JPH07235306A - Manufacture of positive electrode active material for nonaqueous lithium secondary battery - Google Patents

Manufacture of positive electrode active material for nonaqueous lithium secondary battery

Info

Publication number
JPH07235306A
JPH07235306A JP6051220A JP5122094A JPH07235306A JP H07235306 A JPH07235306 A JP H07235306A JP 6051220 A JP6051220 A JP 6051220A JP 5122094 A JP5122094 A JP 5122094A JP H07235306 A JPH07235306 A JP H07235306A
Authority
JP
Japan
Prior art keywords
positive electrode
nickel
lithium
powder
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6051220A
Other languages
Japanese (ja)
Other versions
JP3344815B2 (en
Inventor
Akinobu Iikawa
明伸 飯川
Yuichi Ito
有一 伊藤
Seishi Araki
清史 荒木
Yukio Hiraoka
幸雄 平岡
Norio Haga
教雄 芳賀
Katsuaki Okabe
勝明 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP05122094A priority Critical patent/JP3344815B2/en
Publication of JPH07235306A publication Critical patent/JPH07235306A/en
Application granted granted Critical
Publication of JP3344815B2 publication Critical patent/JP3344815B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a lithium secondary battery having high discharge capacity and a high filling characteristic by using a nickel compound in which a particle diame ter of a secondary particle is limited to a range of 5mum to 100mum, obtaining LiNiO2 powder, and using this as a positive electrode active material. CONSTITUTION:Lithium hydroxide LiOH and nickel hydroxide Ni(OH)2 having an average diameter of 20i m are weighed so as to become Li/Ni=1/1 in a mole ratio, and after these powders are thrown in the water, citric acid is added, and it is dried. Afterwards, heat treatment is performed in an oxygen air current, and powder having an average diameter of 1.6mum is obtained. This is used as a positive electrode active material, and after a conductive agent and a binding agent are added, and a positive electrode plate is obtained by pressurizing molding. This positive electrode plate is used as a positive electrode 4 of a test cell of a lithium secondary battery, on the one hand, in a negative electrode 7, a lithium metal plate is used as a negative electrode plate. Polypropylene is used as a separator 5. A separator fixing spacer is 6, and a negative electrode current collecting body is 8, and a cell fixing machine screw is 9, and an electrolyte injecting plug is 10, and a negative electrode lead wire is 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、正極活物質としてLi
NiO2 を用いた非水リチウム二次電池の充放電容量の
高容量化に関し、さらに詳しくは高容量化をもたらす非
水リチウム二次電池用正極活物質の製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to Li as a positive electrode active material.
The present invention relates to increasing the charge / discharge capacity of a non-aqueous lithium secondary battery using NiO 2 , and more particularly to a method for producing a positive electrode active material for a non-aqueous lithium secondary battery, which increases the capacity.

【0002】[0002]

【従来の技術】LiNiO2 正極活物質を製造するに
は、従来次のような技術が用いられていた。すなわち、
リチウム塩およびニッケル塩の各原料を有機溶剤中で微
粉砕・混合した後に乾燥・成形し、約750℃の温度で
24時間酸素気流中で焼成してLiNiO2 を合成し、
リチウムイオンの移動を容易にして容量を高めるように
その結晶構造を発達させていた。
2. Description of the Related Art The following techniques have been conventionally used to produce a LiNiO 2 positive electrode active material. That is,
Lithium salt and nickel salt raw materials are finely pulverized and mixed in an organic solvent, then dried and molded, and baked in an oxygen stream at a temperature of about 750 ° C. for 24 hours to synthesize LiNiO 2 ,
Its crystal structure was developed to facilitate the migration of lithium ions and increase their capacity.

【0003】このような従来の技術においては、望まし
い結晶構造を発達させるためには、出発原料の粒径をで
きるだけ微細にし、焼成によって反応を促進することが
望ましいと考えられていた。
In such conventional techniques, in order to develop a desired crystal structure, it was considered desirable to make the grain size of the starting material as fine as possible and promote the reaction by firing.

【0004】[0004]

【発明が解決しようとする課題】しかし、実際の電池に
おいては、容量を高める手段としてLiNiO2 粉体の
充填密度を高めることも要求される。充填密度を高める
ためには、LiNiO2粉体の粒径分布が適正であるこ
とおよび個々の粒子が高密度であることが要求される。
しかしながら従来の技術において採用されている焼成温
度では原料粒径が大きすぎるとLiNiO2 結晶相の合
成が不十分となるため原料粒径を細かくしている。その
結果、原料粉の充填が低くなるため焼成によって得られ
るLiNiO2 粒子の密度は低くなってしまうという課
題があった。
However, in an actual battery, it is also required to increase the packing density of the LiNiO 2 powder as a means for increasing the capacity. In order to increase the packing density, it is required that the LiNiO 2 powder has a proper particle size distribution and that each particle has a high density.
However, if the raw material particle size is too large at the firing temperature adopted in the conventional technique, the synthesis of the LiNiO 2 crystal phase becomes insufficient, so the raw material particle size is made fine. As a result, there is a problem that the density of the LiNiO 2 particles obtained by firing becomes low because the filling of the raw material powder becomes low.

【0005】本発明が解決しようとする課題は、LiN
iO2 を正極活物質として用いた非水リチウム二次電池
における、体積当たりの充放電容量を高めるために、充
填密度の高いLiNiO2 粉体の製造方法の開発にあ
る。
The problem to be solved by the present invention is that LiN
In order to increase the charge / discharge capacity per volume in a non-aqueous lithium secondary battery using iO 2 as a positive electrode active material, a method for producing LiNiO 2 powder having a high packing density is being developed.

【0006】[0006]

【課題を解決するための手段】本発明者等は、上記の課
題を解決するため鋭意研究を行った結果、出発原料のニ
ッケル粉体の粒径を規定し、リチウム成分を水および有
機酸によって混合することによって、高い充放電容量と
高い充填密度を有するLiNiO2 粉体が得られること
を見いだした。
Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the present inventors have defined the particle size of nickel powder as a starting material, and determined the lithium component by water and an organic acid. It was found that by mixing, a LiNiO 2 powder having a high charge / discharge capacity and a high packing density can be obtained.

【0007】すなわち本発明は、第1に平均粒径が10
0μmを超えずかつ5μm以上である二次以上の凝集粒
子で構成されるニッケル化合物を、リチウムイオンと有
機酸とを含有する水溶液中に懸濁させた後乾燥し、該乾
燥物を酸化性雰囲気中で焼成することを特徴とするLi
NiO2 正極活物質とその製造方法を提供し、第2に、
前記ニッケル化合物として水酸化ニッケル、ニッケル酸
化物、オキシ水酸化ニッケルおよび炭酸ニッケルからな
る群より選択された1種以上のニッケル化合物を使用す
るLiNiO2 正極活物質とその製造方法を提供する。
That is, according to the present invention, firstly, the average particle size is 10
A nickel compound composed of secondary or more agglomerated particles having a diameter of not more than 0 μm and not less than 5 μm is suspended in an aqueous solution containing lithium ions and an organic acid and then dried, and the dried product is subjected to an oxidizing atmosphere. Li characterized by firing in
A NiO 2 positive electrode active material and a method for producing the same are provided. Secondly,
A LiNiO 2 positive electrode active material using one or more nickel compounds selected from the group consisting of nickel hydroxide, nickel oxide, nickel oxyhydroxide, and nickel carbonate as the nickel compound, and a method for producing the same.

【0008】[0008]

【作用】一般にLiNiO2 の製造原料としてはニッケ
ル塩とリチウム塩が使用されているが、これらは工業的
な量で生産されているので原料コストを安価に抑えるこ
とができるため従来から用いられてきた。ニッケル原料
の中では、水酸化ニッケルが最も多く生産されている。
その他、水酸化ニッケルを熱処理し、脱水操作を施して
得た酸化ニッケルや、オキシ水酸化ニッケルも使用され
るが、これらの製造量は水酸化ニッケルに比較すると少
ない。
In general, nickel salt and lithium salt are used as raw materials for producing LiNiO 2. However, since these are produced in industrial quantities, the raw material cost can be kept low, and thus they have been conventionally used. It was Among nickel raw materials, nickel hydroxide is most often produced.
In addition, nickel oxide obtained by heat-treating nickel hydroxide and subjecting it to dehydration and nickel oxyhydroxide are also used, but the production amount of these is smaller than that of nickel hydroxide.

【0009】ニッケル原料は一般的に非常に微細な一次
粒が凝集した二次粒からなる粉末として供給されてい
る。一次粒子の大きさは0.1μm程度であり、二次粒
子としての大きさは、極端に大きい場合には1mm以上と
なり、逆に小さなものは一次粒子の10倍程度の1μm
程度である。また二次粒中の一次粒の充填は、50%以
上となることが多い。
The nickel raw material is generally supplied as a powder composed of secondary particles in which very fine primary particles are aggregated. The size of the primary particles is about 0.1 μm, and the size of the secondary particles is 1 mm or more when the size is extremely large, and conversely, the size of the small particles is about 10 times the size of the primary particles, 1 μm.
It is a degree. The filling of the primary particles in the secondary particles is often 50% or more.

【0010】従来法では、ニッケル原料とリチウム原料
とを有機溶媒中で混合していたが、これらの原料は粒子
径を1μm以下にすることが望ましいと考えられていた
ため、混合と同時に粉砕も行なわれていた。その目的
は、ニッケルとリチウムの両成分を相互に微細かつ均質
に分散混合させることによって焼成時の反応性を高め、
結果として得られるLiNiO2 粉体が均質な結晶構造
を備えたものとなるようにするためであった。
In the conventional method, the nickel raw material and the lithium raw material were mixed in an organic solvent. However, since it was considered desirable that the particle diameters of these raw materials be 1 μm or less, pulverization was performed at the same time as mixing. It was The purpose is to enhance the reactivity during firing by finely and uniformly dispersing and mixing both nickel and lithium components,
This was to ensure that the resulting LiNiO 2 powder had a homogeneous crystal structure.

【0011】しかしながら、粉砕処理の影響としてニッ
ケルとリチウムの原料混合粉体は密度が極めて低いとい
う欠点があった。例えば、粉砕時の密度は0.3g/cc程
度になり、加圧処理を行なっても1.0g/cc程度にしか
ならなかった。
However, as a result of the pulverization process, the raw material mixed powder of nickel and lithium has a drawback that the density is extremely low. For example, the density at the time of pulverization was about 0.3 g / cc, and even after the pressure treatment, it was only about 1.0 g / cc.

【0012】これらの粉砕原料を用いて、通常の焼成温
度750℃で焼成しても、この温度域では高密度に焼結
できず、そのため焼結前の密度の低さがそのまま維持さ
れていた。
Even if these pulverized raw materials were used and fired at a normal firing temperature of 750 ° C., they could not be sintered at a high density in this temperature range, so that the low density before sintering was maintained as it was. .

【0013】本発明は、上記従来技術の欠点を解消する
もので、焼成条件に関わりなく充填密度を高めるため、
粗大な二次粒子径のニッケル原料を使用し、その後の工
程でもその粒子径が維持されるようにした。反面、粒径
が大きいとリチウム成分との反応性の低下につながるこ
とから、これを防ぐための有効な混合方法も以下に示す
ように案出した。
The present invention solves the above-mentioned drawbacks of the prior art, and increases the packing density regardless of the firing conditions.
A nickel raw material having a coarse secondary particle diameter was used, and the particle diameter was maintained in the subsequent steps. On the other hand, if the particle size is large, the reactivity with the lithium component decreases, so an effective mixing method for preventing this has been devised as shown below.

【0014】本発明法において、用いる出発原料はニッ
ケル化合物の二次粒子であり、その平均粒径は100μ
mを越えず5μm以上の範囲のものが好ましい。これは
市販の試薬を150メッシュよりもフルイ目の細かなス
クリーンによって分級すれば得ることができる。またリ
チウム原料としては、コストなどから判断して水酸化リ
チウムで充分であるが、炭酸リチウムや有機酸のリチウ
ム塩を用いることもできる。
In the method of the present invention, the starting material used is secondary particles of a nickel compound, the average particle size of which is 100 μm.
It is preferably in the range of 5 μm or more without exceeding m. This can be obtained by classifying a commercially available reagent with a screen finer than 150 mesh. As the lithium raw material, lithium hydroxide is sufficient in view of cost and the like, but lithium carbonate or a lithium salt of an organic acid can also be used.

【0015】上記範囲の平均粒径を有するニッケル原料
粒子を、攪拌機によって攪拌しながら水酸化リチウムと
クエン酸を代表とする有機酸との水溶液に懸濁させる
が、この時には、従来法のようにメディアを用いること
は避けるべきである。次いで懸濁液を加熱あるいは減圧
操作によって濃縮・乾燥する。従来法ではリチウム塩の
溶解や偏析を防ぐために有機溶剤を使用していたが、本
法では有機酸の水溶液を使用するので防爆や毒性対策を
採る必要がなく工業的生産に適するものである。
Nickel raw material particles having an average particle diameter within the above range are suspended in an aqueous solution of lithium hydroxide and an organic acid typified by citric acid while stirring with a stirrer. At this time, as in the conventional method. The use of media should be avoided. Next, the suspension is concentrated or dried by heating or reducing the pressure. In the conventional method, an organic solvent was used to prevent the dissolution or segregation of the lithium salt, but in this method, an aqueous solution of an organic acid is used, so it is not necessary to take explosion-proof or toxicity measures, and is suitable for industrial production.

【0016】複数元素を水と有機酸を用いて濃縮乾燥す
ることは錯体重合法あるいは有機酸ゲル化法と呼ばれ公
知な方法である。これは出発原料を全てカルボン酸を代
表とする大過剰の有機酸で水中に溶解し、原料元素の水
溶液の状態を経た後に有機酸の重合・ゲル化並びに重合
物と原料元素との反応を行なう方法である。その結果、
原料元素は有機重合物の構造の中にイオンの形で取り込
まれ、そのため複数の元素は均質な分散となり、かつ微
細な粉末が得られるため物質合成には効果的であるとさ
れる。
Concentrating and drying a plurality of elements using water and an organic acid is known as a complex polymerization method or an organic acid gelation method. This is because the starting materials are all dissolved in water with a large excess of organic acid represented by carboxylic acid, and after passing through the state of an aqueous solution of the raw material element, the organic acid is polymerized and gelled, and the reaction between the polymer and the raw material element Is the way. as a result,
It is said that the raw material elements are incorporated in the structure of the organic polymer in the form of ions, so that the plurality of elements are homogeneously dispersed and fine powder is obtained, which is effective for the substance synthesis.

【0017】本発明法が上記方法と根本的に異なる点
は、2種以上の原料のうちの1種を水中に溶解させては
ならないことである。ここで言う1種とは、ニッケル原
料を指しており、粒子形態をその後の工程においても維
持させる必要があるため、原料として水溶性のニッケル
原料を用いることができない。また、大過剰の有機酸に
より水溶液を強酸性にしてニッケル原料を溶解させるこ
ともできない。
The point that the method of the present invention is fundamentally different from the above method is that one of the two or more raw materials must not be dissolved in water. The term "one kind" as used herein refers to a nickel raw material, and since it is necessary to maintain the particle morphology in the subsequent steps, a water-soluble nickel raw material cannot be used as a raw material. Further, the nickel raw material cannot be dissolved by making the aqueous solution strongly acidic with a large excess of organic acid.

【0018】本発明法で有機酸を使用する目的は以下の
通りである。一般に水中でリチウムと混合を行なう手法
では乾燥中に溶解度の高いリチウム塩が偏析して、粗大
に成長するため、当然に望ましい結晶構造は得られな
い。一方、有機酸は乾燥による水分の減少に伴い水溶液
の粘性を高めるとともに、リチウム塩を形成して偏析並
びに成長を防止する他、乾燥により有機酸あるいは塩が
固化して樹脂状になることにより焼成途中に有機物が分
解するに至る時まで、ニッケル原料粒子を機械的に保護
し粒子の微細化を防止する働きを有する。
The purpose of using the organic acid in the method of the present invention is as follows. Generally, in the method of mixing with lithium in water, a highly soluble lithium salt segregates during the drying and coarsely grows, so that a desirable crystal structure cannot be naturally obtained. On the other hand, the organic acid increases the viscosity of the aqueous solution as the water content decreases due to drying, and also prevents the segregation and growth by forming a lithium salt. It has a function of mechanically protecting the nickel raw material particles and preventing the fineness of the particles until the organic matter is decomposed on the way.

【0019】本発明で得られる乾燥物はモルタルまたは
樹脂状であり、次いでこれらを酸化雰囲気望ましくは酸
素気流中において、公知の焼成条件下(焼成温度750
℃、保持時間は10〜30時間程度)で熱処理を行な
い、外観が黒色の塊を得る。
The dried product obtained in the present invention is in the form of mortar or resin, and these are then heated in an oxidizing atmosphere, preferably in an oxygen stream, under known firing conditions (firing temperature 750).
Heat treatment is carried out at a temperature of about 10 to 30 hours) to obtain a lump having a black appearance.

【0020】上記工程中の混合粉体を示差熱分析する
と、用いる原料の種類と工程条件によって一定の数値と
はならないが、700℃前後において、吸熱ピークが観
察される。この温度よりも低温側であるとサイクル特性
の低下が顕著に観察されるが、これは適切な結晶構造が
未発達であることに起因するものと考えられる。
A differential thermal analysis of the mixed powder in the above-mentioned step shows that the endothermic peak is observed at around 700 ° C., although the value does not become constant depending on the type of raw material used and the process conditions. When the temperature is lower than this temperature, the deterioration of the cycle characteristics is remarkably observed, which is considered to be due to the undeveloped suitable crystal structure.

【0021】これらのことから、熱処理は、上記吸熱ピ
ークの示す温度よりも高温側で行なうことが好ましく、
適正な熱処理温度は、熱分析結果の吸熱ピークの温度以
上750℃付近以下であると考えられる。
From these facts, it is preferable that the heat treatment is performed at a temperature higher than the temperature at which the above endothermic peak appears.
It is considered that the proper heat treatment temperature is not lower than the temperature of the endothermic peak of the thermal analysis result and not higher than about 750 ° C.

【0022】次いで正極活物質とするために塊を解砕し
て分級するが、一般的に電池用の正極材用活物質粉末は
充填性および保存時の放電防止性の点から、経験的にそ
の粒径は平均粒径が50μm以下5μm以上の範囲が好
ましいとされている。従って本発明におけるLiNiO
2 粉末の製造においても、焼成による収縮率(量的な多
少に関わらず予期しなければならない)を最大限50%
とすれば出発原料のニッケル化合物の平均径は最高10
0μmであればよく、逆に焼成収縮のない場合は最低5
μmとなるが、好ましい平均粒径は10〜30μmであ
る。
Next, the lumps are crushed and classified to obtain a positive electrode active material. Generally, the active material powder for a positive electrode material for a battery is empirically used in terms of filling property and discharge prevention property during storage. It is said that the average particle size of the particles is preferably 50 μm or less and 5 μm or more. Therefore, in the present invention, LiNiO
Even in the production of 2 powders, the maximum shrinkage rate due to firing (must be expected regardless of the quantity) is 50%
If so, the average diameter of the starting nickel compound is 10 at maximum.
It should be 0 μm, on the contrary, if there is no firing shrinkage, at least 5
The average particle size is preferably 10 to 30 μm.

【0023】尚、上記焼成に変え、乾燥物の粉砕物、ま
たは焼成温度よりも低温度にて仮焼をした粉体を、加圧
成形した後、焼成してもよい。但し、その場合において
もニッケル原料の粒子を粉砕によって微細にすることは
本発明の意図するところを無意味にしてしまうことにな
る。
In place of the above firing, a pulverized product of the dried product or a powder calcined at a temperature lower than the firing temperature may be pressure-molded and then fired. However, even in that case, pulverizing the particles of the nickel raw material into fine particles makes the purpose of the present invention meaningless.

【0024】電池容量の確保に適した焼成温度域では、
LiNiO2 は密度を高めるための焼結度が不十分であ
り、このことはLiNiO2 粒子同士の焼結の結合度が
低いことを意味している。従って解砕は容易であり、ニ
ッケル原料粒子に基づくLiNiO2 粒子が最終段階で
微細になって充填性が低下するのを防ぎ、併せて分級に
よる収縮低下を抑制できる。
In the firing temperature range suitable for ensuring the battery capacity,
LiNiO 2 has an insufficient degree of sintering for increasing the density, which means that the degree of bonding between the LiNiO 2 particles is low. Therefore, the crushing is easy, and it is possible to prevent the LiNiO 2 particles based on the nickel raw material particles from becoming fine in the final stage and lowering the packing property, and at the same time, suppressing the reduction in shrinkage due to classification.

【0025】その他、ニッケルとリチウムとの成分比率
を僅かに変化させることにより電池特性の改善を行うこ
とも考えられている。リチウム原料とニッケル原料との
成分比はモル比において正確にLi/Ni=1/1でな
くても、Li/Ni=1±0.05/1の範囲であれ
ば、電池特性においてLi/Ni=1/1と同程度の効
果が得られることがわかっている。
In addition, it is also considered to improve the battery characteristics by slightly changing the component ratio of nickel and lithium. Even if the molar ratio of the lithium raw material to the nickel raw material is not exactly Li / Ni = 1/1, if Li / Ni = 1 ± 0.05 / 1, the Li / Ni battery characteristics It is known that the same effect as that of = 1/1 can be obtained.

【0026】本発明における電池の容量は、以下の方法
で評価した。上記の方法で得られたLiNiO2 粉末を
正極活物質として用い、これに導電剤としてケッチェン
ブラック、結着剤としてポリテトラフルオロエチレン
(P.T.F.E)を重量比で8:1:1の割合で混練
し、2t/cm2 で直径37mmの円盤状に加圧成形を行っ
た。得られた成形体を図1に示す試験セルの正極体4と
成し、一方、同図中の負極7にはリチウムの金属板(厚
み0.7mm)から切り抜いたものを使用するとともに、
電解液としてプロピレンカーボネイト(PC)と1,2
−ジメトキシエタン(DME)の体積比1:1の混合液
に6フッ化リン酸リチウム(LiPF6 )を0.5mol/
l 濃度溶解させたものを用いた。
The capacity of the battery in the present invention was evaluated by the following method. The LiNiO 2 powder obtained by the above method was used as a positive electrode active material, Ketjen black as a conductive agent, and polytetrafluoroethylene (PTFE) as a binder in a weight ratio of 8: 1. The mixture was kneaded at a ratio of 1: 1, and pressure-molded at a rate of 2 t / cm 2 into a disk having a diameter of 37 mm. The obtained molded body was formed into the positive electrode body 4 of the test cell shown in FIG. 1, while the negative electrode 7 in the figure was prepared by cutting out a lithium metal plate (thickness 0.7 mm).
Propylene carbonate (PC) and 1, 2 as electrolyte
-0.5 mol / liter of lithium hexafluorophosphate (LiPF 6 ) was added to a mixed solution of dimethoxyethane (DME) at a volume ratio of 1: 1.
l The one dissolved at a concentration was used.

【0027】上記図1に示す二次電池を用いて放電容量
を求めたが、これによって得られた値は重量当りの容量
であり、容量当りの容量の評価には充填性を加味して示
す必要がある。充填性の評価は一般的な粉体特性の評価
方法であるタップかさ密度を用い、さらに容積当りの容
量はタップかさ密度と上記方法によって得た容量の積を
指標とする。また、繰り返しによる放電容量の低下につ
いても併記し、二次電池としての耐久性を相対評価し
た。
The discharge capacity was determined using the secondary battery shown in FIG. 1, and the value obtained by this is the capacity per weight, and the capacity per capacity is shown in consideration of the filling property. There is a need. The filling property is evaluated by using the tap bulk density, which is a general evaluation method of powder properties, and the capacity per volume is determined by using the product of the tap bulk density and the capacity obtained by the above method as an index. Further, the decrease in discharge capacity due to repetition was also described, and the durability as a secondary battery was relatively evaluated.

【0028】以下、実施例をもって詳細に説明するが本
発明の範囲はこれらに限定されるものでない。
Hereinafter, the present invention will be described in detail with reference to Examples, but the scope of the present invention is not limited to these.

【0029】[0029]

【実施例1】水酸化リチウムLiOHと平均径20μm
の水酸化ニッケルNi(OH)2 をモル比でLi/Ni
=1/1となるように秤量し、これらの粉末を水中に投
入した後、さらにクエン酸を水酸化ニッケルに対して5
0重量%加え、60℃で攪拌しながら乾燥した。次いで
該乾燥物を2cm程の塊にし、酸素気流中740℃におい
て20時間熱処理を行い、焼成物は乳鉢内にて粉砕して
150メッシュ以下の粉体を得た。平均径は16μmと
なった。
[Example 1] Lithium hydroxide LiOH and average diameter 20 μm
Nickel hydroxide Ni (OH) 2 in a molar ratio of Li / Ni
= 1/1, put these powders in water, and then add 5 parts of citric acid to nickel hydroxide.
0 wt% was added, and the mixture was dried at 60 ° C with stirring. Next, the dried product was lumped to a size of about 2 cm, heat-treated in an oxygen stream at 740 ° C. for 20 hours, and the calcined product was crushed in a mortar to obtain a powder of 150 mesh or less. The average diameter was 16 μm.

【0030】得られた粉末をXRD測定したところ、図
2に示すように従来報告されているLiNiO2 と同形
のパターンを得た。またこの粉末のかさ密度は2.53
g/ccであり理論密度5g/ccに対して51%であった。一
般に、平均粒径が大きくなるにつれて相対密度は高くな
るが、70%を超えることは希であり、本実施例で得ら
れたLiNiO2 粉末も同様の傾向であることが確かめ
られた。
When the obtained powder was subjected to XRD measurement, a pattern having the same shape as that of LiNiO 2 reported hitherto was obtained as shown in FIG. The bulk density of this powder is 2.53.
It was g / cc and was 51% with respect to the theoretical density of 5 g / cc. Generally, the relative density increases as the average particle size increases, but rarely exceeds 70%, and it was confirmed that the LiNiO 2 powder obtained in this example has the same tendency.

【0031】上記の方法で得られたLiNiO2 粉末を
正極活物質として用い、これに導電剤としてケッチェン
ブラック、結着剤としてポリテトラフルオロエチレン
(P.T.F.E)を重量比で8:1:1の割合で加え
て混練し、2t/cm2 の圧力をかけて直径37mmの円盤状
の加圧成形体に成形を行って正極板とした。
The LiNiO 2 powder obtained by the above method was used as a positive electrode active material, and Ketjen black as a conductive agent and polytetrafluoroethylene (PTFE) as a binder were added thereto in a weight ratio. The mixture was added at a ratio of 8: 1: 1, kneaded, and subjected to a pressure of 2 t / cm 2 to form a disk-shaped pressure-molded body having a diameter of 37 mm to obtain a positive electrode plate.

【0032】次いで該正極板を図1に示すリチウム二次
電池である試験セルの正極4として用い、一方、負極7
にはリチウムの金属板(厚さ0.7mm)から切り抜いて
形成した円盤を負極板とした。またセパレーター5に
は、ポリプロピレンのフィルムを切り抜いたものを使用
し、電解液にはプロピレンカーボネート(PC)と、
1,2−ジメトキシエタン(DME)を体積比で1:1
に混合した混合液に6フッ化リン酸リチウム(LiPF
6 )を0.5mol/l 濃度溶解させたものを用いた。尚、
図1中1は正極リード線、2はセル固定用ナット、3は
正極集電体、4は正極、5はセパレーター、6はセパレ
ーター固定用スペーサー、7は負極、8は負極集電体、
9はセル固定用ビス、10は電解液注入栓、11は負極
リード線をそれぞれ表わす。
Next, the positive electrode plate was used as the positive electrode 4 of the test cell which is the lithium secondary battery shown in FIG.
A disk formed by cutting out a lithium metal plate (thickness 0.7 mm) was used as the negative electrode plate. For the separator 5, a polypropylene film cut out is used, and the electrolyte solution is propylene carbonate (PC).
1,2-dimethoxyethane (DME) in a volume ratio of 1: 1
Lithium hexafluorophosphate (LiPF
6 ) was dissolved at a concentration of 0.5 mol / l was used. still,
In FIG. 1, 1 is a positive electrode lead wire, 2 is a cell fixing nut, 3 is a positive electrode current collector, 4 is a positive electrode, 5 is a separator, 6 is a separator fixing spacer, 7 is a negative electrode, 8 is a negative electrode current collector,
Reference numeral 9 represents a cell fixing screw, 10 represents an electrolytic solution injection plug, and 11 represents a negative electrode lead wire.

【0033】次いでこれらを図1の試験セルとして組み
立て、充放電試験を行った結果、図3に示すように従来
技術において報告されている中で最も優れた二次電池の
充電容量値の190mAh/g が得られた。
Next, as a result of assembling these as the test cell of FIG. 1 and conducting a charge / discharge test, as shown in FIG. 3, the most excellent charge capacity value of the secondary battery reported in the prior art of 190 mAh / g was obtained.

【0034】同様に出発原料である水酸化ニッケルとし
てその平均粒径が表1に示す値のものを用い、上記に示
す製造法によって正極活物質と成し、それぞれの放電容
量、かさ密度、積指標、繰り返しによる容量減少を求め
て、その結果を表1に併せて示した。これらの結果か
ら、出発原料として二次凝集体の平均粒径が100μm
を越えず5μmの範囲にあるものが本発明の目的に合致
することが判明した。
Similarly, nickel hydroxide as a starting material having an average particle size of the values shown in Table 1 was used to form a positive electrode active material by the above-mentioned production method, and the discharge capacity, bulk density and product of each were obtained. The index and the capacity decrease due to repetition were determined, and the results are also shown in Table 1. From these results, the average particle size of the secondary aggregate as the starting material is 100 μm.
It has been found that those having a thickness of 5 μm or less do not exceed the object of the present invention.

【0035】[0035]

【表1】 [Table 1]

【0036】尚、水酸化ニッケル原料として42μmの
粒径のものを用いた場合の粒子構造を示すSEM写真を
図4に示し、これによって得られたLiNiO2 粉末の
粒子構造を示すSEM写真を図5に示した。
An SEM photograph showing the particle structure when a nickel hydroxide raw material having a particle size of 42 μm is used is shown in FIG. 4, and an SEM photograph showing the particle structure of the LiNiO 2 powder thus obtained is shown. 5 shows.

【0037】[0037]

【実施例2】水酸化リチウム1水和物LiOH・H2
と水酸化ニッケルを300℃で熱処理して得た平均粒径
30μmの酸化ニッケル(NiO)とを、モル比におい
てLi/Ni=0.97/1およびLi/Ni=1.0
3/1となるようにそれぞれ秤量し、クエン酸をリチウ
ムとニッケルの合量に対して60重量%添加して、水中
にて90℃4時間混合した後に冷却した。
Example 2 Lithium hydroxide monohydrate LiOH.H 2 O
And nickel oxide (NiO) having an average particle size of 30 μm obtained by heat-treating nickel hydroxide at 300 ° C., in a molar ratio, Li / Ni = 0.97 / 1 and Li / Ni = 1.0
Each of them was weighed so as to be 3/1, 60% by weight of citric acid was added to the total amount of lithium and nickel, and the mixture was mixed in water at 90 ° C. for 4 hours and then cooled.

【0038】次いで該冷却物を攪拌容器から取り出して
10mm以下に解砕し、充分に乾燥させ、酸素気流中で7
30℃、15時間熱処理を行って、平均粒径17μmの
LiNiO2 粉末を得た。
Then, the cooled product was taken out of the stirring container, crushed to 10 mm or less, sufficiently dried, and then dried in an oxygen stream to 7 mm.
Heat treatment was performed at 30 ° C. for 15 hours to obtain LiNiO 2 powder having an average particle size of 17 μm.

【0039】得られたLiNiO2 粉末をXRD測定し
たところ、実施例1に示した図2と同様のXRDパター
ンとなった。また、上記各自の出発組成比のLiNiO
2 粉末を用いて、実施例1に示す手段で正極の成形体と
成し、図1に示す試験セルに組み入れて充放電試験を行
った結果を表2にまとめた。この結果、放電容量も従来
品とほぼ同じ値が得られることがわかった。
XRD measurement of the obtained LiNiO 2 powder gave the same XRD pattern as that of FIG. 2 shown in Example 1. In addition, each of the above starting composition ratios of LiNiO
Two powders were used to form a positive electrode molded body by the means shown in Example 1, and the mixture was incorporated into the test cell shown in FIG. As a result, it was found that the discharge capacity was almost the same as that of the conventional product.

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【実施例3】同様にLiOHと平均粒径15μmの塩基
性炭酸ニッケルをモル比でLi/Ni=1/1となるよ
うに秤量して、実施例1と同様の条件で乾燥した。次い
で得られた塊を450℃大気中で焼成し冷却後に、0.
5ton/cm2 の圧力で加圧成形し、径20mm、厚み2mmの
円盤状の成形体とし、次いで該成形体を焼成炉中におい
て酸素気流雰囲気中750℃において15時間焼成後、
円盤を解砕し、平均径9μmの粉末を得た。 得られた
LiNiO2 粉末をXRD測定したところ、実施例1に
示した図2と同様のXRDパターンとなった。さらにこ
の粉末を正極活物質として用い、以下実施例1と同様に
試験セルを組み立て充放電試験を行ったところ、図6に
示すように第1サイクル時の充電容量は206mAh/g
で、放電容量は196mAh/g であり、第2サイクル以降
は充放電容量とも180mAh/g 前後であった。また、か
さ密度は2.11g/ccであり、積は413、繰り返しに
よる容量低下は、10回後に26%であった。
Example 3 Similarly, LiOH and basic nickel carbonate having an average particle size of 15 μm were weighed so that the molar ratio was Li / Ni = 1/1, and dried under the same conditions as in Example 1. Then, the obtained mass was calcined in the air at 450 ° C., cooled, and then cooled to 0.
After press-molding at a pressure of 5 ton / cm 2 into a disk-shaped molded body having a diameter of 20 mm and a thickness of 2 mm, the molded body was fired in an oxygen stream atmosphere at 750 ° C. for 15 hours in a firing furnace.
The disc was crushed to obtain a powder having an average diameter of 9 μm. When the obtained LiNiO 2 powder was measured by XRD, the same XRD pattern as that of FIG. 2 shown in Example 1 was obtained. Further, using this powder as a positive electrode active material, a test cell was assembled and a charge / discharge test was conducted in the same manner as in Example 1. As a result, as shown in FIG. 6, the charge capacity at the first cycle was 206 mAh / g.
The discharge capacity was 196 mAh / g, and the charge / discharge capacity was around 180 mAh / g after the second cycle. The bulk density was 2.11 g / cc, the product was 413, and the capacity loss due to repetition was 26% after 10 times.

【0042】[0042]

【比較例1】実施例1と同様にLiOH・H2 OとNi
(OH)2 とを、モル比でLi/Ni=1/1となるよ
うに秤量し、これらの粉末をエタノール中で50時間粉
砕・混合して平均粒径約2μmの粉末を得、次いで該粉
砕物を酸素気流中750℃において24時間熱処理を行
ってLiNiO2 粉末を得た。
Comparative Example 1 Similar to Example 1, LiOH.H 2 O and Ni
(OH) 2 was weighed so that the molar ratio was Li / Ni = 1/1, and these powders were pulverized and mixed in ethanol for 50 hours to obtain a powder having an average particle size of about 2 μm. The pulverized product was heat-treated in an oxygen stream at 750 ° C. for 24 hours to obtain LiNiO 2 powder.

【0043】得られたLiNiO2 粉末をXRD測定し
たところ、実施例1における図2と同様の結果を示した
が、この粉末をSEM写真で観察したところ、図7に示
すように、粒径が1μm程度にすぎなかった。
XRD measurement of the obtained LiNiO 2 powder showed the same results as in FIG. 2 in Example 1. However, when the powder was observed by SEM photograph, as shown in FIG. It was only about 1 μm.

【0044】さらにこの粉末を用いて実施例1と同様に
図1に示す試験セルを作製して充放電量を測定したとこ
ろ、図8に示すように146mAh/g しか得られなかっ
た。また、かさ密度は1.20g/cc、積指標は175、
繰り返しによる容量低下は10回後に66%であった。
Using this powder, a test cell shown in FIG. 1 was prepared in the same manner as in Example 1, and the charge / discharge amount was measured. As a result, as shown in FIG. 8, only 146 mAh / g was obtained. Also, the bulk density is 1.20 g / cc, the product index is 175,
The capacity loss due to repetition was 66% after 10 times.

【0045】[0045]

【発明の効果】上述のように本発明は、出発原料として
二次粒子の粒径を100μmを越えず5μm以上の範囲
に限定したニッケル化合物を用いることによって理想の
LiNiO2 粉末を得、これを正極活物質として用いる
ことにより高放電容量かつ高充填性のリチウム二次電池
の製造を可能とした。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, an ideal LiNiO 2 powder is obtained by using a nickel compound in which the particle size of the secondary particles is limited to the range of 5 μm or more without exceeding 100 μm as a starting material. By using it as a positive electrode active material, it has become possible to manufacture a lithium secondary battery having a high discharge capacity and a high filling property.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る正極活物質または正極板の性能測
定試験に用いた試験セルの断面概略図である。
FIG. 1 is a schematic cross-sectional view of a test cell used for a performance measurement test of a positive electrode active material or a positive electrode plate according to the present invention.

【図2】実施例1において作製したLiNiO2 のXR
D(X線回折図)である。
2 is the XR of LiNiO 2 prepared in Example 1. FIG.
It is D (X-ray diffraction pattern).

【図3】実施例1において作製した試験セルによる充放
電曲線である。
3 is a charge / discharge curve of the test cell manufactured in Example 1. FIG.

【図4】実施例1で用いたNi(OH)2 の粒子構造を
示すSEM写真である。
FIG. 4 is an SEM photograph showing a particle structure of Ni (OH) 2 used in Example 1.

【図5】実施例1で得られたLiNiO2 の粒子構造を
示すSEM写真である。
5 is an SEM photograph showing the particle structure of LiNiO 2 obtained in Example 1. FIG.

【図6】実施例3において作製した試験セルによる充放
電曲線である。
6 is a charge / discharge curve of the test cell manufactured in Example 3. FIG.

【図7】比較例1で得られたLiNiO2 の粒子構造を
示すSEM写真である。
FIG. 7 is an SEM photograph showing a particle structure of LiNiO 2 obtained in Comparative Example 1.

【図8】比較例1において作製した試験セルによる充放
電曲線である。
8 is a charge / discharge curve of the test cell manufactured in Comparative Example 1. FIG.

【符号の説明】[Explanation of symbols]

1 正極リード線 2 セル固定用ナット 3 正極集電体 4 正極 5 セパレーター 6 セパレーター固定用スペーサー 7 負極 8 負極集電体 9 セル固定用ビス 10 電解液注入栓 11 負極リード線 1 Positive electrode lead wire 2 Cell fixing nut 3 Positive electrode current collector 4 Positive electrode 5 Separator 6 Separator fixing spacer 7 Negative electrode 8 Negative electrode current collector 9 Cell fixing screw 10 Electrolyte injection plug 11 Negative electrode lead wire

フロントページの続き (72)発明者 平岡 幸雄 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内 (72)発明者 芳賀 教雄 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内 (72)発明者 岡部 勝明 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内Front Page Continuation (72) Inventor Yukio Hiraoka 1-2-8 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd. (72) Inventor Norio Haga 1-2-8 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd. In-house (72) Inventor Katsuaki Okabe 1-2-8 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リチウム原料としてのリチウム化合物と
ニッケル原料としてのニッケル化合物とを用いてLiN
iO2 粉末を製造する方法において、出発原料の一つで
あるニッケル化合物の二次以上の凝集粒子が平均径10
0μmを越えず5μm以上の範囲内の大きさとなるよう
に調整した後、該ニッケル化合物を、リチウムイオンと
有機酸とを含有する水溶液中にて懸濁攪拌後乾燥し、次
いで該乾燥物を酸化性雰囲気中で焼成することによって
LiNiO2 粉末と成すことを特徴とする非水リチウム
二次電池用正極活物質の製造方法。
1. LiN using a lithium compound as a lithium raw material and a nickel compound as a nickel raw material
In the method for producing the iO 2 powder, the secondary particles of the nickel compound, which is one of the starting materials, has an average diameter of 10 or more.
The nickel compound was adjusted to have a size in the range of 5 μm or more without exceeding 0 μm, the nickel compound was suspended and stirred in an aqueous solution containing lithium ions and an organic acid, and then the dried product was oxidized. A method for producing a positive electrode active material for a non-aqueous lithium secondary battery, which comprises forming a LiNiO 2 powder by firing in a neutral atmosphere.
【請求項2】 前記ニッケル化合物が水酸化ニッケル、
ニッケル酸化物、オキシ水酸化ニッケルおよび炭酸ニッ
ケルからなる群から選択される少なくとも1種のニッケ
ル化合物であることを特徴とする請求項1記載の非水リ
チウム二次電池用正極活物質の製造方法。
2. The nickel compound is nickel hydroxide,
The method for producing a positive electrode active material for a non-aqueous lithium secondary battery according to claim 1, which is at least one nickel compound selected from the group consisting of nickel oxide, nickel oxyhydroxide, and nickel carbonate.
JP05122094A 1994-02-24 1994-02-24 Method for producing positive electrode active material for non-aqueous lithium secondary battery Expired - Lifetime JP3344815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05122094A JP3344815B2 (en) 1994-02-24 1994-02-24 Method for producing positive electrode active material for non-aqueous lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05122094A JP3344815B2 (en) 1994-02-24 1994-02-24 Method for producing positive electrode active material for non-aqueous lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH07235306A true JPH07235306A (en) 1995-09-05
JP3344815B2 JP3344815B2 (en) 2002-11-18

Family

ID=12880855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05122094A Expired - Lifetime JP3344815B2 (en) 1994-02-24 1994-02-24 Method for producing positive electrode active material for non-aqueous lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3344815B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6015637A (en) * 1996-09-30 2000-01-18 Sharp Kabushiki Kaisha Process of producing lithium nickel oxide and nonaqueous secondary battery using the same
JP2006147513A (en) * 2004-11-22 2006-06-08 Nippon Tomuseru:Kk Cell for electrochemical property measurement and electrochemical property measuring method using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6015637A (en) * 1996-09-30 2000-01-18 Sharp Kabushiki Kaisha Process of producing lithium nickel oxide and nonaqueous secondary battery using the same
JP2006147513A (en) * 2004-11-22 2006-06-08 Nippon Tomuseru:Kk Cell for electrochemical property measurement and electrochemical property measuring method using same
JP4580751B2 (en) * 2004-11-22 2010-11-17 有限会社日本トムセル Electrochemical property measuring cell and electrochemical property measuring method using the same

Also Published As

Publication number Publication date
JP3344815B2 (en) 2002-11-18

Similar Documents

Publication Publication Date Title
US6794036B2 (en) Active material of positive electrode for non-aqueous electrolyte secondary battery and method for preparing the same and non-aqueous electrolyte secondary battery using the same
JP3355126B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
KR101419097B1 (en) High density lithium cobalt oxide for rechargeable batteries
US8383270B2 (en) Positive-electrode material for lithium secondary battery, secondary battery employing the same, and process for producing positive-electrode material for lithium secondary battery
CN109524642B (en) Mixed ternary cathode material and preparation method thereof
EP0929111B1 (en) Secondary cell with nonaqueous electrolyte and process for preparing positive active material therefor
US20090314985A1 (en) Pulverulent compounds, a process for the preparation thereof and the use thereof in lithium secondary batteries
JP5392036B2 (en) Manganese composite hydroxide particles for non-aqueous electrolyte secondary battery positive electrode active material and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery
KR20140047044A (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, method for manufacturing the same, and nonaqueous electrolyte secondary battery using said positive electrode active material
CN106784795B (en) Single-crystal spherical lithium manganate material, preparation method thereof and positive electrode material
JP2011116583A5 (en)
KR20110044936A (en) Process for the production of lithium-manganese double oxide for lithium ion batteries and lithium-manganese double oxide for lithium ion batteries made by the same, and lithium ion batteries cotaining the same
JP3991359B2 (en) Cathode active material for non-aqueous lithium secondary battery, method for producing the same, and non-aqueous lithium secondary battery using the cathode active material
TW202038498A (en) Method for producing positive electrode active material for lithium ion secondary battery, and molded article
JP7444534B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and molded article
EP1492180A1 (en) Positive electrode material for lithium secondary cell and secondary cell using the same, and method for producing positive electrode material for lithium secondary cell
JP4172622B2 (en) Lithium-containing composite oxide and method for producing the same
JP2004006277A (en) Positive electrode material for lithium secondary batteries, rechargeable battery therewith and manufacturing process thereof
GB2328684A (en) A lithium manganese oxide powder and preparation thereof
JP4374930B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2020009756A (en) Positive electrode active material for lithium ion secondary battery and manufacturing method thereof, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2001243949A (en) Lithium transition metal oxide compound for lithium secondary battery positive electrode active material, its manufacturing method and secondary battery using it
JP2005050582A (en) Positive pole for lithium secondary battery and lithium secondary battery using it
JP3709446B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
JP2000268821A (en) Production of lithium-containing composite oxide for lithium secondary battery positive electrode active material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080830

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080830

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080830

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080830

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090830

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090830

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100830

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110830

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110830

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120830

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120830

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130830

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term