JP2541810B2 - Method for manufacturing piezoelectric ceramics for transducers - Google Patents

Method for manufacturing piezoelectric ceramics for transducers

Info

Publication number
JP2541810B2
JP2541810B2 JP2818387A JP2818387A JP2541810B2 JP 2541810 B2 JP2541810 B2 JP 2541810B2 JP 2818387 A JP2818387 A JP 2818387A JP 2818387 A JP2818387 A JP 2818387A JP 2541810 B2 JP2541810 B2 JP 2541810B2
Authority
JP
Japan
Prior art keywords
piezoelectric
parts
piezoelectric ceramics
powder
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2818387A
Other languages
Japanese (ja)
Other versions
JPS63197387A (en
Inventor
富雄 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP2818387A priority Critical patent/JP2541810B2/en
Publication of JPS63197387A publication Critical patent/JPS63197387A/en
Application granted granted Critical
Publication of JP2541810B2 publication Critical patent/JP2541810B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,水中マイクロホンを始めとする圧電型のト
ランスジューサー等に使用される圧電セラミックスの製
造方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing piezoelectric ceramics used in piezoelectric transducers such as underwater microphones.

〔従来の技術〕[Conventional technology]

従来,この種の圧電素子は主として緻密なチタン酸ジ
ルコン酸鉛系圧電セラミックスが使用されてきたが,緻
密なチタン酸ジルコン酸鉛系圧電セラミックスはエネル
ギーの交換効率が非常に大きい等の優れた性質を有して
いるものの,水中マイクロホン等への応用を考えた場
合,水との音響インピーダンス整合がとりにくい,即
ち,機械的Qmが大きく,また,ε33が大きい為に
圧電定数g33がそれ程大きくない等の欠点を有してい
た。これらの欠点を改良する為に,アメリカのペンシル
バニア ステート大学で作られたサンゴ状のPZT複合体
をはじめとし,様々な形でのセラミックスとポリマーの
複合体が検討されてきており,緻密な圧電セラミックス
の上記欠点を改良できることが確認されている。
Conventionally, dense lead zirconate titanate-based piezoelectric ceramics have been mainly used for this type of piezoelectric element, but dense lead zirconate titanate-based piezoelectric ceramics have excellent properties such as very high energy exchange efficiency. However, in consideration of application to underwater microphones, it is difficult to match acoustic impedance with water, that is, the mechanical Qm is large, and ε 33 / ε 0 is large, so the piezoelectric constant g 33 had drawbacks such as not being so large. In order to improve these shortcomings, various forms of ceramic-polymer composites have been investigated, including coral-shaped PZT composites made at the University of Pennsylvania State in the United States. It has been confirmed that the above-mentioned drawbacks of can be improved.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし,これらの方法は,いずれも製造方法が複雑で
あり,量産性に劣るという欠点を有していた(参考文
献:サンゴレプリカ法(D.P.Skinner他)天然サンゴを
用いたもので,素子の均質性,量産性に問題あり)。
However, each of these methods has a drawback that the manufacturing method is complicated and mass productivity is poor (reference: coral replica method (DPSkinner et al.)). , There is a problem in mass productivity).

そこで,本発明は上記欠点に鑑み,量産性に富む方法
で,容易に,均質で連続性のある空隙を有する圧電セラ
ミックスを製造する方法を提供することを目的とする。
In view of the above-mentioned drawbacks, the present invention has an object to provide a method for producing piezoelectric ceramics having homogeneous and continuous voids easily and with high productivity.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば100〜600メッシュに粒径を制御したチ
タンジルコン酸鉛系圧電性セラミックス粉末100重量部
に繊維状の樹脂1〜8重量部を混ぜ合せ,これに結合剤
を添加して混合した後,成形,焼成を行ない,空隙率の
大きな圧電セラミックスを得ることを特徴としたセラミ
ックスの製造方法が得られる。
According to the present invention, 100 parts by weight of lead titanium zirconate-based piezoelectric ceramic powder having a particle size controlled to 100 to 600 mesh is mixed with 1 to 8 parts by weight of a fibrous resin, and a binder is added to the mixture. After that, molding and firing are performed to obtain a piezoelectric ceramic having a large porosity.

ここで,本発明において,粉末の粒径を100〜600メッ
シュに限定したのは,100メッシュより大きい粉末で焼結
反応があまり進まず,出来上った焼結体の強度が弱く実
用に供さない為であり、逆に600メッシュ以下の粉末で
は反応が進みすぎて空隙率が小さくなり,本発明の目的
から外れる為である。繊維状の樹脂混入量を1〜8部に
限定したのは,1部以下では十分な空隙率を得られない為
であり,逆に8部異常では,これ以上添加しても空隙率
が上がらず,変形,ヒビ割れが発生し,強度も弱く実用
的でない為である。また,樹脂を繊維状のものに限定し
たのは,空隙に連続性を持たせる為である。
Here, in the present invention, the particle size of the powder is limited to 100 to 600 mesh because the sintering reaction does not proceed so much with the powder larger than 100 mesh, and the strength of the finished sintered body is weak and it is practically used. This is because, on the contrary, in the case of powder of 600 mesh or less, the reaction proceeds too much and the porosity becomes small, which is out of the object of the present invention. The reason for limiting the amount of fibrous resin to 1 to 8 parts is that sufficient porosity cannot be obtained with 1 part or less, and conversely with 8 parts anomaly, the porosity will increase even if more than this is added. However, it is not practical because it is deformed and cracked and its strength is weak. Moreover, the reason why the resin is limited to fibrous ones is that the voids have continuity.

〔実施例〕〔Example〕

以下,本発明の実施例について詳細に説明する。 Hereinafter, examples of the present invention will be described in detail.

第1図は本発明による製造工程を示すものであり,こ
れに添って内容を説明する。
FIG. 1 shows a manufacturing process according to the present invention, the contents of which will be described.

まず,通常の,BaTiO3,PbTiO3などのチタンジルコン酸
系圧電セラミックスの製造方法と同様に,PbO,ZrO2,Ti
O2,その他の原料の秤量を行ない,これをボールミル等
の混合機を使用して,数〜数十時間混合した後,過,
乾燥を行ない,混合上り粉末を得る。
First, similar to the conventional method for manufacturing titanium zirconate piezoelectric ceramics such as BaTiO 3 and PbTiO 3 , PbO, ZrO 2 and Ti
O 2 and other raw materials are weighed and mixed with a mixer such as a ball mill for several to several tens of hours.
Dry to obtain mixed powder.

この混合粉末を,1000〜1300℃の比較的高い温度で第
一次焼成を行なう。
The mixed powder is subjected to primary firing at a relatively high temperature of 1000 to 1300 ° C.

この様にして出来上ったチタンジルコン酸鉛系セラミ
ックスを粉砕機にて適当な粒度分布になる様に粉砕した
後,分級機にかけ必要な粒度範囲に分級して,チタンジ
ルコン酸鉛系の原料粉末を得る。
The lead zirconate titanate-based ceramics produced in this way is pulverized by a pulverizer so as to have an appropriate particle size distribution, and then classified by a classifier into a required particle size range to obtain a lead titanium zirconate-based raw material. Get a powder.

次に,この原料粉末にセルローズ等の繊維系樹脂,他
にポリアミド・ポリエステル等を加え,原料粉末と樹脂
が十分均一になる様に混合を行なった後,PVA等のバイン
ダー溶液を加えさらに混合を行なう。
Next, to this raw material powder, add fiber-based resin such as cellulose, polyamide, polyester, etc., and mix them so that the raw material powder and the resin are sufficiently uniform, and then add a binder solution such as PVA and further mix. To do.

これを適当な値に水分調整した後,0.5〜1.0Ton/cm2
圧力でプレス成形を行なう。
After adjusting the water content to an appropriate value, press molding is performed at a pressure of 0.5 to 1.0 Ton / cm 2 .

この成形体を適当な雰囲気下で,1000〜1300℃で、焼
成することにより,均質で連続した空隙を有した空隙率
30〜55%程度の圧電セラミックスを得ることができる。
Porosity with homogeneous and continuous voids by firing this compact in an appropriate atmosphere at 1000-1300 ℃
Piezoelectric ceramics of about 30 to 55% can be obtained.

このとき,用いる繊維系樹脂とは,繊維形状をもち,
焼成で完全に焼失してしまうものであればセルローズの
他のものでも応用できる。
At this time, the fiber-based resin used has a fiber shape,
Other materials such as cellulose can be applied as long as they are completely burned out.

上記製造法によって得られた圧電セラミックスの密度
及び特性例を以下に示す。なお,圧電特性測定用試料は
φ10×25tの丸棒の上下面に銀ペーストを塗布した後焼
付けて電極を形成し,これに,200℃で12.5kVの電圧を20
分印加して,分極処理を行なった。
Examples of the density and characteristics of the piezoelectric ceramics obtained by the above manufacturing method are shown below. Samples for measuring piezoelectric characteristics were coated with silver paste on the top and bottom surfaces of a φ10 × 25t round bar and then baked to form electrodes, and a voltage of 12.5 kV was applied at 200 ° C for 20 hours.
The voltage was applied for a minute to perform polarization treatment.

(例1) 原料として100〜200メッシュ,200〜400メッシュ,400
〜600メッシュ−600メッシュに粒度調整したチタンジル
コン酸鉛系粉末を使用し,この粉末100部に対し,セル
ロースを4部加えてメノウ製擂潰機で30分間混合した
後,バインダーとしてPVAを0.5部加えて15分間混合した
ものを,0.5Ton/cm2の圧力で成形し,1200℃で焼成して得
られた試料の空隙率を図2−aに示す。またこれらの誘
電率ε33を図2−b,圧電定数g33を図2−cに示
す。
(Example 1) 100-200 mesh, 200-400 mesh, 400 as raw material
~ 600 mesh-Used lead-titanium zirconate-based powder with a particle size adjusted to 600 mesh, add 4 parts of cellulose to 100 parts of this powder, mix with an agate crusher for 30 minutes, and then add PVA as a binder to 0.5 parts. Fig. 2-a shows the porosity of a sample obtained by molding a mixture of 15 parts and mixing for 15 minutes at a pressure of 0.5 Ton / cm 2 and firing at 1200 ° C. The permittivity ε 33 / ε 0 is shown in FIG. 2-b, and the piezoelectric constant g 33 is shown in FIG. 2-c.

(例2) 原料粉末として,200〜400メッシュに粒度調整したチ
タンジルコン酸鉛系粉末を使用し,この粉末100部に0
部,1部,4部,8部,12部のセルローズを加えて,例1と同
条件で作成した試料の空隙率を,図3−aに示す。ま
た,これらの誘電率ε33を図3−b,圧電定数g33
図3−cに示す。いずれも,従来は誘電率ε33は1
800〜2000と高く圧電定数g33が20〜30(Vm/n)と低かっ
たが本発明によれば図2−c及び図3−cから明らかな
ように,g33が80〜130(Vm/N)と大きくなる。尚,圧電
定数g33は大きいほど高感度となるため,圧電型のトラ
ンスジューサ等に使用される圧電セラミックスには必須
の条件であり,望ましくは60(Vm/N)以上あれば,非常
に有用である。
(Example 2) As a raw material powder, lead titanium zirconate-based powder having a particle size adjusted to 200 to 400 mesh was used.
Fig. 3-a shows the porosity of the sample prepared under the same conditions as in Example 1 by adding 1 part, 1 part, 4 parts, 8 parts, and 12 parts of cellulose. The permittivity ε 33 / ε 0 is shown in Fig. 3-b, and the piezoelectric constant g 33 is shown in Fig. 3-c. In both cases, the permittivity ε 33 / ε 0 is 1 in the past.
The piezoelectric constant g 33 was as high as 800 to 2000, and the piezoelectric constant g 33 was as low as 20 to 30 (Vm / n), but according to the present invention, as is clear from FIGS. 2-c and 3-c, g 33 is 80 to 130 (Vm / n). / N). Since the larger the piezoelectric constant g 33 is, the higher the sensitivity becomes, it is an indispensable condition for piezoelectric ceramics used for piezoelectric transducers and the like. Desirably, 60 (Vm / N) or more is very useful. is there.

〔発明の効果〕〔The invention's effect〕

以上の説明からも分かる様に,本発明による多孔質圧
電セラミックスの製造方法は,通常のチタンジルコン酸
鉛系セラミックスの製造方法とあまり変わらず,容易に
均質で連続性がある不定形の孔部を有する空隙率の大き
い圧電セラミックスを得られるので,工業的価値が大き
いものである。
As can be seen from the above description, the method for producing a porous piezoelectric ceramic according to the present invention is not much different from the method for producing a normal lead zirconate titanate-based ceramics, and it is easy to form a homogeneous and continuous amorphous pore portion. Since it is possible to obtain piezoelectric ceramics with a large porosity, it is of great industrial value.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例に係る製造工程を示すフローチ
ャート,第2図−aは原料粉末粒度と焼結上りセラミッ
クスの空隙率との相関図,第2図−bは原料粉末粒度と
誘電率ε33との相関図,第2図−cは原料粉末粒
径と圧電定数g33との相関図,第3図−aは樹脂添加量
と焼結上りセラミックスの空隙率との相関図,第3図−
bは樹脂添加量と誘電率ε33との相関図,第3図
−cは樹脂添加量と圧電定数g33との相関図である。
FIG. 1 is a flow chart showing a manufacturing process according to an embodiment of the present invention, FIG. 2-a is a correlation diagram between raw material powder particle size and void ratio of sintered ceramics, and FIG. 2-b is raw material powder particle size and dielectric. Correlation diagram with the ratio ε 33 / ε 0 , Fig. 2-c is a correlation diagram between the particle size of the raw material powder and the piezoelectric constant g 33, and Fig. 3-a is the amount of resin added and the porosity of sintered ceramics. Correlation diagram, Fig. 3-
b is a correlation diagram between the resin addition amount and the dielectric constant ε 33 / ε 0, and FIG. 3C is a correlation diagram between the resin addition amount and the piezoelectric constant g 33 .

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】100〜600メッシュに粒径を制御したチタン
ジルコン酸鉛系圧電性セラミックス粉末100重量部に、
繊維状の樹脂1〜8重量部を混ぜ合わせ、これに結合剤
を添加して混合した後、成形、焼成を行い、均質で連続
した不定形の孔部を有する空隙率の大きな圧電セラミッ
クスを得ることを特徴としたトランスジューサー用圧電
セラミックスの製造方法。
1. To 100 parts by weight of lead titanium zirconate-based piezoelectric ceramic powder having a particle size controlled to 100 to 600 mesh,
1 to 8 parts by weight of a fibrous resin is mixed, a binder is added to the resin, and the mixture is molded and fired to obtain a piezoelectric ceramic with a large porosity and having uniform and continuous irregular pores. A method for manufacturing a piezoelectric ceramic for a transducer, which is characterized by the above.
JP2818387A 1987-02-12 1987-02-12 Method for manufacturing piezoelectric ceramics for transducers Expired - Lifetime JP2541810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2818387A JP2541810B2 (en) 1987-02-12 1987-02-12 Method for manufacturing piezoelectric ceramics for transducers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2818387A JP2541810B2 (en) 1987-02-12 1987-02-12 Method for manufacturing piezoelectric ceramics for transducers

Publications (2)

Publication Number Publication Date
JPS63197387A JPS63197387A (en) 1988-08-16
JP2541810B2 true JP2541810B2 (en) 1996-10-09

Family

ID=12241595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2818387A Expired - Lifetime JP2541810B2 (en) 1987-02-12 1987-02-12 Method for manufacturing piezoelectric ceramics for transducers

Country Status (1)

Country Link
JP (1) JP2541810B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510764A (en) * 1991-07-05 1993-01-19 Murata Mfg Co Ltd Piezoelectric element

Also Published As

Publication number Publication date
JPS63197387A (en) 1988-08-16

Similar Documents

Publication Publication Date Title
US4330593A (en) PZT/Polymer composites and their fabrication
JPH0159232B2 (en)
GB2068355A (en) Method of manufacturing interconnected porous ceramics
US4983556A (en) High strength porcelains for use in insulators and production thereof
US5505870A (en) Piezoelectric ceramic-polymer composite material and method for preparing the same
JPS6149487A (en) Method of producing porous piezoelectric ceramic material
JP2541810B2 (en) Method for manufacturing piezoelectric ceramics for transducers
JP2884635B2 (en) Piezoelectric ceramics and method of manufacturing the same
KR100563364B1 (en) Lead-free piezoelectric ceramics and preparation thereof
CN110498679B (en) Preparation method of multilayer phase structure BNT-BT ceramic with high dielectric property
Inthong et al. Piezoceramic-polymer and piezoceramic-cement composites: A brief review
JP2884631B2 (en) Piezoelectric ceramics and manufacturing method thereof
KR101110365B1 (en) Method for manufacturing ferroelectric ceramics
CN115010483B (en) Piezoelectric ceramic material insensitive to strain and components, and preparation method and application thereof
JPH0517216A (en) Piezoelectric ceramics
Sangawar et al. A comprehensive study on some binders for piezo-electric ceramics
JPH05139825A (en) Production of lead titanate based piezoelectric ceramic
JP3112286B2 (en) Manufacturing method of dense machinable ceramics
JP2000154059A (en) Production of piezoelectric ceramics
CN85100703A (en) <br〉densification-porous-fine and close sandwich composite piezoelectric ceramics and technology thereof
JP2581841B2 (en) Method for producing porous PZT ceramics
JPH069281A (en) Production of formed material of porous pzt ceramic and production of underwater sound receiver
JPH01131448A (en) Production of element for oxygen sensor
JPH08325058A (en) Production of piezoelectric porcelain composition
JPH0290579A (en) Manufacture of porous piezoelectric ceramic material