JPH07234527A - Exposure method - Google Patents

Exposure method

Info

Publication number
JPH07234527A
JPH07234527A JP6211247A JP21124794A JPH07234527A JP H07234527 A JPH07234527 A JP H07234527A JP 6211247 A JP6211247 A JP 6211247A JP 21124794 A JP21124794 A JP 21124794A JP H07234527 A JPH07234527 A JP H07234527A
Authority
JP
Japan
Prior art keywords
exposed
substrate
wafer
exposure
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6211247A
Other languages
Japanese (ja)
Other versions
JP2728368B2 (en
Inventor
Tsutomu Tanaka
田中  勉
Yoshitada Oshida
良忠 押田
Nobuyuki Akiyama
伸幸 秋山
Minoru Yoshida
実 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6211247A priority Critical patent/JP2728368B2/en
Publication of JPH07234527A publication Critical patent/JPH07234527A/en
Application granted granted Critical
Publication of JP2728368B2 publication Critical patent/JP2728368B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To expose a pattern on a mask through a projection lens to an exposure surface on a substrate to be exposed, with the image surface of the pattern on the mask by a projection lens aligned with the exposure surface of the substrate to be exposed by obtaining the inclination and height of an exposure substrate itself as the whole from light information corresponding to each place. CONSTITUTION:In focusing, first the height position of a wafer 2 is shifted up and down by a very small distance each to perform proof print, and the position of the wafer 2 when the most favorable resolution condition is obtained is stored as positional data of a slit image on a linear image sensor 12 in a suitable memory device. Subsequently, a slit image 5a is projected and formed on a newly set wafer 2, whereby a wafer stage 16 is moved up and down for focussing so that the slit image formed on the sensor 12 agrees with the position expressed by the positional data. In the case of using a multi-slit formed by arranging plural slits 5 in two directions of X and Y, the inclination of the wafer 2 can be also detected so as to enable alignment considering the inclination.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、マスク上のパターン
を、投影レンズを介し被露光基板上の露光領域に露光す
るに際し、マスク上のパターンの投影レンズによる像面
と被露光基板の露光面とが一致された状態で、マスク上
のパターンが投影レンズを介し被露光基板上の露光領域
に露光されるようにした露光方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention, when exposing a pattern on a mask to an exposure area on a substrate to be exposed through a projection lens, the image surface of the pattern on the mask by the projection lens and the exposure surface of the substrate to be exposed. The present invention relates to an exposure method in which a pattern on a mask is exposed to an exposure area on a substrate to be exposed through a projection lens in a state where the and are matched.

【0002】に関する。[0002]

【0003】[0003]

【従来の技術】従来より、半導体ウエハ上のLSIパタ
ーンなど、被観察物表面の焦点位置に対する位置ずれを
検出した上、位置合せを行う方法としては、被観察物表
面に、断面形状が、例えば3mm×0.1mm程度とさ
れた単一の光束を斜めに照射した状態で、被観察物表面
からの反射光が光電変換されることによって、反射光の
光軸位置が検出されるようになっている。ところで、特
開昭56−42205号公報には、そのような不具合を
解決する1つの方法として、被観察物表面上での光束断
面の細長方向が、被観察物表面の表面形状に影響されな
い方向と一致すべく、光束を照射する方法が開示された
ものとなっている。
2. Description of the Related Art Conventionally, as a method of detecting the positional deviation of the surface of an object to be observed, such as an LSI pattern on a semiconductor wafer, with respect to the focal position and then performing alignment, a cross-sectional shape of The optical axis position of the reflected light is detected by photoelectrically converting the reflected light from the surface of the object to be observed in the state where a single light flux of about 3 mm × 0.1 mm is obliquely applied. ing. By the way, Japanese Patent Laid-Open No. 56-42205 discloses, as one method for solving such a problem, a direction in which the elongated direction of the light beam cross section on the surface of the observed object is not affected by the surface shape of the surface of the observed object. The method of irradiating a light flux has been disclosed in order to coincide with the above.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、以上の
ようにして、小さな断面形状の光束を用い被観察物表面
が検出される場合には、その表面に形成されている凹凸
形状や、その表面上の微小領域内での反射率の変化に起
因して、その表面の位置が精度大に検出され得なく、し
たがって、被観察物表面の焦点位置への位置合せは状態
良好にして行い得ないものとなっているのが実情であ
る。また、特開昭56−42205号公報に開示された
方法による場合でも、未だ十分な解決策とはなり得てい
ないのが実情である。検出領域が小さい程に、被観察物
表面の反り、うねり、傾きなどはその検出が困難である
からである。また、被観察物が透光性材質から構成され
ている場合には、反射光は一様には発生されなく、その
表面で直接反射される光束と、被観察物内部に進入して
その下層との境界面で反射されて再び表面に出現する光
束とが混じり合う結果として、検出精度の劣化は否めな
いものとなっているのが実情である。
However, as described above, when the surface of the object to be observed is detected by using the light flux having a small cross-sectional shape, the uneven shape formed on the surface or the surface on the surface is observed. The position of the surface cannot be detected with high accuracy due to the change of the reflectance in the minute area, and therefore, the position of the observed object surface cannot be aligned to the focal position in good condition. Is the actual situation. Even in the case of the method disclosed in Japanese Patent Laid-Open No. 56-42205, it is the actual situation that it cannot be a sufficient solution. This is because the smaller the detection area is, the more difficult it is to detect the warp, waviness, inclination, or the like of the surface of the observed object. Further, when the object to be observed is made of a translucent material, the reflected light is not uniformly generated, and the light beam directly reflected on the surface and the lower layer which enters the object to be observed. The fact is that deterioration of the detection accuracy is unavoidable as a result of mixing with the luminous flux reflected on the boundary surface between and and appearing again on the surface.

【0005】本発明の目的は、マスク上のパターンを、
投影レンズを介し被露光基板上の露光領域に露光するに
際し、マスク上のパターンの投影レンズによる像面と被
露光基板の露光面とが一致された状態で、マスク上のパ
ターンが投影レンズを介し被露光基板上の露光領域に露
光され得る露光方法を供するにある。
An object of the present invention is to define a pattern on a mask as
When exposing the exposure area on the substrate to be exposed through the projection lens, the pattern on the mask is passed through the projection lens while the image surface of the pattern on the mask by the projection lens and the exposure surface of the substrate to be exposed are aligned. An exposure method capable of exposing an exposure area on a substrate to be exposed is provided.

【0006】[0006]

【課題を解決するための手段】上記目的は、外部から投
影レンズと被露光基板の間に導入された照射光によっ
て、露光光軸に対し70°以上の傾斜角を以て被露光基
板上の露光領域の、少なくとも複数の異なる場所を照射
した状態で、照射光の照射による該被露光基板からの反
射光から得られる、上記場所各々に対応した光情報から
は該被露光基板自体の全体としての傾きと高さが求めら
れた上、該被露光基板が露光光軸方向に微移動されると
ともに、微回動されることによって、マスク上のパター
ンの投影レンズによる像面と被露光基板の露光面とが一
致された状態で、マスク上のパターンが投影レンズを介
し被露光基板上の露光領域に露光されることで達成され
る。
The above object is to provide an exposure region on an exposed substrate with an inclination angle of 70 ° or more with respect to the exposure optical axis by irradiation light introduced from the outside between the projection lens and the exposed substrate. In the state of irradiating at least a plurality of different places, from the light information corresponding to each of the above positions obtained from the reflected light from the exposed substrate due to the irradiation of the irradiation light, the inclination of the exposed substrate itself as a whole. And the height is obtained, and the substrate to be exposed is finely moved and finely rotated in the direction of the exposure optical axis, so that the image surface of the pattern on the mask by the projection lens and the exposure surface of the substrate to be exposed. This is achieved by exposing the pattern on the mask to the exposure area on the substrate to be exposed through the projection lens in the state where and are matched.

【0007】[0007]

【作用】照射光により被露光基板上の露光領域の、少な
くとも複数の異なる場所を照射すれば、その被露光基板
上の照射場所各々からは反射光が得られるが、これら光
情報からは被露光基板自体の全体としての傾きと高さが
求められるというものである。求められた高さにもとづ
き被露光基板が露光光軸方向に微移動されるとともに、
求められた傾きにもとづき被露光基板が微回動される場
合には、マスク上のパターンの投影レンズによる像面と
被露光基板の露光面とは一致された状態で、マスク上の
パターンは投影レンズを介し被露光基板上の露光領域に
露光され得るものである。
When at least a plurality of different locations in the exposure area on the substrate to be exposed are illuminated by the illumination light, reflected light can be obtained from each of the illumination locations on the substrate to be exposed. The inclination and height of the substrate itself are required. The substrate to be exposed is slightly moved in the direction of the exposure optical axis based on the obtained height,
When the exposed substrate is slightly rotated based on the obtained inclination, the pattern on the mask is projected with the image surface of the pattern on the mask projected by the projection lens and the exposed surface of the exposed substrate aligned. It is possible to expose the exposed area on the substrate to be exposed through the lens.

【0008】[0008]

【実施例】以下、本発明を図1から図11により説明す
る。先ず本発明に係る投影露光装置について説明すれ
ば、図1はその一例での要部構成を示したものである。
図1において、レーザ光源3からのレーザ光束をビーム
エキスパンダ4により図の紙面表裏方向に拡げて偏平な
光束にし、スリット5に入射させる。スリット5を通過
した断面が細長形状の光を第1レンズ6を介して第1反
射ミラー7に入射させ、ミラー7で前記光束断面の細長
い方向と直交する方向に光路を曲げて、ウエハ2上に斜
め上方から照射することによって、ウエハ2上にスリッ
ト5の像5′を投影結像させる。このスリット像5′は
第2反射ミラー8で光路を曲げて第2レンズ9により対
物レンズ10の手前に結像させる。この位置におけるス
リット像はスリット5の位置の像と同形状である。対物
レンズ10はこのスリット像を更に拡大するためのもの
であるが、対物レンズ10の視野には限界があるため、
スリット像の長手方向を圧縮すべく、本例では第1円筒
レンズ11を配置してある。対物レンズ10で拡大され
たスリット像をCCDの如きリニアイメージセンサ12
上に投影結像させるが、この場合もセンサ12の受光部
は細幅の窓であるため、第2円筒レンズ13を配置し、
スリット像の全てを圧縮してセンサ12の受光画素列上
に投影結像させている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to FIGS. First, the projection exposure apparatus according to the present invention will be described. FIG. 1 shows a configuration of essential parts in an example thereof.
In FIG. 1, a laser light flux from a laser light source 3 is expanded by a beam expander 4 in the front-back direction of the drawing to be a flat light flux, which is made incident on a slit 5. Light having an elongated cross-section that has passed through the slit 5 is made incident on the first reflection mirror 7 via the first lens 6, and the optical path is bent by the mirror 7 in a direction orthogonal to the elongated direction of the cross section of the light beam. The image 5 ′ of the slit 5 is projected and formed on the wafer 2 by irradiating the wafer 2 obliquely from above. This slit image 5 ′ is bent in the optical path by the second reflecting mirror 8 and is imaged in front of the objective lens 10 by the second lens 9. The slit image at this position has the same shape as the image at the position of the slit 5. The objective lens 10 is for further enlarging this slit image, but since the field of view of the objective lens 10 is limited,
In this example, the first cylindrical lens 11 is arranged in order to compress the longitudinal direction of the slit image. The slit image magnified by the objective lens 10 is used as a linear image sensor 12 such as a CCD.
The image is projected and imaged on the upper side. In this case as well, since the light receiving portion of the sensor 12 is a narrow window, the second cylindrical lens 13 is arranged,
The entire slit image is compressed and projected and imaged on the light receiving pixel array of the sensor 12.

【0009】図2は図1において、スリット像が各結像
位置で如何なる形状になるかを、上部方向からみた状態
として示しており、図の紙面表裏方向に細長い一本のス
リット5の像はウエハ2上では、幅方向に拡大されたス
リット像5aとして投影結像され、また、対物レンズ1
0の手前では、円筒レンズ11によって長手方向が圧縮
されたスリット像5′aとして結像され、更に、リニア
イメージセンサ12上では、対物レンズ10で拡大され
たスリット像5′aの長手方向を円筒レンズ13によっ
て圧縮されたスリット像5″aとして投影結像されてい
る。
FIG. 2 shows the shape of the slit image at each image forming position in FIG. 1 as viewed from the upper side. The image of one slit 5 elongated in the front and back direction of the drawing is shown. On the wafer 2, it is projected and imaged as a slit image 5a enlarged in the width direction, and the objective lens 1
Before 0, an image is formed as a slit image 5'a whose longitudinal direction is compressed by the cylindrical lens 11, and on the linear image sensor 12, the longitudinal direction of the slit image 5'a magnified by the objective lens 10 is changed. It is projected and imaged as a slit image 5 ″ a compressed by the cylindrical lens 13.

【0010】図3にウエハ2上に結像される一本のスリ
ット像5aの照射位置の違いによって、焦点位置が如何
に検出されるものか、その検出位置の差を示す。例えば
ウエハ2表面形状が凹凸形状であるとすれば、その上に
塗布されたフォトレジスト14もその凹凸形状に倣った
表面形状となる。さて、そのレジスト14表面を検出す
るに際し、スリット像5aが小さいとして、実線で示す
光束で凹部を検出し、これに縮小レンズ1の焦点位置に
合せた状態で、露光を行った場合には、表面部(凸部)
は焦点位置からずれることになることから、部分的に解
像状態が悪いという事態が生じる恐れがあり、また、こ
れとは逆に、一点鎖線で示す光束で凸部を検出すれば、
凹部で焦点ずれを起こすことになる。更に、ウエハ2が
縮小レンズ1の光軸に対して傾斜していれば、合焦点位
置では高解像度で露光し得るが、合焦点位置以外では焦
点ずれを起こし、解像しないという不具合が生じる恐れ
がある。しかしながら、本発明に従えば、図4に示すよ
うに、ウエハ2上の表面にスリット像5aを複数同時に
投影結像させた状態で、各々のスリット像の平均位置を
合焦点位置とすれば、以上に述べた焦点ずれは解消され
るというものである。
FIG. 3 shows how the focus position is detected by the difference in the irradiation position of one slit image 5a formed on the wafer 2, and the difference in the detection positions. For example, if the surface shape of the wafer 2 is uneven, the photoresist 14 applied thereon also has a surface shape that follows the uneven shape. When the surface of the resist 14 is detected, assuming that the slit image 5a is small, the concave portion is detected by the light flux indicated by the solid line, and exposure is performed in a state where the concave portion is aligned with the focal position of the reduction lens 1. Surface part (convex part)
Is to be deviated from the focus position, which may cause a situation where the resolution is partially poor. Conversely, if the convex portion is detected by the light flux indicated by the alternate long and short dash line,
Defocus will occur in the recess. Further, if the wafer 2 is tilted with respect to the optical axis of the reduction lens 1, it is possible to perform exposure with high resolution at the in-focus position, but defocus occurs at a position other than the in-focus position, which may cause a problem of not being resolved. There is. However, according to the present invention, as shown in FIG. 4, if a plurality of slit images 5a are simultaneously projected and formed on the surface of the wafer 2 and the average position of each slit image is set to the in-focus position, The defocus described above is eliminated.

【0011】図5は、図1の装置において、スリット5
を複数並べた場合に、スリット像が各結像位置で如何な
る形状になるかを、上部方向からみた状態として示した
ものである。このように、スリット5を複数平行に並べ
た多重スリット15が配置される場合には、第1レンズ
6によってウエハ2上の露光領域にはスリット5の幅方
向が拡大された平行スリット像5bが投影結像される。
この平行スリット像5bは、その後、第2レンズ9で対
物レンズの手前にスリット長手方向に縮小された像5′
bとして結像される。前述と同様に、対物レンズ10に
より拡大された上、第2円筒レンズ13でスリット長さ
方向に圧縮されたスリット像5′bは、図6に示すよう
に、リニアイメージセンサ12上に平行なスリット像
5″bの列として投影結像されるが、その際でのセンサ
12出力分布が図6に併せて示されたものとなってい
る。
FIG. 5 shows the slit 5 in the apparatus of FIG.
When a plurality of are arranged, the shape of the slit image at each image forming position is shown as viewed from above. In this way, when the multiple slits 15 in which the slits 5 are arranged in parallel are arranged, the parallel slit image 5b in which the width direction of the slits 5 is enlarged is formed in the exposure region on the wafer 2 by the first lens 6. It is projected and imaged.
This parallel slit image 5b is then reduced by the second lens 9 in front of the objective lens in the slit longitudinal direction 5 '.
It is imaged as b. Similarly to the above, the slit image 5'b which is enlarged by the objective lens 10 and compressed in the slit length direction by the second cylindrical lens 13 is parallel to the linear image sensor 12 as shown in FIG. The slit image 5 ″ b is projected and imaged as a row, and the output distribution of the sensor 12 at that time is also shown in FIG.

【0012】ここで、投影露光装置における一般的な焦
点合せについて説明すれば、この焦点合せでは、先ず試
し焼きを行って縮小レンズの合焦位置(結像面の高さ位
置)を求めておき、これを基準位置としてウエハ2の位
置決めが行われるものとなっている。即ち、ウエハ2の
高さ位置を微小距離(0.5μm程度)ずつ上下させて
試し焼きを行い、最も良好な解像状態が得られた際での
ウエハ2の位置を、センサ12上でのスリット像5″b
の位置データX1 ,X2 ,X3 ……Xn として適当な記
憶装置に記憶させておく。次いで、新たにセットされた
ウエハ2上にスリット像5bを投影結像し、それによっ
てセンサ12上に結像されるスリット像5″bが位置デ
ータX1 ,X2 ,X3 ……Xn で表わされる位置に一致
されるべく、ウエハステージ16を上下動させ焦点合せ
を行う。尚、スリット像5″bの位置は、図7に拡大図
示するように、センサ12出力に対し閾値Th を適当に
設定した上、その閾値Th に相当するセンサ12上の画
素20位置を求め、その中央値をスリット像5″bの位
置として設定、検出するようにしてもよい。
Here, the general focusing in the projection exposure apparatus will be described. In this focusing, trial burning is first performed to obtain the focusing position (height position of the image plane) of the reduction lens. The wafer 2 is positioned with this as a reference position. That is, the height position of the wafer 2 is moved up and down by a small distance (about 0.5 μm) for trial baking, and the position of the wafer 2 on the sensor 12 when the best resolution is obtained. Slit image 5 "b
The position data X 1 , X 2 , X 3 ... X n are stored in an appropriate storage device. Then, the slit image 5b is projected and imaged on the newly set wafer 2, and the slit image 5 ″ b imaged on the sensor 12 is thereby converted into position data X 1 , X 2 , X 3 ... X n. The wafer stage 16 is moved up and down to perform focusing so that the position of the slit image 5 ″ b is set to the threshold Th with respect to the output of the sensor 12, as shown in the enlarged view of FIG. Alternatively, the pixel 20 position on the sensor 12 corresponding to the threshold value Th may be determined, and the median value may be set and detected as the position of the slit image 5 ″ b.

【0013】ところで、図5に示す例では、複数のスリ
ット5はX方向のみに並べられていたが、図8に示す例
では、X,Yの2方向にそれぞれ複数のスリット5が並
べられた多重スリット17が用いられたものとなってい
る。この場合、光電変換器としては、2次元のエリアイ
メージセンサ18が用いられる。このように、XY方向
にスリット5を設ければ、ウエハ2の傾きまでも検出し
得、傾きを考慮した上での位置合せが可能とされるもの
である。この場合においても、前述と同様に、合焦位置
を予め試し焼きによって求めた上、その合焦位置をエリ
アイメージセンサ18上でのスリット像5″b位置デー
タとして記憶しておく。このようにすれば、図9(a)
〜(d)に示すように、ウエハ2上に投影結像されたス
リット像5b位置(これは、センサ18上に投影結像さ
れたスリット像5″bの位置と同等)により、ウエハ2
の傾き、即ち、姿勢も容易に検出可とされるものであ
る。なお、図9において、(a)は合焦位置にある時
を、(b)はX方向に上下の傾きがあるも、Y方向につ
いては合焦している時を、(c)はX方向について合焦
しているも、Y方向については上下の傾きがある時を、
(d)はXY両方向について上下の傾きがある場合をそ
れぞれ示す。
By the way, in the example shown in FIG. 5, the plurality of slits 5 are arranged only in the X direction, but in the example shown in FIG. 8, the plurality of slits 5 are arranged in the two directions of X and Y, respectively. The multiple slit 17 is used. In this case, the two-dimensional area image sensor 18 is used as the photoelectric converter. Thus, if the slits 5 are provided in the XY directions, even the inclination of the wafer 2 can be detected, and the alignment can be performed in consideration of the inclination. Also in this case, similarly to the above, the focus position is obtained in advance by trial burning, and the focus position is stored as slit image 5 ″ b position data on the area image sensor 18. Then, Fig. 9 (a)
As shown in (d), the position of the slit image 5b projected and imaged on the wafer 2 (this is equivalent to the position of the slit image 5 ″ b projected and imaged on the sensor 18) causes the wafer 2
The inclination, that is, the posture, can be easily detected. In FIG. 9, (a) shows the focus position, (b) shows a vertical tilt in the X direction, but the Y direction shows focus, and (c) shows the X direction. When the focus is on, but there is a vertical tilt in the Y direction,
(D) shows the case where there is a vertical inclination in both XY directions.

【0014】最後に、ウエハ2上へ照射される光束の入
射角とその偏光方向の望ましい態様について図10,図
11により説明する。ウエハ2上にフォトレジスト14
を塗布されている場合での光の進行方向は、図10に示
すように、レジスト14表面で直接反射されるもの、レ
ジスト14内部に一旦入り込んで下地層19との境界面
で反射された上、再びレジスト14表面から出てくるも
の、レジスト14内部で繰返し反射されるもの、下地層
19に入り込むものなどがある。この場合、レジスト1
4表面だけで光が反射すれば、リニアイメージセンサ1
2やエリアイメージセンサ18でそのレジスト14表面
の合焦位置検出が可能となることは明らかである。しか
しながら、下地層19からの反射光が共存する場合に
は、センサ12,18上では何れの位置が検出されてい
るのか、正確に判断し得ないというものである。そこ
で、可能な限りレジスト14表面での反射率を高くする
必要があり、そのためには、好ましくは、ウエハ2上へ
の光束の入射角は70°以上に設定すればよいと云うも
のである。また、入射光束として直線偏光光が用いられ
る場合には、図11に示すように、S偏光光がP偏光光
に比しレジスト14表面での反射率を高く、S偏光光が
入射光束として用いられるのが望ましくなっている。
Finally, a desirable mode of the incident angle of the light beam irradiated onto the wafer 2 and its polarization direction will be described with reference to FIGS. Photoresist 14 on wafer 2
As shown in FIG. 10, the traveling direction of the light in the case of being coated is that which is directly reflected on the surface of the resist 14, and once it enters the inside of the resist 14 and is reflected on the boundary surface with the underlying layer 19. There are those that come out from the surface of the resist 14 again, those that are repeatedly reflected inside the resist 14, and those that enter the underlayer 19. In this case, the resist 1
If the light is reflected only on the 4 surfaces, the linear image sensor 1
It is clear that the in-focus position on the surface of the resist 14 can be detected by the 2 or area image sensor 18. However, when the reflected light from the underlayer 19 coexists, it is impossible to accurately determine which position is detected on the sensors 12 and 18. Therefore, it is necessary to increase the reflectance on the surface of the resist 14 as much as possible, and for that purpose, it is preferable that the incident angle of the light beam on the wafer 2 is set to 70 ° or more. When linearly polarized light is used as the incident light flux, as shown in FIG. 11, the S-polarized light has a higher reflectance on the surface of the resist 14 than the P-polarized light, and the S-polarized light is used as the incident light flux. It is becoming desirable.

【0015】[0015]

【発明の効果】以上、述べたように、請求項1によれ
ば、マスク上のパターンを、投影レンズを介し被露光基
板上の露光領域に露光するに際し、マスク上のパターン
の投影レンズによる像面と被露光基板の露光面とが一致
された状態で、マスク上のパターンを投影レンズを介し
被露光基板上の露光領域に露光し得るものとなってい
る。
As described above, according to the first aspect, when the pattern on the mask is exposed to the exposure area on the substrate to be exposed through the projection lens, an image of the pattern on the mask by the projection lens is formed. The pattern on the mask can be exposed to the exposure area on the substrate to be exposed through the projection lens in a state where the surface and the exposure surface of the substrate to be exposed are aligned with each other.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明に係る投影露光装置の一例での
要部構成を示す図
FIG. 1 is a diagram showing a main configuration of an example of a projection exposure apparatus according to the present invention.

【図2】図2は、図1における各部スリット像の形状を
上部方向からみた状態として示す図
FIG. 2 is a diagram showing a shape of a slit image of each part in FIG. 1 as viewed from above.

【図3】図3は、検出領域が微小な場合に生じる焦点位
置検出ずれを説明するための図
FIG. 3 is a diagram for explaining a focus position detection deviation that occurs when a detection region is very small.

【図4】図4は、本発明に係る複数スリット像による平
均的合焦点位置検出方法を説明するための図
FIG. 4 is a diagram for explaining an average in-focus position detection method using multiple slit images according to the present invention.

【図5】図5は、スリットが1方向に複数並べられた場
合での、各部スリット像の形状を上部方向からみた状態
として示す図
FIG. 5 is a diagram showing a shape of a slit image of each part as viewed from above when a plurality of slits are arranged in one direction.

【図6】図6は、リニアイメージセンサ受光面に投影結
像された多重スリット像に対するセンサ出力分布を示す
FIG. 6 is a diagram showing a sensor output distribution for a multiple slit image projected and imaged on the light receiving surface of the linear image sensor.

【図7】図7は、リニアイメージセンサ出力からのスリ
ット像位置検出方法を説明するための図
FIG. 7 is a diagram for explaining a slit image position detection method from the output of a linear image sensor.

【図8】図8は、スリットが2方向にそれぞれ複数並べ
られた場合での、各部スリット像の形状を上部方向から
みた状態として示す図
FIG. 8 is a diagram showing a shape of a slit image of each part as viewed from above when a plurality of slits are arranged in two directions.

【図9】図9(a)〜(d)は、2方向にそれぞれ複数
並べられたスリットによる傾き検出方法を説明するため
の図
9A to 9D are views for explaining a tilt detection method using a plurality of slits arranged in two directions.

【図10】図10は、ウエハ上に塗布されたフォトレジ
ストに照射光が照射された際でのその照射光の進行方向
を説明するための図
FIG. 10 is a diagram for explaining a traveling direction of the irradiation light when the irradiation light is applied to the photoresist coated on the wafer.

【図11】図11は、入射角に対するS偏光、P偏光各
々のフォトレジスト上での反射率の変化を示す図
FIG. 11 is a diagram showing changes in reflectance of S-polarized light and P-polarized light on a photoresist with respect to an incident angle.

【符号の説明】[Explanation of symbols]

1…縮小レンズ、2…ウエハ、3…レーザ光源、5…ス
リット、6…第1レンズ、9…第2レンズ、10…対物
レンズ、12…リニアイメージセンサ、13…第2円筒
レンズ、14…フォトレジスト、15…多重スリット、
16…ウエハステージ、17…多重スリット、18…エ
リアイメージセンサ
1 ... Reduction lens, 2 ... Wafer, 3 ... Laser light source, 5 ... Slit, 6 ... First lens, 9 ... Second lens, 10 ... Objective lens, 12 ... Linear image sensor, 13 ... Second cylindrical lens, 14 ... Photoresist, 15 ... multiple slits,
16 ... Wafer stage, 17 ... Multiple slits, 18 ... Area image sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 実 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所生産技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Minoru Yoshida 292 Yoshida-cho, Totsuka-ku, Yokohama-shi Kanagawa Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 マスク上のパターンを、投影レンズを介
し被露光基板上の露光領域に露光する方法であって、外
部から投影レンズと被露光基板の間に導入された照射光
によって、露光光軸に対し70°以上の傾斜角を以て被
露光基板上の露光領域の、少なくとも複数の異なる場所
を照射した状態で、照射光の照射による該被露光基板か
らの反射光から得られる、上記場所各々に対応した光情
報からは該被露光基板自体の全体としての傾きと高さが
求められた上、該被露光基板が露光光軸方向に微移動さ
れるとともに、微回動されることによって、マスク上の
パターンの投影レンズによる像面と被露光基板の露光面
とが一致された状態で、マスク上のパターンが投影レン
ズを介し被露光基板上の露光領域に露光されるようにし
た露光方法。
1. A method of exposing a pattern on a mask to an exposure region on a substrate to be exposed through a projection lens, the exposure light being introduced from the outside between the projection lens and the substrate to be exposed. Each of the above-mentioned locations obtained from the reflected light from the exposed substrate due to the irradiation of the irradiation light in a state where at least a plurality of different areas of the exposed area on the exposed substrate are irradiated with an inclination angle of 70 ° or more with respect to the axis. From the optical information corresponding to, the tilt and height of the exposed substrate itself as a whole are obtained, and the exposed substrate is finely moved in the exposure optical axis direction and finely rotated, An exposure method in which a pattern on a mask is exposed to an exposure area on a substrate to be exposed through a projection lens in a state where an image surface of the pattern on the mask by the projection lens and an exposure surface of the substrate to be exposed are matched. .
JP6211247A 1994-09-05 1994-09-05 Exposure method Expired - Lifetime JP2728368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6211247A JP2728368B2 (en) 1994-09-05 1994-09-05 Exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6211247A JP2728368B2 (en) 1994-09-05 1994-09-05 Exposure method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59195728A Division JPS6174338A (en) 1984-09-20 1984-09-20 Optical alignment device

Publications (2)

Publication Number Publication Date
JPH07234527A true JPH07234527A (en) 1995-09-05
JP2728368B2 JP2728368B2 (en) 1998-03-18

Family

ID=16602743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6211247A Expired - Lifetime JP2728368B2 (en) 1994-09-05 1994-09-05 Exposure method

Country Status (1)

Country Link
JP (1) JP2728368B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5777722A (en) * 1994-04-28 1998-07-07 Nikon Corporation Scanning exposure apparatus and method
KR100490685B1 (en) * 1996-07-22 2005-09-09 가부시키가이샤 니콘 Surface height measuring device and exposure device using it
KR101306431B1 (en) * 2008-07-04 2013-09-09 캐논 가부시끼가이샤 Imaging optical system, exposure apparatus, and device manufacturing method
CN104635428A (en) * 2013-11-14 2015-05-20 上海微电子装备有限公司 Focusing and leveling measurement apparatus based on image processing and method thereof
US10634489B2 (en) 2017-09-14 2020-04-28 Yokogawa Electric Corporation Displacement sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5632114A (en) * 1979-06-12 1981-04-01 Philips Nv Optical image forming system
JPS56101112A (en) * 1980-01-16 1981-08-13 Fujitsu Ltd Exposure method
JPS58156937A (en) * 1982-03-12 1983-09-19 Hitachi Ltd Exposing device
JPS5947731A (en) * 1982-09-10 1984-03-17 Hitachi Ltd Automatic focusing mechanism of projection exposing apparatus
JPS5999216A (en) * 1982-11-27 1984-06-07 Jeol Ltd Measuring device of surface height of body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5632114A (en) * 1979-06-12 1981-04-01 Philips Nv Optical image forming system
JPS56101112A (en) * 1980-01-16 1981-08-13 Fujitsu Ltd Exposure method
JPS58156937A (en) * 1982-03-12 1983-09-19 Hitachi Ltd Exposing device
JPS5947731A (en) * 1982-09-10 1984-03-17 Hitachi Ltd Automatic focusing mechanism of projection exposing apparatus
JPS5999216A (en) * 1982-11-27 1984-06-07 Jeol Ltd Measuring device of surface height of body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5777722A (en) * 1994-04-28 1998-07-07 Nikon Corporation Scanning exposure apparatus and method
KR100490685B1 (en) * 1996-07-22 2005-09-09 가부시키가이샤 니콘 Surface height measuring device and exposure device using it
KR101306431B1 (en) * 2008-07-04 2013-09-09 캐논 가부시끼가이샤 Imaging optical system, exposure apparatus, and device manufacturing method
CN104635428A (en) * 2013-11-14 2015-05-20 上海微电子装备有限公司 Focusing and leveling measurement apparatus based on image processing and method thereof
US10634489B2 (en) 2017-09-14 2020-04-28 Yokogawa Electric Corporation Displacement sensor

Also Published As

Publication number Publication date
JP2728368B2 (en) 1998-03-18

Similar Documents

Publication Publication Date Title
JP3158446B2 (en) Surface position detecting device, surface position detecting method, exposure apparatus, exposure method, and semiconductor manufacturing method
JP3555230B2 (en) Projection exposure equipment
US5381225A (en) Surface-condition inspection apparatus
US4815854A (en) Method of alignment between mask and semiconductor wafer
JP3211538B2 (en) Inspection apparatus and semiconductor device manufacturing method using the same
JPH06294750A (en) Optical substrate inspecting device
JPH09210629A (en) Surface positioning detection device and device-manufacturing method using it
US20050002020A1 (en) Inspection apparatus having two sensors, method for inspecting an object, and a method for manufacturing a photolithography mask
JPS61174717A (en) Positioning apparatus
US6108089A (en) Position detecting apparatus and method for projection exposure apparatus
KR19980081185A (en) Multi-detector alignment system for photolithography
JP2728368B2 (en) Exposure method
JPH0735698A (en) Image reader, surface state inspecting apparatus and exposure device using the same
US4777374A (en) Pattern position detecting method and apparatus for detecting the position of an alignment direction of a wafer target pattern
TWI776946B (en) pattern drawing device
JP4961615B2 (en) Photomask inspection method and apparatus
JP3282790B2 (en) Defect inspection system for phase shift mask
US5991007A (en) Step and scan exposure system and semiconductor device manufactured using said system
JPS6174338A (en) Optical alignment device
JP3143514B2 (en) Surface position detecting apparatus and exposure apparatus having the same
US6839124B2 (en) Projection aligner
JPH04273246A (en) Position detection device
JPS61128522A (en) Focussing device
JP2775988B2 (en) Position detection device
JPS6236822A (en) Optical positioning device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term