JPH03290376A - Production of composite ceramic article - Google Patents

Production of composite ceramic article

Info

Publication number
JPH03290376A
JPH03290376A JP2092054A JP9205490A JPH03290376A JP H03290376 A JPH03290376 A JP H03290376A JP 2092054 A JP2092054 A JP 2092054A JP 9205490 A JP9205490 A JP 9205490A JP H03290376 A JPH03290376 A JP H03290376A
Authority
JP
Japan
Prior art keywords
slurry
whiskers
relative density
sintered
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2092054A
Other languages
Japanese (ja)
Inventor
Takao Yonezawa
米澤 孝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Original Assignee
Japan Metals and Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd filed Critical Japan Metals and Chemical Co Ltd
Priority to JP2092054A priority Critical patent/JPH03290376A/en
Publication of JPH03290376A publication Critical patent/JPH03290376A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a preliminarily sintered material having high relative density and formable with a direct hot hydrostatic press by preparing a slurry containing ceramic powder, silicon carbide whisker and silicon nitride whisker and having a viscosity lower than a specific level and forming the slurry while orienting the whiskers, CONSTITUTION:A slurry having a viscosity of <=3.0 poise is produced by dispersing ceramic powder and silicon carbide whisker or silicon nitride whisker in a solvent. The slurry is poured into a gypsum mold and molded while orienting the whiskers parallel to the wall surface of the gypsum mold to obtain a green molded article. Since the whiskers are free from mutual entanglement, the slurry is completely filled in the mold and the relative density of the green article reaches >=60%. The control of the orientation of the whisker can be carried out by adjusting the viscosity of the slurry within the above range. The green molded article is sintered under normal pressure to obtain a preliminarily sintered material having a relative density of >=95%. Since the preliminarily sintered material has high relative density, it can be sintered with a hot hydrostatic press without using a glass capsule.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高靭性でかつ高密度の複合セラミックス製品の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of manufacturing a composite ceramic product having high toughness and high density.

[従来の技術] セラミックスは高温でも高強度でありかつ優れた耐食性
を有するために、例えばヒーターチューブやルツボやシ
リンダーライナー等に広範囲に使用されている。しかし
通常のセラミックスは脆く熱衝撃で破損し易いという問
題点がある。
[Prior Art] Ceramics are widely used in heater tubes, crucibles, cylinder liners, and the like because they have high strength even at high temperatures and excellent corrosion resistance. However, ordinary ceramics have the problem of being brittle and easily damaged by thermal shock.

本発明者等の知見によると、ウィスカーを分散させた複
合セラミックスは靭性に優れ熱衝撃に強い。しかし格別
に工夫しないで、ウィスカーを分散させた複合セラミッ
クスは、ウィスカーが緻密化を妨げるために常圧焼結後
の相対密度は95%未満であり、相対密度が小さいため
に、例えばシリンダーライナーとしては耐摩耗性が不十
分である。
According to the findings of the present inventors, composite ceramics in which whiskers are dispersed have excellent toughness and are resistant to thermal shock. However, composite ceramics in which whiskers are dispersed without special efforts have a relative density of less than 95% after pressureless sintering because the whiskers prevent densification. has insufficient wear resistance.

常圧焼結法で予備焼結体を製造し、この予備焼結体を熱
間静水圧プレスによって再焼結して、強靭でかつ緻密質
でワイブル係数の高いセラミックス製品を製造する方法
が知られている。
A method is now known to manufacture a pre-sintered body using pressureless sintering and re-sintering this pre-sintered body using hot isostatic pressing to produce a strong, dense ceramic product with a high Weibull coefficient. It is being

この方法では、予備焼結体となる常圧焼結のセラミック
スが相対密度が95%未満の場合は、予備焼結体をガラ
スカプセルに封入して、熱間静水圧プレスで再焼結する
。予備焼結体となる常圧焼結のセラミックスの相対密度
が95%以上の場合は、ガラスカプセルに封入しないで
、予備焼結体を直接に熱間静水圧プレスで再焼結するこ
とができる。
In this method, if the pressureless sintered ceramic serving as the pre-sintered body has a relative density of less than 95%, the pre-sintered body is encapsulated in a glass capsule and re-sintered using hot isostatic pressing. If the relative density of the pressureless sintered ceramic that becomes the pre-sintered body is 95% or more, the pre-sintered body can be directly re-sintered using hot isostatic pressing without encapsulating it in a glass capsule. .

既に述べた如く、ウィスカーを分散させた従来の常圧焼
結体は相対密度が95%未満である。従ってウィスカー
を分散させた従来の常圧焼結体を熱間静水圧プレスで再
焼結するためには、ガラスカプセルに封入することが必
要となる。
As already mentioned, conventional pressureless sintered bodies with dispersed whiskers have a relative density of less than 95%. Therefore, in order to resinter a conventional pressureless sintered body in which whiskers are dispersed by hot isostatic pressing, it is necessary to encapsulate it in a glass capsule.

しかし予備焼結体をガラスカプセル内に封入する作業は
極めて厄介である。
However, the work of encapsulating the preliminary sintered body in a glass capsule is extremely troublesome.

[発明が解決しようとする課題] 従来は製造できなかったが、ウィスカーが分散しかつ相
対密度が95%以上の常圧焼結によるセラミックスが製
造できると、ガラスカプセル内に封入しないで、直接に
熱間静水圧プレスで再焼結できるために、ガラスカプセ
ル内に封入する厄介な作業が省略できる。
[Problem to be solved by the invention] Although it has not been possible to produce ceramics in the past, if it is possible to produce ceramics by pressureless sintering with dispersed whiskers and a relative density of 95% or more, it will be possible to produce ceramics directly without encapsulating them in a glass capsule. Since it can be resintered using hot isostatic pressing, the troublesome work of encapsulating it in a glass capsule can be omitted.

本発明は、ウィスカーを分散しかつ相対密度が95%以
上の常圧焼結によるセラミックスを製造し、この常圧焼
結によるセラミックスを予備焼結体として、ガラスカプ
セル内に封入しないで、直接に熱間静水圧プレスで再焼
結して、強靭でかつ緻密質でワイブル係数の高いセラミ
ックス製品を製造する方法の提供を課題としている。
The present invention produces ceramics by pressureless sintering in which whiskers are dispersed and has a relative density of 95% or more, and the ceramics produced by pressureless sintering are directly used as a pre-sintered body without being enclosed in a glass capsule. The objective is to provide a method for producing ceramic products that are strong, dense, and have a high Weibull coefficient by resintering using hot isostatic pressing.

[課題を解決するための手段] 本発明の第1工程では、セラミックスの粉末と、炭化珪
素ウィスカーおよび/または窒化珪素ウィスカーとを溶
媒中に分散せしめて、粘度が3.0ポイズ以下の泥漿を
製造する。
[Means for Solving the Problems] In the first step of the present invention, ceramic powder and silicon carbide whiskers and/or silicon nitride whiskers are dispersed in a solvent to form a slurry with a viscosity of 3.0 poise or less. Manufacture.

セラミックス粉末としては、各種の窒化珪素粉末やアル
ミナ粉末や炭化珪素粉末やマグネシア粉末やイツトリア
粉末が市販されているが、本発明ではこれ等の粉末を単
独であるいは調合して用いる事ができる。またコージェ
ライトやスピネル等の化合物粉末も調合して用いる事が
できる。セラミックス粉末の粒度は特に限定するもので
はないが、1μl以下の微粉が好ましい。
Various silicon nitride powders, alumina powders, silicon carbide powders, magnesia powders, and ittria powders are commercially available as ceramic powders, and in the present invention, these powders can be used alone or in combination. Further, compound powders such as cordierite and spinel can also be prepared and used. Although the particle size of the ceramic powder is not particularly limited, a fine powder of 1 μl or less is preferable.

本発明でウィスカーは、直径が0.1〜1μmで長さが
5〜100μ−の、炭化珪素の短繊維や窒化珪素の短繊
維を用いる。例えば商品名トーカウィスカ(東海カーボ
ン株製)は市販の炭化珪素の短繊維であるが、本発明の
ウィスカーとして直接使用する事ができる。また市販の
炭化珪素長繊維や窒化珪素長繊維は、5〜1100tL
の長さに切断して本発明のウィスカーとして使用する事
ができる。
In the present invention, the whiskers used are silicon carbide short fibers or silicon nitride short fibers having a diameter of 0.1 to 1 μm and a length of 5 to 100 μm. For example, the product name Toka Whisker (manufactured by Tokai Carbon Co., Ltd.) is a commercially available short fiber of silicon carbide, which can be used directly as the whisker of the present invention. In addition, commercially available silicon carbide long fibers and silicon nitride long fibers have a capacity of 5 to 1100 tL.
It can be cut to length and used as the whisker of the present invention.

本発明の第1工程では、セラミックス原料を溶媒中に分
散させて、粘度が3.0ポイズ以下の泥漿を製造する。
In the first step of the present invention, a ceramic raw material is dispersed in a solvent to produce a slurry having a viscosity of 3.0 poise or less.

本発明でセラミックス粉末と、セラミックスの粉末に対
して5〜20重量%ウィスカーと、セラミックスの粉末
に対して3〜15重量%の例えばコージェライト系焼結
助剤とを、分散剤を加えた水を溶媒として混練して、粘
度が3.0ポイズ以下の泥漿とする9本発明で泥漿の粘
度とは、JISZ8809による粘度計校正用標準液で
校正された回転型粘度計で測定した粘度をいう、泥漿の
粘度は、例えばセラミックスの粉末の粒度や分散剤の添
加量やPHを調整して、3.0ポイズ以下とする。
In the present invention, ceramic powder, 5 to 20% by weight of whiskers based on the ceramic powder, and 3 to 15% by weight of a cordierite sintering aid based on the ceramic powder are mixed in water containing a dispersant. as a solvent to form a slurry with a viscosity of 3.0 poise or less9 In the present invention, the viscosity of the slurry refers to the viscosity measured with a rotational viscometer calibrated with a standard solution for viscosity meter calibration according to JIS Z8809. The viscosity of the slurry is set to 3.0 poise or less by adjusting, for example, the particle size of the ceramic powder, the amount of dispersant added, and the pH.

本発明の第2工程では、この泥漿を石膏型に注入し、着
肉せしめてグリーン成形体を形成する。
In the second step of the present invention, this slurry is injected into a plaster mold and inked to form a green molded body.

このグリーン成形体の相対密度は60%以上とする。相
対密度を60%以上とするために、本発明ではグリーン
成形体中のウィスカーの向きを制御する。格別に工夫し
ないで、ウィスカーを含有する泥漿を用いてグリーン成
形体を製造すると、ウィスカーは三次元にランダムに配
向するが、この配向ではウィスカーが相互に篇み合い泥
漿の充填が不十分となって、グリーン成形体の相対密度
は60%以下となる。後で詳述するが、本発明ではウィ
スカーを石膏形の壁面に平行に配向させる。
The relative density of this green molded body is 60% or more. In order to make the relative density 60% or more, in the present invention, the orientation of whiskers in the green molded body is controlled. If a green molded body is manufactured using a slurry containing whiskers without special efforts, the whiskers will be oriented randomly in three dimensions, but in this orientation, the whiskers will intertwine with each other and the filling of the slurry will be insufficient. Therefore, the relative density of the green molded body is 60% or less. As will be explained in more detail below, in the present invention the whiskers are oriented parallel to the walls of the plaster form.

また石膏型の壁面に平行でかつ2次元にランダムに配向
させる。ウィスカーをこのように配向させると、ウィス
カーは相互に絡み合わないために、泥漿は十分に充填さ
れて、相対密度が60%以上のグリーン成形体が得られ
る。本発明者等の知見によると、粘度が3.0ポイズ以
上の泥漿では、グリーン成形体のウィスカーは2次元な
配向がルーズになり、粘度が高くなるに従って三次元に
ランダムになってその相対密度は60%以下となる。
Further, it is parallel to the wall surface of the plaster mold and randomly oriented in two dimensions. When the whiskers are oriented in this manner, the whiskers do not become entangled with each other, so that the slurry is sufficiently filled and a green molded body having a relative density of 60% or more is obtained. According to the findings of the present inventors, in a slurry with a viscosity of 3.0 poise or higher, the two-dimensional orientation of the whiskers in the green molded body becomes loose, and as the viscosity increases, the whiskers become three-dimensionally random and their relative density increases. is less than 60%.

本発明のウィスカーの向きの制御は、泥漿を構成するセ
ラミックス粉やウィスカーの種類1粒度、形状によって
異なるが、泥漿の粘度を3.0ポイズ以下に適正に調整
する事によって達せられる。
Control of the orientation of the whiskers in the present invention can be achieved by appropriately adjusting the viscosity of the slurry to 3.0 poise or less, although it varies depending on the type, particle size, and shape of the ceramic powder and whiskers constituting the slurry.

本発明の第3工程では、第2工程で形成したグリーン成
形体を常圧焼結する。この常圧焼結は、通常の常圧焼結
の条件、例えば焼結温度や焼結時間や雰囲気ガスで行う
。既に述べた如く本発明ではウィスカーの向きが制御さ
れれたグリーン成形体を用いる。グリーン成形体の外面
から内面に至る全肉厚に亘って、ウィスカーが石膏型の
壁面に平行でかつ2次元にランダムに配合したグリーン
成形体は、通常の常圧焼結条件で、相対密度が95%以
上の予備焼結体となる。
In the third step of the present invention, the green molded body formed in the second step is pressureless sintered. This pressureless sintering is performed under normal pressureless sintering conditions, such as sintering temperature, sintering time, and atmospheric gas. As already mentioned, the present invention uses a green molded body in which the direction of whiskers is controlled. A green molded body in which the whiskers are parallel to the wall surface of the plaster mold and randomly mixed in two dimensions over the entire wall thickness from the outer surface to the inner surface of the green molded body has a relative density of This results in a pre-sintered body of 95% or more.

本発明の第4工程では、第3工程で製造した予備焼結体
を、ガラスカプセルに封入しないで、直接に熱間静水圧
プレスによって再度焼結する。相対密度が95%以上の
予備焼結体は、通気性がないので、カプセルに入れなく
ても、例えば1000〜2000kgf/Cm”の圧力
、 1500〜1800℃の温度で、熱間静水圧プレス
により焼結すると理論密度しこ近い高密度のセラッミク
ス製品となる。
In the fourth step of the present invention, the preliminary sintered body produced in the third step is directly sintered again by hot isostatic pressing without encapsulating it in a glass capsule. Since the pre-sintered body with a relative density of 95% or more has no air permeability, it can be heated, for example, by hot isostatic pressing at a pressure of 1000 to 2000 kgf/Cm and a temperature of 1500 to 1800°C, without putting it into a capsule. When sintered, it becomes a high-density ceramic product close to the theoretical density.

[作用] 第1図は本発明の泥漿の作用の説明図で、(A)図はグ
リーン成形体あるいは複合セラミックス製品の形状を示
す図、(Bl) 、 (82)図11本発明のウィスカ
ーの向きの説明図である。本発明のグリ−ン成形体では
ウィスカー2は、第1図(131)で示した如く、グリ
ーン成形体の表面(石膏型の壁面)番コ略平行に、また
第1図(B2)で示した如く2次元でランダムな方向に
、またグリーン成形体の全厚さトこ亘って略均−に配さ
れている。グリーン成形体1こおけるウィスカー2のこ
の配向は、常圧焼結した後の予備焼結体や、熱間静水圧
プレス後の複合セラミックス製品においても、そのまト
維持される。
[Function] Fig. 1 is an explanatory diagram of the action of the slurry of the present invention, (A) is a diagram showing the shape of a green molded body or a composite ceramic product, (Bl), (82) Fig. 11 is an illustration of the action of the slurry of the present invention. It is an explanatory view of direction. In the green molded body of the present invention, the whiskers 2 are arranged approximately parallel to the surface of the green molded body (the wall surface of the plaster mold) as shown in FIG. 1 (131), and also as shown in Figure 1 (B2). They are arranged in two-dimensional random directions and approximately evenly throughout the entire thickness of the green molded body. This orientation of the whiskers 2 in the green molded body 1 is maintained as it is even in the pre-sintered body after pressureless sintering and the composite ceramic product after hot isostatic pressing.

従って本発明の方法で製造した複合セラミックス製品で
は、ウィスカー2は、製品の表面と略平行にかつ2次元
でランダムな方向に配されてb)る。
Therefore, in the composite ceramic product manufactured by the method of the present invention, the whiskers 2 are arranged substantially parallel to the surface of the product and in two-dimensional random directions b).

セラミックス製品が第1図(A)で例え【f内面力1ら
加熱されると、内面が熱膨張するため(こ、セラミック
ス製品の外面には、第1図(B2)でセラミックス製品
の外面と平行なe −h方向の引張熱衝撃応力P1やe
−f方向の引張熱衝撃応力P2が発生する。
When a ceramic product is heated by [f internal force 1] as shown in Fig. 1 (A), the inner surface thermally expands. The tensile thermal shock stress P1 in the parallel e-h direction and e
A tensile thermal shock stress P2 in the -f direction is generated.

炭化珪素ウィスカーや窒化珪素ウィスカーは極めて高強
度であるが、本発明ではウィスカーはセラミックス製品
の外面と平行にかつ2次元にランダムに向いて配されて
いる。このため本発明ではウィスカーは、外面と平行な
第1図(B2)の引張熱衝撃応力P1やP2に耐えるし
、また微細なりラックの伝播を阻止して割れの発生を防
止する。このため本発明のセラミックス製品は靭性に優
れ熱衝撃に強い。
Silicon carbide whiskers and silicon nitride whiskers have extremely high strength, but in the present invention, the whiskers are arranged parallel to the outer surface of the ceramic product and oriented randomly in two dimensions. Therefore, in the present invention, the whiskers can withstand the tensile thermal shock stresses P1 and P2 shown in FIG. 1 (B2) parallel to the outer surface, and also prevent the propagation of minute racks to prevent the occurrence of cracks. Therefore, the ceramic product of the present invention has excellent toughness and is resistant to thermal shock.

第1図(CI)、(C2)は粘度が3.0ボイス以上の
泥漿を使用した比較例の説明図である。ウィスカーを複
合させた従来のグリーン成形体や複合セラミックス製品
では、ウィスカー2は三次元にランダムな方向に配され
ている。セラミックス製品が使用の際に第1図(A)で
例えば内面から加熱されると内面が熱膨張するが、しか
しセラミックス製品の肉厚方向(a−b方向)の引張衝
撃応力P□は小さい。従来の複合セラミックス製品では
ウィスカー2が三次元にランダムに配されて引張熱衝撃
応力が小さい肉厚方向にも配向しているため、セラミッ
クス製品の外周と平行に配向しているウィスカーの数が
少ない。このため従来の複合セラミックス製品は使用に
際してセラミックス製品の外周と平行な引張熱衝撃応力
P1やP2に耐えられないで、熱衝撃に弱い。
FIGS. 1 (CI) and (C2) are explanatory diagrams of comparative examples using slurry having a viscosity of 3.0 voices or more. In conventional green molded bodies and composite ceramic products in which whiskers are composited, the whiskers 2 are three-dimensionally arranged in random directions. When a ceramic product is used, for example, when it is heated from the inner surface as shown in FIG. 1(A), the inner surface thermally expands, but the tensile impact stress P□ in the thickness direction (a-b direction) of the ceramic product is small. In conventional composite ceramic products, the whiskers 2 are arranged randomly in three dimensions and are also oriented in the wall thickness direction where tensile thermal shock stress is small, so the number of whiskers oriented parallel to the outer periphery of the ceramic product is small. . For this reason, conventional composite ceramic products cannot withstand tensile thermal shock stresses P1 and P2 parallel to the outer periphery of the ceramic product during use, and are susceptible to thermal shock.

第1図(Bl) 、 (B2)で示した粘度が3.0ポ
イズ以下の本発明の泥漿では、泥漿成形に際して、ウィ
スカー2は層状に順次配列する。従って着肉に際してウ
ィスカー2が相互に絡み合うことがない。
In the slurry of the present invention having a viscosity of 3.0 poise or less as shown in FIGS. 1 (Bl) and (B2), the whiskers 2 are sequentially arranged in layers when the slurry is formed. Therefore, the whiskers 2 do not become entangled with each other during inking.

この結果マトリックス材1も緻密に着肉する。従って本
発明によると相対密度が60%以上の緻密質のグリーン
成形体が得られる。またグリーン成形体の外面から内面
にいたる全肉厚に亘ってウィスカーが石膏型の壁面と平
行でかつ2次元にランダムに配向したグリーン成形体を
常圧焼結すると、相対密度が95%以上の予備焼結体が
得られる。
As a result, the matrix material 1 is also densely deposited. Therefore, according to the present invention, a dense green molded body having a relative density of 60% or more can be obtained. Furthermore, when a green molded body in which the whiskers are parallel to the wall surface of the plaster mold and randomly oriented in two dimensions over the entire wall thickness from the outer surface to the inner surface of the green molded body is sintered under pressure, the relative density is 95% or more. A pre-sintered body is obtained.

この相対密度が95%以上の予備焼結体は緻密質で表面
に開孔したオープンポアーがないためにガラスカプセル
に封入する必要がなく、そのまS熱間静水圧プレスで焼
結すると、理論密度に近い高密度の複合セラミックス製
品となる。
This pre-sintered body with a relative density of 95% or more is dense and has no open pores on its surface, so there is no need to encapsulate it in a glass capsule. The result is a high-density composite ceramic product that is close to that of the original.

第1図(CI)、 (C2)で示した。粘度が3.0ポ
イズ以上の泥漿を使用した従来のグリーン成形体は、泥
漿成形に際してウィスカー2が相互に絡み合うために、
マトリックス材1が十分には充填されない。従って従来
の方法では相対密度が60%以上のグリーン成形体を製
造し難い。またこの際のグリーン成形体は、常圧焼結し
ても予備焼結体の相対密度は95%以下である。相対密
度が95%以下の予備焼結体は1表面に開孔したオープ
ンポアーや連通孔を有するために、ガラスカプセルに封
入する事が不可欠で、そのまS熱間静水圧プレスで焼結
しても、高密度の複合セラミックス製品は得られない。
This is shown in Figure 1 (CI) and (C2). In conventional green molded bodies using slurry with a viscosity of 3.0 poise or more, the whiskers 2 become entangled with each other during slurry molding.
The matrix material 1 is not fully filled. Therefore, it is difficult to produce green molded bodies with a relative density of 60% or more using conventional methods. Furthermore, even if the green molded body is sintered under normal pressure, the relative density of the preliminary sintered body is 95% or less. Since the pre-sintered body with a relative density of 95% or less has open pores and communicating holes on one surface, it is essential to encapsulate it in a glass capsule, and then sinter it using an S hot isostatic press. However, high-density composite ceramic products cannot be obtained.

[実施例] 本発明者等は粒度が約1μの窒化珪素の微粉(商品名:
5NP−85,日本重化学工業■製)と、窒化珪素の微
粉の10重量%の炭化珪素ウィスカ(商品名:トーカウ
ィスカ、東海カーボン株製)を用いて粘度が3.0ポイ
ズ以下の泥漿を作威し、これを用いて、第1図(A)に
示した外径70mm X高さ100■履の円筒状のグリ
ーン成形体を形成した。このグリーン成形体を1気圧の
窒素雰囲気炉で3時間の常圧焼結を行ない予備焼結体を
、形成した。この予備焼結体の相対密度は95%以上で
あり、ガラスカプセルを用いないで直接に熱間静水圧プ
レスを用いて、1600℃、1500気圧で1時間の再
焼結を施した。グリーン成形体と常圧焼結後の予備焼結
体と熱間静水圧プレス後の焼結成品の性能を第1表の実
施例N001〜6に示した。
[Example] The present inventors produced silicon nitride fine powder (trade name:
A slurry with a viscosity of 3.0 poise or less was prepared using 5NP-85, manufactured by Nihon Heavy Chemical Industries, Ltd.) and 10% by weight of silicon carbide whiskers (trade name: Toka Whisker, manufactured by Tokai Carbon Co., Ltd.) of fine silicon nitride powder. Using this, a cylindrical green molded body having an outer diameter of 70 mm and a height of 100 mm as shown in FIG. 1(A) was formed. This green molded body was subjected to normal pressure sintering for 3 hours in a 1 atm nitrogen atmosphere furnace to form a preliminary sintered body. The relative density of this pre-sintered body was 95% or more, and it was re-sintered directly at 1600° C. and 1500 atm for 1 hour using a hot isostatic press without using a glass capsule. The performance of the green molded body, the preliminary sintered body after pressureless sintering, and the sintered product after hot isostatic pressing is shown in Examples Nos. 001 to 6 in Table 1.

第1表のNol〜No6にみられる如く、本発明の方法
によると、グリーン成形体の相対密度は60%以上で緻
密質であり、ウィスカーは1円筒状のグリーン成形体の
全肉厚に亘って成形体の外面と略平行にかつ2次元にラ
ンダムに配向していた。このグリーン成形体を用いて製
造した予備焼結体は緻密質で優れた靭性を有していたが
、更に熱間静水圧プレスで再焼結することにより、曲げ
強度や破壊靭性値が更に向上して極めて優れた性能のセ
ラミックス製品が得られた。
As seen in Nos. 1 to 6 in Table 1, according to the method of the present invention, the relative density of the green molded product is 60% or more and is dense, and the whiskers are formed over the entire wall thickness of the cylindrical green molded product. The particles were randomly oriented in two dimensions and approximately parallel to the outer surface of the molded body. The pre-sintered body produced using this green compact was dense and had excellent toughness, but by further sintering it using hot isostatic pressing, the bending strength and fracture toughness values were further improved. A ceramic product with extremely excellent performance was obtained.

第1表でNo7は比較例であり、 Nol〜No6と同
じ窒化珪素の微粉と炭化珪素ウィスカーの泥漿を用いた
が、泥漿の粘度が3.0ポイズ以上であったために、予
備焼結体の相対密度が小さい。ガラスカプセルを用いな
いで直接に熱間静水圧プレスしたが、熱間静水圧プレス
後の焼結成品の相対密度は低く、曲げ強度や破壊靭性値
も不十分であった。
In Table 1, No. 7 is a comparative example, and the same silicon nitride fine powder and silicon carbide whisker slurry as No. 1 to No. 6 were used, but since the viscosity of the slurry was 3.0 poise or more, Low relative density. Direct hot isostatic pressing was performed without using a glass capsule, but the relative density of the sintered product after hot isostatic pressing was low, and the bending strength and fracture toughness values were also insufficient.

第1表でNo8.9は比較例であり、窒化珪素の微粉と
窒化珪素の微粉の10重量%の炭化珪素ウィスカーを用
いて、プレス成形と常圧焼結法で予備焼結体を製造した
例である。この際も予備焼結体の相対密度が小さい。ガ
ラスカプセルを用いないで直接に熱間静水圧プレスした
が、熱間静水圧プレス後の焼結成品の相対密度は低く、
曲げ強度や破壊靭性値も不十分であった。
In Table 1, No. 8.9 is a comparative example, in which a preliminary sintered body was manufactured by press molding and pressureless sintering using silicon nitride fine powder and 10% by weight silicon carbide whiskers of silicon nitride fine powder. This is an example. Also in this case, the relative density of the preliminary sintered body is small. Although hot isostatic pressing was performed directly without using a glass capsule, the relative density of the sintered product after hot isostatic pressing was low;
The bending strength and fracture toughness values were also insufficient.

第1表でNol0は炭化珪素ウィスカーを含有しない例
で、窒化珪素の微粉のみで泥漿を形成した。
In Table 1, No. 0 is an example containing no silicon carbide whiskers, and a slurry was formed only with fine powder of silicon nitride.

炭化珪素ウィスカーを複合しない予備焼結体は、相対密
度が高い。ガラスカプセルを用いないで直接に熱間静水
圧プレスしたが、熱間静水圧プレス後の焼結成品の相対
密度は十分に高い。しかしこの焼結成品は炭化珪素のウ
ィスカーを複合していないために、No1〜6の本発明
の実施例に比べて曲げ強度や破壊靭性値が不十分で、あ
る。
A pre-sintered body without composite silicon carbide whiskers has a high relative density. Although hot isostatic pressing was performed directly without using a glass capsule, the relative density of the sintered product after hot isostatic pressing was sufficiently high. However, since this sintered product did not contain silicon carbide whiskers, its bending strength and fracture toughness were insufficient compared to Examples Nos. 1 to 6 of the present invention.

[発明の効果コ 本発明の方法で製造した、ウィスカーを複合したセラミ
ックス製品は、ウィスカーが特定の向きに配されている
ため、従来のウィスカーを複合したセラミックス製品よ
りも熱衝撃に強い。
[Effects of the Invention] The whisker composite ceramic product manufactured by the method of the present invention has the whiskers arranged in a specific direction, so it is more resistant to thermal shock than the conventional whisker composite ceramic product.

本発明のセラミックス成品は熱間静水圧プレスで焼結さ
れているため、高いワイブル係数の高靭性で高強度なセ
ラミックス製品である。
Since the ceramic product of the present invention is sintered by hot isostatic pressing, it is a high toughness and high strength ceramic product with a high Weibull coefficient.

本発明は泥漿成形法と常圧焼結法で製造した予備焼結体
を使用するため熱間静水圧プレスで複雑な形状のセラミ
ックス製品が製造できる。
Since the present invention uses a pre-sintered body produced by the slurry molding method and the pressureless sintering method, ceramic products with complicated shapes can be produced by hot isostatic pressing.

本発明では予備焼結体をガラスカプセル等を用いないで
直接に熱間静水圧プレスで焼結するため、予備焼結体を
ガラスカプセル内に減圧封入する従来の複雑な製造工程
が簡易化され、製造コストも安い。
In the present invention, the pre-sintered body is sintered directly by hot isostatic pressing without using a glass capsule or the like, so the conventional complicated manufacturing process of encapsulating the pre-sintered body under reduced pressure in a glass capsule is simplified. , manufacturing cost is also low.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、ウィスカーを含有するグリーン成形体やセラ
ミックス製品中のウィスカーの向きを説明する図、 である。
FIG. 1 is a diagram illustrating the orientation of whiskers in a green molded body or ceramic product containing whiskers.

Claims (1)

【特許請求の範囲】[Claims]  セラミックスの粉末と炭化珪素ウィスカーおよび/ま
たは窒化珪素ウィスカーとを溶媒中に分散せしめて粘度
が3.0ポイズ以下の泥漿を製造する第1工程と、該泥
漿を用いて泥漿成形法によって相対密度が60%以上の
グリーン成形体を形成する第2工程と、該グリーン成形
体を常圧焼結して相対密度が95%以上の予備焼結体を
製造する第3工程と、該予備焼結体をガラスカプセルな
しで熱間静水圧プレスにより焼結する第4工程とを有す
ることを特徴とする、複合セラミックス製品の製造方法
A first step of dispersing ceramic powder and silicon carbide whiskers and/or silicon nitride whiskers in a solvent to produce a slurry with a viscosity of 3.0 poise or less, and using the slurry to reduce the relative density by a slurry molding method. a second step of forming a green molded body of 60% or more; a third step of producing a pre-sintered body with a relative density of 95% or more by sintering the green molded body under pressure; and a third step of producing a pre-sintered body with a relative density of 95% or more; and a fourth step of sintering by hot isostatic pressing without a glass capsule.
JP2092054A 1990-04-09 1990-04-09 Production of composite ceramic article Pending JPH03290376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2092054A JPH03290376A (en) 1990-04-09 1990-04-09 Production of composite ceramic article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2092054A JPH03290376A (en) 1990-04-09 1990-04-09 Production of composite ceramic article

Publications (1)

Publication Number Publication Date
JPH03290376A true JPH03290376A (en) 1991-12-20

Family

ID=14043794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2092054A Pending JPH03290376A (en) 1990-04-09 1990-04-09 Production of composite ceramic article

Country Status (1)

Country Link
JP (1) JPH03290376A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106673664A (en) * 2017-01-17 2017-05-17 西安建筑科技大学 Preparation method for low-porosity reaction-sintered silicon nitride bonded silicon carbide ceramic material
CN115073195A (en) * 2022-06-05 2022-09-20 西北工业大学 Silicon nitride whisker reinforced nitride composite material for 3D printing radome and preparation and printing methods

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106673664A (en) * 2017-01-17 2017-05-17 西安建筑科技大学 Preparation method for low-porosity reaction-sintered silicon nitride bonded silicon carbide ceramic material
CN115073195A (en) * 2022-06-05 2022-09-20 西北工业大学 Silicon nitride whisker reinforced nitride composite material for 3D printing radome and preparation and printing methods

Similar Documents

Publication Publication Date Title
JPS61197464A (en) Manufacture of sintered formed body
Naslain Materials design and processing of high temperature ceramic matrix composites: state of the art and future trends
CN110655405B (en) Preparation method of ceramic matrix composite structure
EP0563366B1 (en) Method of making a ceramic cutting tool
US5443770A (en) High toughness carbide ceramics by slip casting and method thereof
CN104329988B (en) Bulletproof ceramic chip and preparation method thereof
US5338598A (en) Sintered inorganic composites comprising co-sintered tape reinforcement
JPH03290376A (en) Production of composite ceramic article
US5928583A (en) Process for making ceramic bodies having a graded porosity
JPH0157075B2 (en)
JP3588962B2 (en) Method for producing fiber-reinforced ceramic composite material
KR0139551B1 (en) Proce ss for simultaneously producing a number of ceramic sintered body by hot pressing method
KR100631157B1 (en) Ceramic body having 2-dimensional or 3-dimensional fibrous array
US5227344A (en) Ceramics composite article and method for making same
JPH06287061A (en) Sic-based composite ceramic and its production
US4244902A (en) Pressureless method of forming a silicon carbide ceramic material
JP2798701B2 (en) Composite ceramic product and method of manufacturing the same
JP2718777B2 (en) Method for producing reaction sintered ceramic member
JPH08290967A (en) Diamond sintered compact and its production
JPH08169761A (en) Production of silicon carbide-based fiber composite material
JPH06287062A (en) Reinforced sic-based ceramic member
SU791697A1 (en) Method of producing thermoresistant ceramics
JPS59116178A (en) Manufacture of high density ceramic sintered body
JPS61146754A (en) Manufacture of composite ceramics
JPS62202872A (en) Ceramic formed body and manufacture