかである。そして図2に示されるように、磁気レン
ガを粘土粉末10重量%と仮焼または本焼後粉砕処理済み
の磁性体粉末90重量%の組成にすることで、磁気レンガ
製造行程の一つである乾燥における収縮率が0.54%とな
って、その他の磁性体粉末添加率と比べて極めて低率に
抑えられている。
The results are shown in FIG. 1. The composition of magnetic bricks is 10% by weight of clay powder and 90% by weight of pulverized magnetic powder after calcination or main calcination, for example, after calcination or main calcination. Compared to a magnetic brick with a composition of 10% by weight of pulverized magnetic powder, the tensile strength is 1.8 times and the Young's modulus is 3.1 times the strength, which is much higher than the magnetic bricks of other compositions. It is clear that Young's modulus can be obtained. As shown in FIG. 2, the composition of magnetic bricks is 10% by weight of clay powder and 90% by weight of magnetic powder that has been calcinated or calcinated after calcination, which is one of the magnetic brick manufacturing processes. The shrinkage rate in drying is 0.54%, which is extremely low compared to other magnetic powder addition rates.

【0017】また、実施例において得られた焼結体を日
本電子社製JSM-T300走査型電子顕微鏡によって撮影し
た。その写真を図4に示すが、粘土粉末10重量%と、仮
焼または本焼後粉砕処理済みの磁性体粉末90重量%の組
成にすることで、その他の磁性体粉末添加率と比べ非常
に高い緻密度を得られることが明らかである。
The sintered bodies obtained in the examples were photographed by a JSM-T300 scanning electron microscope manufactured by JEOL Ltd. The photograph is shown in Fig. 4. The composition of 10% by weight of clay powder and 90% by weight of magnetic powder that has been calcinated or crushed after the main firing makes the composition extremely higher than other magnetic powder addition rates. It is clear that high compactness can be obtained.

【0018】請求項3においては、まず仮焼または本焼
後粉砕処理済みのバリウムフェライト磁性体粉末に粘土
粉末を、磁性体粉末の重量%が10%間隔で 0〜90重量%
になるように各々の重量を測定し、その測定したバリウ
ムフェライト磁性体粉末と粘土粉末を各々混合する。
In claim 3, first, the barium ferrite magnetic substance powder that has been calcinated or calcinated and crushed is mixed with clay powder, and the magnetic substance powder is contained in an amount of 0 to 90% by weight at 10% intervals.
Each of them is weighed so that the barium ferrite magnetic powder and the clay powder are mixed.

【0019】次に、バリウムフェライト磁性体粉末の含
有量が少ないバリウムフェライト磁性体粉末と粘土粉末
との混合成形体から順に、以下の方法で請求項3におけ
る磁気レンガの製造を行う。
Next, the magnetic bricks according to claim 3 are manufactured by the following method in order from a mixed compact of barium ferrite magnetic powder and clay powder having a small content of barium ferrite magnetic powder.

【0020】平面のある鉄板上で、前記のバリウムフェ
ライト磁性体粉末と粘土粉末の混合粉末に水を加え混合
し、丸棒等を用いて厚さ 1.5mm程度の板状に成形する。
それからバリウムフェライト磁性体粉末の組成割合の順
序で積層させる。積層方法は図5に示すように、これら
10種類のバリウムフェライト磁性体粉末と粘土粉末との
混合成形体を積層させることにより、バリウムフェライ
ト磁性体粉末と粘土粉末の組成比が傾斜する。
On a flat iron plate, water is added to and mixed with the mixed powder of the barium ferrite magnetic substance powder and the clay powder, and a plate having a thickness of about 1.5 mm is formed using a round bar or the like.
Then, they are laminated in the order of the composition ratio of the barium ferrite magnetic substance powder. As shown in FIG. 5, the stacking method is as follows.
By stacking 10 types of mixed compacts of barium ferrite magnetic powder and clay powder, the composition ratio of barium ferrite magnetic powder and clay powder is inclined.

【0021】各層の積層を完了後、任意の形状の型で抜
いて形を整える。その後の乾燥、焼結等の製造行程は前
記の請求項1及び請求項2の実施例と同様である。
After the lamination of each layer is completed, the shape is adjusted by punching with a mold having an arbitrary shape. Subsequent manufacturing steps such as drying and sintering are the same as those of the above-mentioned first and second embodiments.

【0022】以上が磁気レンガの実施例であるが、ここ
では磁性体粉末の一例としてバリウムフェライト磁性体
粉末を用いており、これ以外の磁性体粉末を使用しても
実施可能である。
Although the examples of magnetic bricks have been described above, barium ferrite magnetic substance powder is used as an example of the magnetic substance powder, and other magnetic substance powders can be used.

【0023】[0023]

【発明の効果】前記の通り本発明によれば、請求項1及
び請求項2において、粘土粉末10重量%と、仮焼または
本焼後粉砕処理済みの磁性体粉末90重量%の組成にする
ことにより、耐熱性を持たせながら成形のための圧縮を
必要せず、また意図する形状に成形しながらかつ充分な
磁力と強度を保持している磁気レンガを製造することが
可能になった。また、この磁気レンガを地面に敷設し、
その地面上に磁力を感知するセンサを取り付けた車両を
走行させることで、磁気レンガによる車両の制御という
ことにも将来的に発展可能である。
As described above, according to the present invention, the composition of claim 1 and claim 2 is 10% by weight of clay powder and 90% by weight of magnetic powder which has been calcinated or pulverized after main firing. This makes it possible to manufacture a magnetic brick that has heat resistance, does not require compression for molding, and is molded into an intended shape while maintaining sufficient magnetic force and strength. Also, laying this magnetic brick on the ground,
By running a vehicle equipped with a sensor for detecting magnetic force on the ground, control of the vehicle by magnetic bricks can be developed in the future.

【0024】また請求項3において、磁性体に粘土成分
を含有している特徴を活用した磁気レンガの例として、
磁気レンガを陶磁器等の粘土製品に取り付けることが可
能になる。
Further, in claim 3, as an example of a magnetic brick utilizing the feature that a magnetic material contains a clay component,
It is possible to attach magnetic bricks to clay products such as ceramics.

【図面の簡単な説明】[Brief description of drawings]

【図1】仮焼または本焼後粉砕処理済みの、磁性体粉末
と粘土粉末の組成比の違いによる磁気レンガの引張強さ
の変化を示す線図、及び仮焼または本焼後粉砕処理済み
の、磁性体粉末と粘土粉末の組成比の違いによる磁気レ
ンガのヤング率の変化を示す線図である。
FIG. 1 is a diagram showing a change in tensile strength of a magnetic brick due to a difference in composition ratio between a magnetic powder and a clay powder after calcination or main calcination, and calcination after calcination or main calcination FIG. 3 is a diagram showing a change in Young's modulus of a magnetic brick due to a difference in composition ratio between magnetic powder and clay powder.

【図2】仮焼または本焼後粉砕処理済みの、磁性体粉末
と粘土粉末の組成比の違いによる、乾燥における磁気レ
ンガの収縮率の変化を示す線図である。
FIG. 2 is a diagram showing a change in shrinkage rate of a magnetic brick during drying due to a difference in composition ratio between magnetic powder and clay powder that has been calcinated or pulverized after main firing.

【図3】仮焼または本焼後粉砕処理済みの、磁性体粉末
と粘土粉末の組成比の違いによる、磁気レンガの磁力の
変化を示す線図である。
FIG. 3 is a diagram showing a change in magnetic force of a magnetic brick due to a difference in composition ratio between a magnetic powder and a clay powder that has been subjected to calcination or calcination after calcination.

【図4】実施例において得られた磁性体重量%が90%で
ある磁気レンガと磁性体重量%が100%である磁気レン
ガを日本電子社製 JSM-T300走査型電子顕微鏡によって
撮影した写真である。上図が磁性体重量%が90%である
磁気レンガであり、下図が磁性体重量%が100%である
磁気レンガである。
FIG. 4 is a photograph of a magnetic brick having a magnetic substance weight percentage of 90% and a magnetic brick having a magnetic substance weight percentage of 100% obtained in Examples taken by a JSM-T300 scanning electron microscope manufactured by JEOL Ltd. is there. The upper figure is a magnetic brick with a magnetic material weight% of 90%, and the lower figure is a magnetic brick with a magnetic material weight% of 100%.

【図5】請求項3における磁気レンガの積層状態を示す
断面図である。
FIG. 5 is a cross-sectional view showing a laminated state of magnetic bricks according to claim 3;

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 粘土粉末と、仮焼または本焼後粉砕処理
済みの磁性体粉末を水と共に混合し、その混合物に成
形、乾燥、焼結の各過程を施すことにより製造されるこ
とを特徴とする磁気レンガ。
1. A clay powder and a magnetic powder that has been calcinated or pulverized after main calcination are mixed with water, and the mixture is subjected to molding, drying and sintering processes. And a magnetic brick.
【請求項2】 粘土粉末10重量%と、仮焼または本焼後
粉砕処理済みの磁性体粉末90重量%の組成から成ること
を特徴とする磁気レンガ。
2. A magnetic brick comprising a composition of 10% by weight of clay powder and 90% by weight of magnetic powder that has been calcinated or pulverized after main firing.
【請求項3】 請求項1に記載した磁気レンガを複数積
層して成る磁気レンガであって、前記磁気レンガの各層
の磁力がそれぞれ異なるとともに、磁気レンガの磁力が
積層方向に組成勾配を持つように積層することにより得
られる磁気レンガ。
3. A magnetic brick formed by stacking a plurality of magnetic bricks according to claim 1, wherein the magnetic forces of the layers of the magnetic brick are different from each other and the magnetic force of the magnetic brick has a composition gradient in the stacking direction. Magnetic brick obtained by stacking on.
JP6051334A 1994-02-23 1994-02-23 Magnetic brick Pending JPH07235414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6051334A JPH07235414A (en) 1994-02-23 1994-02-23 Magnetic brick

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6051334A JPH07235414A (en) 1994-02-23 1994-02-23 Magnetic brick

Publications (1)

Publication Number Publication Date
JPH07235414A true JPH07235414A (en) 1995-09-05

Family

ID=12884032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6051334A Pending JPH07235414A (en) 1994-02-23 1994-02-23 Magnetic brick

Country Status (1)

Country Link
JP (1) JPH07235414A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09115090A (en) * 1995-10-19 1997-05-02 Toshiaki Hata Magnetic recording block guide device
JP2013224933A (en) * 2012-03-19 2013-10-31 Mitsuishi Taika Renga Kk Brick, tile, floor board, ceiling panel, roof material, and manufacturing method for them

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09115090A (en) * 1995-10-19 1997-05-02 Toshiaki Hata Magnetic recording block guide device
JP2013224933A (en) * 2012-03-19 2013-10-31 Mitsuishi Taika Renga Kk Brick, tile, floor board, ceiling panel, roof material, and manufacturing method for them

Similar Documents

Publication Publication Date Title
JPH05506422A (en) Reaction-sintered mullite-containing ceramic molded body, method for producing the molded body, and method for using the molded body
CN108213443B (en) Preparation method of bionic layered high-strength and high-toughness material
JPS58110469A (en) Manufacture of high density silicon nitride ceramic product with controlled surface layer composition
JPH0258234B2 (en)
JPH07235414A (en) Magnetic brick
JPH0935921A (en) Clay magnet
JPH0515667B2 (en)
JPH06215919A (en) Magnetic substance and manufacture thereof
CN110498679B (en) Preparation method of multilayer phase structure BNT-BT ceramic with high dielectric property
JPH0532349B2 (en)
JP2762531B2 (en) Ferrite magnetic body and method of manufacturing the same
JPH1179845A (en) Production of silicon carbide having high toughness
JPH03290376A (en) Production of composite ceramic article
JP2541810B2 (en) Method for manufacturing piezoelectric ceramics for transducers
JPS61215260A (en) Manufacture of silicon nitride ceramic
JPH0453831B2 (en)
JPH05318431A (en) Production of inclination function material
JPH01168845A (en) Iron-iron oxide sintered compact and its production
JP3164640B2 (en) Manufacturing method of oxide superconductor
JPH01319910A (en) Magnetic substance and manufacture thereof
JPS6321256A (en) Manufacture of fiber reinforced ceramics
JP2521119B2 (en) Heat-resistant calcium silicate sintered body
JPH10167807A (en) Mgo-base composite ceramics and its production
JPH0753614B2 (en) Method for producing boron nitride sintering raw material powder
JPH0477356A (en) Ceramic composite material and its production

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060613