JPH07233466A - Corrosion resistant metallic article and its production - Google Patents

Corrosion resistant metallic article and its production

Info

Publication number
JPH07233466A
JPH07233466A JP2683494A JP2683494A JPH07233466A JP H07233466 A JPH07233466 A JP H07233466A JP 2683494 A JP2683494 A JP 2683494A JP 2683494 A JP2683494 A JP 2683494A JP H07233466 A JPH07233466 A JP H07233466A
Authority
JP
Japan
Prior art keywords
plate material
metal
ions
cathode
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2683494A
Other languages
Japanese (ja)
Inventor
Yoshitaka Totsutori
由貴 鳥取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2683494A priority Critical patent/JPH07233466A/en
Publication of JPH07233466A publication Critical patent/JPH07233466A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a corrosion resistant metallic article having further improved corrosion resistance by dispersing Ti, Zr, Hf, V, Nb or Ta from the surface of a metallic article to a specified depth while reducing the concn. CONSTITUTION:One or more kinds of metals selected from among Ti, Zr, Hf, V, Nb and Ta or, as necessary, further Cr are dispersed from the surface of a metallic article to >=0.5mum depth while reducing the concn. This surface treatment is carried out by impressing about 700-2,000V bias voltage to the metallic article and irradiating the article with ions of the metals by a cathode arc discharge type ion plating method using a cathode of the metals. The metals can be dispersed from the surface of the metallic article to about 0.5-3mum depth so that the concn. is gradually reduced from about 100%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、表面に耐食性を有する
金属物品及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal article having surface corrosion resistance and a method for producing the same.

【0002】[0002]

【従来の技術】従来より金属物品の耐食性を向上させる
には、表面にNi,Crなどの耐食性の高い金属のメッ
キを施すことが行われている。しかし、上記Ni,Cr
などの金属メッキ膜は金属物品表面近傍の数μmの薄い
膜であるため、また、金属物品とメッキ層との境界面が
熱膨張係数、熱伝導度など物理的特性の異なる不連続な
面であるため、摩耗、衝撃、加熱などにより破壊され易
く、破壊された部分から腐食が進行するという問題があ
る。
2. Description of the Related Art Conventionally, in order to improve the corrosion resistance of metal articles, the surface thereof is plated with a metal having a high corrosion resistance such as Ni or Cr. However, the above Ni, Cr
Since the metal plating film such as is a thin film of several μm near the surface of the metal article, the boundary surface between the metal article and the plating layer is a discontinuous surface having different physical properties such as thermal expansion coefficient and thermal conductivity. Therefore, there is a problem that it is easily broken by abrasion, impact, heating, etc., and corrosion progresses from the broken part.

【0003】本出願人は金属物品の表面から0.5μm
以上の深さまでCrが濃度を減少させながら分散してい
る耐食性金属物品、および金属物品の表面にイオンプレ
ーティング法によりCrイオンを照射することを特徴と
する耐食性金属物品及びその製造方法を提案した(特願
平4ー150071号出願)。
The Applicant has found that 0.5 μm from the surface of a metal article
A corrosion-resistant metal article in which Cr is dispersed while reducing the concentration to the above depth, and a corrosion-resistant metal article characterized by irradiating the surface of the metal article with Cr ions by an ion plating method and a method for producing the same have been proposed. (Application for Japanese Patent Application No. 4-150071).

【0004】[0004]

【発明が解決しようとする課題】本出願人はさらに試験
を進め、新たな耐食性金属物品及びその製造方法に到達
した。そこで、本発明の目的は、上記従来のメッキ処理
の問題を解消し、耐食性が一段と向上した新規な耐食性
金属物品及びその製造方法を提供することにある。
The present applicant has conducted further tests to arrive at a new corrosion resistant metal article and a method for producing the same. Therefore, it is an object of the present invention to provide a novel corrosion-resistant metal article which solves the above-mentioned problems of the conventional plating treatment and has further improved corrosion resistance, and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明の耐食性金属物品は、金属物品の表面から
0.5μm以上の深さまで、Ti,Zr,Hf,V,N
b及びTaからなる群から選ばれる少なくとも一種の金
属が濃度を減少させながら分散している点に特徴があ
り、又これらを製造するための本発明の製造方法は、金
属物品の表面にイオンプレーティング法によりTi,Z
r,Hf,V,Nb及びTaからなる群から選ばれる少
なくとも一種の金属のカソードを用い該金属のイオンを
該金属物品に照射する点に特徴がある。
In order to achieve the above object, the corrosion-resistant metal article of the present invention is provided with Ti, Zr, Hf, V, N from the surface of the metal article to a depth of 0.5 μm or more.
The present invention is characterized in that at least one metal selected from the group consisting of b and Ta is dispersed with decreasing concentration, and the production method of the present invention for producing these is characterized in that the surface of the metal article is ion-plated. Ti, Z by the Ting method
It is characterized in that the metal article is irradiated with ions of the metal by using a cathode of at least one metal selected from the group consisting of r, Hf, V, Nb and Ta.

【0006】又、本発明の耐食性金属物品は、金属物品
の表面から0.5μm以上の深さまでTi,Zr,H
f,V,NbもしくはTaからなる群から選ばれる少な
くとも一種の金属とCrとが濃度を減少させながら分散
している点に特徴があり、又これらを製造するための本
発明の製造方法は、金属物品の表面にイオンプレーティ
ング法によりCr及びTi,Zr,Hf,V,Nbもし
くはTaからなる群から選ばれる少なくとも一種の金属
のカソードとCrのカソードを用いこれらの金属のイオ
ンを該金属物品に照射する点に特徴がある。
Further, the corrosion-resistant metal article of the present invention comprises Ti, Zr, H up to a depth of 0.5 μm or more from the surface of the metal article.
The present invention is characterized in that at least one metal selected from the group consisting of f, V, Nb and Ta and Cr are dispersed while decreasing the concentration, and the production method of the present invention for producing these is A cathode of at least one metal selected from the group consisting of Cr and Ti, Zr, Hf, V, Nb or Ta and a cathode of Cr are used on the surface of a metal article by an ion plating method, and ions of these metals are applied to the surface of the metal article. The feature is that it irradiates to.

【0007】さらに、本発明の耐食性金属物品は、金属
物品の表面から0.5μm以上の深さまでTi,Cr,
Zr,Hf,V,NbもしくはTaからなる群から選ば
れる少なくとも一種の金属とAlとが濃度を減少させな
がら分散している点に特徴があり、又、これらを製造す
るための本発明の製造方法は、金属物品の表面にイオン
プレーティング法によりTi,Cr,Zr,Hf,V,
NbもしくはTaからなる群から選ばれる少なくとも一
種の金属とAlとの合金のカソードを用いこれらの金属
のイオンを該金属物品に照射する点に特徴がある。
Furthermore, the corrosion-resistant metal article of the present invention is characterized by the fact that Ti, Cr,
It is characterized in that at least one metal selected from the group consisting of Zr, Hf, V, Nb or Ta and Al are dispersed while reducing the concentration, and the production of the present invention for producing these The method is to deposit Ti, Cr, Zr, Hf, V, on the surface of a metal article by an ion plating method.
It is characterized in that the cathode of an alloy of at least one metal selected from the group consisting of Nb or Ta and Al is used to irradiate the metal article with ions of these metals.

【0008】[0008]

【作用】本発明の耐食性金属物品は、表面から0.5μ
mの深さまで、特許請求の範囲請求項2、請求項4、請
求項6に記載したカソードを構成する各金属元素が濃度
を減少させながら分散しているものである。この表面か
らこれらが分散している領域の深さは、高々10μmま
であれば良く、通常は0.5〜3μmであり、0.5μ
mより浅いと充分な耐食性が得られない。これら金属の
濃度勾配は一定である必要はないが、濃度は表面から内
部に向かって連続的に減少し、不連続な濃度ギャツプが
ないことが必要である。
The corrosion-resistant metal article of the present invention is 0.5 μm from the surface.
The metal elements constituting the cathode described in claims 2, 4, and 6 are dispersed to the depth of m while decreasing the concentration. The depth of the region where these are dispersed from this surface may be at most 10 μm, and is usually 0.5 to 3 μm.
If it is shallower than m, sufficient corrosion resistance cannot be obtained. The concentration gradient of these metals does not have to be constant, but the concentration must decrease continuously from the surface to the inside and there must be no discontinuous concentration gap.

【0009】金属物品表面から0.5μm以上の深さの
領域は、特許請求の範囲請求項2、請求項4、請求項6
に記載したカソードを構成する各金属元素と金属物品の
材料との混合層であり、これらの濃度は表面では高く、
ほぼ100%であり内部に向かって連続的に低くなって
いる。このため、メッキ、塗布処理などで見られる表面
処理層と金属物品母材との不連続な界面が存在せず、摩
耗、衝撃、加熱などによって表面層が剥離するというこ
とはない。また、金属物品母材の有する耐摩耗性、硬度
などの特性もほほ維持できる。
A region having a depth of 0.5 μm or more from the surface of the metal article is claimed in claims 2, 4, and 6.
It is a mixed layer of each metal element constituting the cathode described in 1. and the material of the metal article, the concentration of which is high on the surface,
It is almost 100% and continuously decreases toward the inside. Therefore, there is no discontinuous interface between the surface-treated layer and the metal article base material, which is seen in plating or coating treatment, and the surface layer does not peel off due to abrasion, impact, heating or the like. Further, the properties such as abrasion resistance and hardness of the metal article base material can be maintained.

【0010】本発明に使用される金属物品の材料は、純
金属あるいは合金材料であり、特に鉄鋼材料において効
果がある。用いられる鉄鋼材料としては、例えば、S1
5Cなどの肌焼鋼、S45Cなどの構造用鋼、SUP1
0などのばね鋼、SUJ2などの軸受鋼、SACM1な
どの窒化鋼、SKD6などの熱間加工用工具鋼、SKD
11などの冷間加工用工具鋼、SKH51などの高速度
鋼、SUS310Sなどの耐熱鋼、SUS410などの
耐食耐酸鋼などが挙げられる。
The material of the metal article used in the present invention is a pure metal or an alloy material, and is particularly effective for a steel material. As the steel material used, for example, S1
Case hardening steel such as 5C, structural steel such as S45C, SUP1
0 etc. spring steel, SUJ2 etc. bearing steel, SACM1 etc. nitrided steel, SKD6 etc. hot working tool steel, SKD
Examples include cold working tool steels such as No. 11, high speed steels such as SKH51, heat resistant steels such as SUS310S, and corrosion resistant acid resistant steels such as SUS410.

【0011】本発明の金属物品の製造には、公知のいず
れの方式のイオンプレーティング法も用いることができ
る。イオンプレーティング法は金属を蒸発させ、この蒸
発した金属をイオン化し、さらにイオン化した金属分子
を反応性ガス雰囲気下で電界により加速して、物品の表
面に打ち込むものである。
In the production of the metal article of the present invention, any known ion plating method can be used. The ion plating method is a method of evaporating a metal, ionizing the evaporated metal, and further accelerating the ionized metal molecule by an electric field in a reactive gas atmosphere to drive the metal surface onto the surface of the article.

【0012】金属を蒸発させるには、抵抗加熱や電子銃
加熱を用いる方法などがある。蒸発した金属のイオン化
は公知のカソードアーク放電、グロー放電、高周波放
電、イオン化電極を用いる方法、ホローカソード法のい
ずれでも良い。これらの中で、カソードアーク放電型の
イオンプレーティング法は金属の蒸発とイオン化とを同
時に行うものであり、他の方式に比べて金属のイオン化
効率が高い。また他の方式では、前記のカソードを構成
する金属元素が完全にイオン化されないため、これらの
金属の蒸気が金属物品表面を覆って層が形成されて、物
品内部深くまでこれらが分散しにくくなるという問題が
あるが、カソードアーク放電型のイオンプレーティング
法ではこのようなことがなく、すなわち、物品の内部深
くまでこれらが分散しやすく、又金属物品の表面全体を
イオン化した金属が覆って金属物品の表面から0.5μ
m以上の深さまで分散するような適切な条件では、ほぼ
これらの金属の濃度が100%に近い状態となり耐食性
が向上するので、本発明の実施には最適である。
To vaporize the metal, there are methods such as resistance heating and electron gun heating. Ionization of the evaporated metal may be performed by any of known methods such as cathode arc discharge, glow discharge, high frequency discharge, a method using an ionization electrode, and a hollow cathode method. Among these, the cathodic arc discharge type ion plating method simultaneously evaporates and ionizes the metal, and has a higher metal ionization efficiency than other methods. In other methods, since the metal elements constituting the cathode are not completely ionized, vapors of these metals cover the surface of the metal article to form a layer, which makes it difficult to disperse them deep inside the article. Although there is a problem, this does not occur in the cathodic arc discharge type ion plating method, that is, they are easily dispersed deep inside the article, and the entire surface of the metal article is covered with the ionized metal so that the metal article is covered. 0.5μ from the surface of
Under appropriate conditions such that the metal is dispersed to a depth of m or more, the concentrations of these metals are almost 100% and the corrosion resistance is improved, which is optimal for the practice of the present invention.

【0013】カソードアーク放電型のイオンプレーティ
ング法では、10-3Torr以下の真空下で金属カソー
ドを構成する金属元素の蒸発、イオン化を行う。イオン
化した金属を加速するために金属物品に印加する電圧
(バイアス電圧)は500〜2000Vが望ましく、7
00〜1500Vが最適である。金属物品に印加する電
圧が500V未満ではイオン化した金属の運動エネルギ
ーが充分でなく、金属物品表面への打ち込み効果が小さ
くなるからであり、また、2000Vを超えるとイオン
化した金属の運動エネルギーが大きくなりすぎ、金属物
品表面をスパッタリングして損傷してしまう確率が高く
なるからである。
In the cathode arc discharge type ion plating method, the metal element constituting the metal cathode is vaporized and ionized under a vacuum of 10 −3 Torr or less. The voltage (bias voltage) applied to the metal article to accelerate the ionized metal is preferably 500 to 2000V, and
The optimum value is 00 to 1500V. This is because if the voltage applied to the metal article is less than 500 V, the kinetic energy of the ionized metal is not sufficient and the implantation effect on the surface of the metal article becomes small, and if it exceeds 2000 V, the kinetic energy of the ionized metal increases. This is because the probability of spattering the surface of the metal article and damaging it increases.

【0014】カソードとして用いるのは純金属もしくは
2種以上からなる合金である。これらの金属源は複数の
ものを同時に使用しても良く、その場合に複数の異種組
成のカソードを同時に使用することもできる。特にAl
は耐酸化性を向上する効果があるのでカソード成分とし
て好ましいが、カソード自体が昇温するので、Alを単
独でカソードに用いてアーク放電を行うと融液の飛散ば
かり起こり放電が安定しないため、単独で用いるのは困
難なので、他の元素との合金で使うのが好ましい。
A pure metal or an alloy composed of two or more kinds is used as the cathode. A plurality of these metal sources may be used at the same time, in which case a plurality of cathodes having different compositions may be used at the same time. Especially Al
Is preferable as a cathode component because it has an effect of improving oxidation resistance, but since the cathode itself heats up, if arc discharge is performed by using Al alone as the cathode, only melt dispersion occurs and discharge is not stable, Since it is difficult to use alone, it is preferable to use it as an alloy with other elements.

【0015】[0015]

【実施例】【Example】

実施例1 大きさ17×17×2mm、ビッカース硬度Hv=85
0のSKH51鋼の板材を母材とし、Tiカソードを備
えたカソードアーク方式のイオンプレーティング装置を
用いて、本発明の金属物品を製造した。装置反応容器内
の所定位置に板材をセットした後、反応容器内を10-5
Torrまで真空排気し、板材に1000Vのバイアス
電圧を印加し、Tiカソードよりアーク放電を生起させ
た。このときアーク放電電流は60Aであった。赤外放
射温度計により板材の表面温度を監視しながらこのアー
ク放電を5分間続け、金属Tiを蒸発、イオン化させ
た。アーク放電中最大450℃まで板材表面温度の上昇
が認められた。
Example 1 Size 17 × 17 × 2 mm, Vickers hardness Hv = 85
The metal article of the present invention was manufactured by using a plate material of SKH51 steel of No. 0 as a base material and using a cathode arc type ion plating apparatus equipped with a Ti cathode. After setting the sheet at a predetermined position of the apparatus the reaction vessel, the reaction vessel 10 -5
The plate was evacuated to Torr and a bias voltage of 1000 V was applied to the plate material to cause arc discharge from the Ti cathode. At this time, the arc discharge current was 60A. This arc discharge was continued for 5 minutes while monitoring the surface temperature of the plate material with an infrared radiation thermometer to vaporize and ionize the metal Ti. During arc discharge, a rise in the plate surface temperature was recognized up to 450 ° C.

【0016】反応容器内真空下で板材を冷却した後取り
出したところ、外観は金属光沢を有し、ビッカース硬度
はHv=750であった。この板材をSIMS(二次イ
オン質量分析装置)により板材表面から深さ方向にTi
の分布を測定した。SIMSのスパッタリング開始後4
0分間一定値以上のTiが連続して検出され、板材表面
から0.5μm以上の深さまで単調に濃度を減少させな
がら存在していることが確認された。なお、Tiが分散
した深さはSIMSのスパッタリング時間とその時の試
料のスパッタ痕の深さを触針式の表面粗さ計で測定した
深さとの対応から求めた。
When the plate material was taken out after being cooled in a reaction vessel under vacuum, the appearance had metallic luster and the Vickers hardness was Hv = 750. This plate material is subjected to Ti in the depth direction from the plate surface by SIMS (secondary ion mass spectrometer).
Was measured. After starting SIMS sputtering 4
Ti of a certain value or more was continuously detected for 0 minutes, and it was confirmed that Ti was present while monotonically decreasing the concentration from the surface of the plate material to a depth of 0.5 μm or more. The depth in which Ti was dispersed was determined from the correspondence between the SIMS sputtering time and the depth of the sputter trace of the sample at that time measured with a stylus type surface roughness meter.

【0017】次にTiイオンを照射した板材を、Tiイ
オン照射面以外はテープでマスキングして、10%,2
0℃の塩酸溶液中に50時間浸漬して耐食性を評価し
た。浸漬後の基板の外観に変化は認められず、金属光沢
を保っていた。
Next, the plate material irradiated with Ti ions was masked with tape except the surface irradiated with Ti ions, and 10%, 2
The corrosion resistance was evaluated by immersing in a hydrochloric acid solution at 0 ° C. for 50 hours. No change was observed in the appearance of the substrate after immersion, and the metallic luster was maintained.

【0018】実施例2 カソードをZrに変えた他は実施例1と同様の方法でZ
rイオンを照射した板材を作製した。反応容器内真空下
で板材を冷却した後取り出したところ、外観は金属光沢
を有し、ビッカース硬度はHv=720であった。この
板材をSIMS(二次イオン質量分析装置)により板材
表面から深さ方向にZrの分布を測定した。SIMSの
スパッタリング開始後40分間一定値以上のZrが連続
して検出され、板材表面から0.6μm以上の深さまで
単調に濃度を減少させながら存在していることが確認さ
れた。次にZrイオンを照射した板材を、Zrイオン照
射面以外はテープでマスキングして、10%,20℃の
塩酸溶液中に50時間浸漬して耐食性を評価した。浸漬
後の基板の外観に変化は認められず、金属光沢を保って
いた。
Example 2 Z was prepared in the same manner as in Example 1 except that the cathode was changed to Zr.
A plate material irradiated with r ions was produced. When the plate material was taken out after being cooled under vacuum in the reaction vessel, the appearance had metallic luster and the Vickers hardness was Hv = 720. The Zr distribution of the plate material was measured in the depth direction from the surface of the plate material by SIMS (secondary ion mass spectrometer). Zr of a certain value or more was continuously detected for 40 minutes after the start of SIMS sputtering, and it was confirmed that the Zr was present while monotonically decreasing the concentration from the surface of the plate material to a depth of 0.6 μm or more. Next, the plate material irradiated with Zr ions was masked with a tape except the surface irradiated with Zr ions, and immersed in a hydrochloric acid solution of 10% and 20 ° C. for 50 hours to evaluate corrosion resistance. No change was observed in the appearance of the substrate after immersion, and the metallic luster was maintained.

【0019】実施例3 カソードをHfに変えた他は実施例1と同様の方法でH
fイオンを照射した板材を作製した。反応容器内真空下
で板材を冷却した後取り出したところ、外観は金属光沢
を有し、ビッカース硬度はHv=780であった。この
板材をSIMS(二次イオン質量分析装置)により板材
表面から深さ方向にHfの分布を測定した。SIMSの
スパッタリング開始後40分間一定値以上のHfが連続
して検出され、板材表面から0.6μm以上の深さまで
単調に濃度を減少させながら存在していることが確認さ
れた。次にHfイオンを照射した板材を、Hfイオン照
射面以外はテープでマスキングして、10%,20℃の
塩酸溶液中に50時間浸漬して耐食性を評価した。浸漬
後の基板の外観に変化は認められず、金属光沢を保って
いた。
Example 3 H was produced in the same manner as in Example 1 except that the cathode was changed to Hf.
A plate material irradiated with f ions was produced. When the plate material was taken out after being cooled under vacuum in the reaction vessel, the appearance had metallic luster and the Vickers hardness was Hv = 780. The Hf distribution of this plate material was measured in the depth direction from the surface of the plate material by SIMS (secondary ion mass spectrometer). After the start of SIMS sputtering, Hf of a certain value or more was continuously detected for 40 minutes, and it was confirmed that the Hf existed while monotonically decreasing the concentration from the surface of the plate material to a depth of 0.6 μm or more. Next, the plate material irradiated with Hf ions was masked with a tape except the surface irradiated with Hf ions, and immersed in a hydrochloric acid solution at 10% and 20 ° C. for 50 hours to evaluate corrosion resistance. No change was observed in the appearance of the substrate after immersion, and the metallic luster was maintained.

【0020】実施例4 カソードをVに変えた他は実施例1と同様の方法でVイ
オンを照射した板材を作製した。反応容器内真空下で板
材を冷却した後取り出したところ、外観は金属光沢を有
し、ビッカース硬度はHv=770であった。この板材
をSIMS(二次イオン質量分析装置)により板材表面
から深さ方向にVの分布を測定した。SIMSのスパッ
タリング開始後40分間一定値以上のVが連続して検出
され、板材表面から0.6μm以上の深さまで単調に濃
度を減少させながら存在していることが確認された。次
にVイオンを照射した板材を、Vイオン照射面以外はテ
ープでマスキングして、10%,20℃の塩酸溶液中に
50時間浸漬して耐食性を評価した。浸漬後の基板の外
観に変化は認められず、金属光沢を保っていた。
Example 4 A plate material irradiated with V ions was produced in the same manner as in Example 1 except that the cathode was changed to V. When the plate material was taken out after being cooled under vacuum in the reaction vessel, the appearance had metallic luster and the Vickers hardness was Hv = 770. The distribution of V was measured in the depth direction from the surface of the plate material by SIMS (secondary ion mass spectrometer). V of a certain value or more was continuously detected for 40 minutes after the start of SIMS sputtering, and it was confirmed that the V was present while monotonically decreasing the concentration from the surface of the plate material to a depth of 0.6 μm or more. Next, the plate material irradiated with V ions was masked with a tape except for the V ion irradiation surface, and immersed in a hydrochloric acid solution of 10% and 20 ° C. for 50 hours to evaluate corrosion resistance. No change was observed in the appearance of the substrate after immersion, and the metallic luster was maintained.

【0021】実施例5 カソードをNbに変えた他は実施例1と同様の方法でN
bイオンを照射した板材を作製した。反応容器内真空下
で板材を冷却した後取り出したところ、外観は金属光沢
を有し、ビッカース硬度はHv=710であった。この
板材をSIMS(二次イオン質量分析装置)により板材
表面から深さ方向にNbの分布を測定した。SIMSの
スパッタリング開始後40分間一定値以上のNbが連続
して検出され、板材表面から0.5μm以上の深さまで
単調に濃度を減少させながら存在していることが確認さ
れた。次にNbイオンを照射した板材を、Nbイオン照
射面以外はテープでマスキングして、10%,20℃の
塩酸溶液中に50時間浸漬して耐食性を評価した。浸漬
後の基板の外観に変化は認められず、金属光沢を保って
いた。
Example 5 N was produced in the same manner as in Example 1 except that the cathode was changed to Nb.
A plate material irradiated with b ions was produced. When the plate material was taken out after cooling in a reaction vessel under vacuum, the appearance had metallic luster and the Vickers hardness was Hv = 710. The Nb distribution of the plate material was measured in the depth direction from the surface of the plate material by SIMS (Secondary Ion Mass Spectrometer). It was confirmed that Nb of a certain value or more was continuously detected for 40 minutes after the start of SIMS sputtering, and that it was present while monotonically decreasing the concentration from the surface of the plate material to a depth of 0.5 μm or more. Next, the plate material irradiated with Nb ions was masked with a tape except for the surface irradiated with Nb ions, and immersed in a hydrochloric acid solution of 10% and 20 ° C. for 50 hours to evaluate corrosion resistance. No change was observed in the appearance of the substrate after immersion, and the metallic luster was maintained.

【0022】実施例6 カソードをTaに変えた他は実施例1と同様の方法でT
aイオンを照射した板材を作製した。反応容器内真空下
で板材を冷却した後取り出したところ、外観は金属光沢
を有し、ビッカース硬度はHv=750であった。この
板材をSIMS(二次イオン質量分析装置)により板材
表面から深さ方向にTaの分布を測定した。SIMSの
スパッタリング開始後40分間一定値以上のTaが連続
して検出され、板材表面から0.6μm以上の深さまで
単調に濃度を減少させながら存在していることが確認さ
れた。次にTaイオンを照射した板材を、Taイオン照
射面以外はテープでマスキングして、10%,20℃の
塩酸溶液中に50時間浸漬して耐食性を評価した。浸漬
後の基板の外観に変化は認められず、金属光沢を保って
いた。
Example 6 T was produced in the same manner as in Example 1 except that the cathode was changed to Ta.
A plate material irradiated with a ions was produced. When the plate material was taken out after being cooled under vacuum in the reaction vessel, the appearance had metallic luster and the Vickers hardness was Hv = 750. The distribution of Ta was measured in the depth direction from the surface of the plate material by SIMS (secondary ion mass spectrometer). Ta of a certain value or more was continuously detected for 40 minutes after the start of SIMS sputtering, and it was confirmed that Ta was present while monotonically decreasing the concentration from the surface of the plate material to a depth of 0.6 μm or more. Next, the plate material irradiated with Ta ions was masked with tape except for the Ta ion irradiation surface, and immersed in a hydrochloric acid solution of 10% and 20 ° C. for 50 hours to evaluate corrosion resistance. No change was observed in the appearance of the substrate after immersion, and the metallic luster was maintained.

【0023】比較例1 バイアス電圧を200Vにした他は実施例1と同様の方
法でTiイオンを照射した板材を作製し、SIMSによ
り板材表面から深さ方向にTiの分布を測定したとこ
ろ、板材表面から深さ0.2μmまで金属Tiの層が形
成され、Tiイオン照射によって打ち込まれたTiは板
材表面から深さ0.4μmまでしか検出されなかった。
実施例1と同様の方法で耐食性の調査したところ、浸漬
後の基板は金属光沢を失い、変色した。
Comparative Example 1 A plate material irradiated with Ti ions was prepared in the same manner as in Example 1 except that the bias voltage was 200 V, and the distribution of Ti in the depth direction from the surface of the plate material was measured by SIMS. A layer of metallic Ti was formed from the surface to a depth of 0.2 μm, and Ti implanted by Ti ion irradiation was detected only to a depth of 0.4 μm from the surface of the plate material.
When the corrosion resistance was investigated by the same method as in Example 1, the substrate after immersion lost the metallic luster and was discolored.

【0024】比較例2 バイアス電圧を2200Vにした他は実施例1と同様の
方法でTiイオンを照射した板材を作製したところ、板
材表面が損傷により荒れてしまった。
Comparative Example 2 A plate material irradiated with Ti ions was manufactured in the same manner as in Example 1 except that the bias voltage was set to 2200 V, and the surface of the plate material was damaged and damaged.

【0025】実施例7 大きさ17×17×2mm、ビッカース硬度Hv=85
0のSKH51鋼の板材を母材とし、Crカソード及び
Tiカソードを備えたカソードアーク方式のイオンプレ
ーティング装置を用いて、本発明の金属物品を製造し
た。装置反応容器内の所定位置に板材をセットした後、
反応容器内を10-5Torrまで真空排気し、板材に1
000Vのバイアス電圧を印加し、Crカソード及びT
iカソードよりアーク放電を生起させた。このときTi
カソード及びCrカソードのアーク放電電流はいずれも
60Aであった。赤外放射温度計により板材の表面温度
を監視しながらこのアーク放電を5分間続け、金属Cr
及びTiを蒸発、イオン化させた。アーク放電中最大4
50℃まで板材表面温度の上昇が認められた。
Example 7 Size 17 × 17 × 2 mm, Vickers hardness Hv = 85
A metal article of the present invention was manufactured by using a cathodic arc type ion plating apparatus equipped with a No. 0 SKH51 steel plate as a base material and having a Cr cathode and a Ti cathode. After setting the plate at a predetermined position in the reaction container of the device,
Evacuate the inside of the reaction vessel to 10 -5 Torr,
Applying a bias voltage of 000V, Cr cathode and T
An arc discharge was generated from the i cathode. At this time Ti
The arc discharge currents of the cathode and the Cr cathode were both 60A. This arc discharge was continued for 5 minutes while monitoring the surface temperature of the plate material with an infrared radiation thermometer
And Ti were vaporized and ionized. Maximum 4 during arc discharge
An increase in the plate surface temperature was recognized up to 50 ° C.

【0026】反応容器内真空下で板材を冷却した後取り
出したところ、外観は金属光沢を有し、ビッカース硬度
はHv=750であった。この板材をSIMS(二次イ
オン質量分析装置)により板材表面から深さ方向にCr
及びTiの分布を測定した。SIMSのスパッタリング
開始後40分間一定値以上のCr及びTiが連続して検
出され、母材SKH51鋼に含まれるCr濃度よりも明
かに高い濃度のCr、及びTiが板材表面から0.5μ
m以上の深さまで単調に濃度を減少させながら存在して
いることが確認された。
When the plate material was taken out after being cooled under a vacuum in the reaction vessel, the appearance had metallic luster and the Vickers hardness was Hv = 750. This plate material was subjected to Cr in the depth direction from the surface of the plate material by SIMS (secondary ion mass spectrometer).
And Ti distribution was measured. Cr and Ti above a certain value are continuously detected for 40 minutes after the start of SIMS sputtering, and Cr and Ti in a concentration clearly higher than the Cr concentration contained in the base metal SKH51 steel are 0.5 μ from the plate surface.
It was confirmed that the carbon dioxide was present while monotonically decreasing the concentration to a depth of m or more.

【0027】次にCr及びTiイオンを照射した板材
を、Cr及びTiイオン照射面以外はテープでマスキン
グして、10%,20℃の塩酸溶液中に50時間浸漬し
て耐食性を評価した。浸漬後の基板の外観に変化は認め
られず、金属光沢を保っていた。
Next, the plate material irradiated with Cr and Ti ions was masked with a tape except the surface irradiated with Cr and Ti ions, and immersed in a hydrochloric acid solution of 10% and 20 ° C. for 50 hours to evaluate corrosion resistance. No change was observed in the appearance of the substrate after immersion, and the metallic luster was maintained.

【0028】実施例8 カソードをCr及びZrに変えた他は実施例7と同様の
方法でCr及びZrイオンを照射した板材を作製した。
反応容器内真空下で板材を冷却した後取り出したとこ
ろ、外観は金属光沢を有し、ビッカース硬度はHv=7
80であった。この板材をSIMS(二次イオン質量分
析装置)により板材表面から深さ方向にCr及びZrの
分布を測定した。SIMSのスパッタリング開始後40
分間一定値以上のCr及びZrが連続して検出され、母
材SKH51鋼に含まれるCr濃度よりも明かに高い濃
度のCr、及びZrが板材表面から0.5μm以上の深
さまで単調に濃度を減少させながら存在していることが
確認された。次にCr及びZrイオンを照射した板材
を、Cr及びZrイオン照射面以外はテープでマスキン
グして、10%,20℃の塩酸溶液中に50時間浸漬し
て耐食性を評価した。浸漬後の基板の外観に変化は認め
られず、金属光沢を保っていた。
Example 8 A plate material irradiated with Cr and Zr ions was prepared in the same manner as in Example 7 except that the cathode was changed to Cr and Zr.
When the plate material was taken out after being cooled under a vacuum in the reaction vessel, the appearance had a metallic luster and the Vickers hardness was Hv = 7.
It was 80. The distribution of Cr and Zr of this plate material was measured in the depth direction from the surface of the plate material by SIMS (secondary ion mass spectrometer). 40 after the start of SIMS sputtering
Cr and Zr of a certain value or more are continuously detected for a minute, and the concentration of Cr and Zr clearly higher than the Cr concentration contained in the base metal SKH51 steel monotonically increases from the plate surface to a depth of 0.5 μm or more. It was confirmed that it exists while decreasing. Next, the plate material irradiated with Cr and Zr ions was masked with a tape except the surface irradiated with Cr and Zr ions, and immersed in a hydrochloric acid solution of 10% and 20 ° C. for 50 hours to evaluate corrosion resistance. No change was observed in the appearance of the substrate after immersion, and the metallic luster was maintained.

【0029】実施例9 カソードをCr及びHfに変えた他は実施例7と同様の
方法でCr及びHfイオンを照射した板材を作製した。
反応容器内真空下で板材を冷却した後取り出したとこ
ろ、外観は金属光沢を有し、ビッカース硬度はHv=7
30であった。この板材をSIMS(二次イオン質量分
析装置)により板材表面から深さ方向にCr及びHfの
分布を測定した。SIMSのスパッタリング開始後40
分間一定値以上のCr及びHfが連続して検出され、母
材SKH51鋼に含まれるCr濃度よりも明かに高い濃
度のCr、及びHfが板材表面から0.6μm以上の深
さまで単調に濃度を減少させながら存在していることが
確認された。次にCr及びHfイオンを照射した板材
を、Cr及びHfイオン照射面以外はテープでマスキン
グして、10%,20℃の塩酸溶液中に50時間浸漬し
て耐食性を評価した。浸漬後の基板の外観に変化は認め
られず、金属光沢を保っていた。
Example 9 A plate material irradiated with Cr and Hf ions was prepared in the same manner as in Example 7 except that the cathode was changed to Cr and Hf.
When the plate material was taken out after being cooled under a vacuum in the reaction vessel, the appearance had a metallic luster and the Vickers hardness was Hv = 7.
It was 30. The distribution of Cr and Hf of this plate material was measured in the depth direction from the surface of the plate material by SIMS (Secondary Ion Mass Spectrometer). 40 after the start of SIMS sputtering
Cr and Hf of a certain value or more are continuously detected for a minute, and the concentration of Cr and Hf clearly higher than the concentration of Cr contained in the base metal SKH51 steel monotonically increases from the plate surface to a depth of 0.6 μm or more. It was confirmed that it exists while decreasing. Next, the plate material irradiated with Cr and Hf ions was masked with a tape except the surface irradiated with Cr and Hf ions, and immersed in a hydrochloric acid solution of 10% and 20 ° C. for 50 hours to evaluate corrosion resistance. No change was observed in the appearance of the substrate after immersion, and the metallic luster was maintained.

【0030】実施例10 カソードをCr及びVに変えた他は実施例7と同様の方
法でCr及びVイオンを照射した板材を作製した。反応
容器内真空下で板材を冷却した後取り出したところ、外
観は金属光沢を有し、ビッカース硬度はHv=790で
あった。この板材をSIMS(二次イオン質量分析装
置)により板材表面から深さ方向にCr及びVの分布を
測定した。SIMSのスパッタリング開始後40分間一
定値以上のCr及びVが連続して検出され、母材SKH
51鋼に含まれるCr濃度よりも明かに高い濃度のCr
及びVが板材表面から0.5μm以上の深さまで単調に
濃度を減少させながら存在していることが確認された。
次にCr及びVイオンを照射した板材を、Cr及びVイ
オン照射面以外はテープでマスキングして、10%,2
0℃の塩酸溶液中に50時間浸漬して耐食性を評価し
た。浸漬後の基板の外観に変化は認められず、金属光沢
を保っていた。
Example 10 A plate material irradiated with Cr and V ions was prepared in the same manner as in Example 7 except that the cathode was changed to Cr and V. When the plate material was taken out after cooling in a reaction vessel under vacuum, the appearance had metallic luster and the Vickers hardness was Hv = 790. The distribution of Cr and V was measured in the depth direction from the surface of the plate material by SIMS (Secondary Ion Mass Spectrometer). Cr and V above a certain level are continuously detected for 40 minutes after the start of SIMS sputtering, and the base metal SKH
51 Cr with a clearly higher concentration than that contained in steel
It was confirmed that V and V existed while monotonically decreasing the concentration from the surface of the plate material to a depth of 0.5 μm or more.
Next, the plate material irradiated with Cr and V ions was masked with tape except the surface irradiated with Cr and V ions, and 10%, 2
The corrosion resistance was evaluated by immersing in a hydrochloric acid solution at 0 ° C. for 50 hours. No change was observed in the appearance of the substrate after immersion, and the metallic luster was maintained.

【0031】実施例11 カソードをCr及びNbに変えた他は実施例7と同様の
方法でCr及びNbイオンを照射した板材を作製した。
反応容器内真空下で板材を冷却した後取り出したとこ
ろ、外観は金属光沢を有し、ビッカース硬度はHv=7
30であった。この板材をSIMS(二次イオン質量分
析装置)により板材表面から深さ方向にCr及びNbの
分布を測定した。SIMSのスパッタリング開始後40
分間一定値以上のCr及びNbが連続して検出され、母
材SKH51鋼に含まれるCr濃度よりも明かに高い濃
度のCr、及びNbが板材表面から0.6μm以上の深
さまで単調に濃度を減少させながら存在していることが
確認された。次にCr及びNbイオンを照射した板材
を、Cr及びNbイオン照射面以外はテープでマスキン
グして、10%,20℃の塩酸溶液中に50時間浸漬し
て耐食性を評価した。浸漬後の基板の外観に変化は認め
られず、金属光沢を保っていた。
Example 11 A plate material irradiated with Cr and Nb ions was prepared in the same manner as in Example 7 except that the cathode was changed to Cr and Nb.
When the plate material was taken out after being cooled under a vacuum in the reaction vessel, the appearance had a metallic luster and the Vickers hardness was Hv = 7.
It was 30. The distribution of Cr and Nb of this plate material was measured in the depth direction from the surface of the plate material by SIMS (Secondary Ion Mass Spectrometer). 40 after the start of SIMS sputtering
Cr and Nb above a certain level are continuously detected for a minute, and the concentration of Cr and Nb clearly higher than the Cr concentration contained in the base metal SKH51 steel monotonically increases from the plate surface to a depth of 0.6 μm or more. It was confirmed that it exists while decreasing. Next, the plate material irradiated with Cr and Nb ions was masked with a tape except for the Cr and Nb ion irradiation surface, and immersed in a hydrochloric acid solution of 10% and 20 ° C. for 50 hours to evaluate corrosion resistance. No change was observed in the appearance of the substrate after immersion, and the metallic luster was maintained.

【0032】実施例12 カソードをCr及びTaに変えた他は実施例7と同様の
方法でCr及びTaイオンを照射した板材を作製した。
反応容器内真空下で板材を冷却した後取り出したとこ
ろ、外観は金属光沢を有し、ビッカース硬度はHv=7
70であった。この板材をSIMS(二次イオン質量分
析装置)により板材表面から深さ方向にCr及びTaの
分布を測定した。SIMSのスパッタリング開始後40
分間一定値以上のCr及びTaが連続して検出され、母
材SKH51鋼に含まれるCr濃度よりも明かに高い濃
度のCr、及びTaが板材表面から0.5μm以上の深
さまで単調に濃度を減少させながら存在していることが
確認された。次にCr及びTaイオンを照射した板材
を、Cr及びTaイオン照射面以外はテープでマスキン
グして、10%,20℃の塩酸溶液中に50時間浸漬し
て耐食性を評価した。浸漬後の基板の外観に変化は認め
られず、金属光沢を保っていた。
Example 12 A plate material irradiated with Cr and Ta ions was prepared in the same manner as in Example 7 except that the cathode was changed to Cr and Ta.
When the plate material was taken out after being cooled under a vacuum in the reaction vessel, the appearance had a metallic luster and the Vickers hardness was Hv = 7.
It was 70. The distribution of Cr and Ta was measured in the depth direction from the surface of the plate material by SIMS (Secondary Ion Mass Spectrometer). 40 after the start of SIMS sputtering
Cr and Ta above a certain value were continuously detected for a minute, and the concentration of Cr and Ta clearly higher than the Cr concentration contained in the base metal SKH51 steel monotonically increased to a depth of 0.5 μm or more from the plate surface. It was confirmed that it exists while decreasing. Next, the plate material irradiated with Cr and Ta ions was masked with a tape except the surface irradiated with Cr and Ta ions, and immersed in a hydrochloric acid solution of 10% and 20 ° C. for 50 hours to evaluate corrosion resistance. No change was observed in the appearance of the substrate after immersion, and the metallic luster was maintained.

【0033】比較例3 バイアス電圧を200Vにした他は実施例7と同様の方
法でCr及びTiイオンを照射した板材を作製し、SI
MSにより板材表面から深さ方向にCr及びTiの分布
を測定したところ、板材表面から深さ0.2μmまで金
属Cr及びTiの層が形成され、Cr及びTiイオン照
射によって打ち込まれたCr及びTiは板材表面から深
さ0.4μmまでしか検出されなかった。実施例1と同
様の方法で耐食性の調査したところ、浸漬後の基板は金
属光沢を失い、変色した。
Comparative Example 3 A plate material irradiated with Cr and Ti ions was prepared in the same manner as in Example 7 except that the bias voltage was 200 V.
When the distribution of Cr and Ti was measured from the surface of the plate material in the depth direction by MS, a layer of metallic Cr and Ti was formed from the surface of the plate material to a depth of 0.2 μm, and Cr and Ti were implanted by Cr and Ti ion irradiation Was detected only up to a depth of 0.4 μm from the surface of the plate material. When the corrosion resistance was investigated by the same method as in Example 1, the substrate after immersion lost the metallic luster and was discolored.

【0034】比較例4 バイアス電圧を2200Vにした他は実施例7と同様の
方法でCr及びTiイオンを照射した板材を作製したと
ころ、板材表面が損傷により荒れてしまった。
Comparative Example 4 A plate material irradiated with Cr and Ti ions was prepared in the same manner as in Example 7 except that the bias voltage was set to 2200 V. The surface of the plate material was damaged and damaged.

【0035】実施例13 大きさ17×17×2mm、ビッカース硬度Hv=85
0のSKH51鋼の板材を母材とし、TiAl合金カソ
ード(Al含有率は50原子%)を備えたカソードアー
ク方式のイオンプレーティング装置を用いて、本発明の
金属物品を製造した。装置反応容器内の所定位置に板材
をセットした後、反応容器内を10-5Torrまで真空
排気し、板材に1000Vのバイアス電圧を印加し、T
iAl合金カソードよりアーク放電を生起させた。この
ときTiAl合金カソードのアーク放電電流は60Aで
あった。赤外放射温度計により板材の表面温度を監視し
ながらこのアーク放電を5分間続け、金属Al及びTi
を蒸発、イオン化させた。アーク放電中最大450℃ま
で板材表面温度の上昇が認められた。
Example 13 Size 17 × 17 × 2 mm, Vickers hardness Hv = 85
The metal article of the present invention was manufactured by using a cathodic arc type ion plating apparatus having a No. 0 SKH51 steel plate as a base material and equipped with a TiAl alloy cathode (Al content is 50 atomic%). After the plate material is set at a predetermined position in the reaction vessel of the apparatus, the inside of the reaction vessel is evacuated to 10 -5 Torr, a bias voltage of 1000 V is applied to the plate material, and T
Arc discharge was generated from the iAl alloy cathode. At this time, the arc discharge current of the TiAl alloy cathode was 60A. While monitoring the surface temperature of the plate material with an infrared radiation thermometer, this arc discharge was continued for 5 minutes to obtain metallic Al and Ti.
Was evaporated and ionized. During arc discharge, a rise in the plate surface temperature was recognized up to 450 ° C.

【0036】反応容器内真空下で板材を冷却した後取り
出したところ、外観は金属光沢を有し、ビッカース硬度
はHv=770であった。この板材をSIMS(二次イ
オン質量分析装置)により板材表面から深さ方向にAl
及びTiの分布を測定した。SIMSのスパッタリング
開始後40分間一定値以上のAl及びTiが連続して検
出され、Al及びTiが板材表面から0.5μm以上の
深さまで単調に濃度を減少させながら存在していること
が確認された。
When the plate material was taken out after being cooled under a vacuum in the reaction vessel, the appearance had metallic luster and the Vickers hardness was Hv = 770. This plate material was Al-treated in the depth direction from the surface of the plate material by SIMS (Secondary Ion Mass Spectrometer).
And Ti distribution was measured. Al and Ti above a certain value were continuously detected for 40 minutes after the start of SIMS sputtering, and it was confirmed that Al and Ti existed while monotonically decreasing the concentration from the surface of the plate material to a depth of 0.5 μm or more. It was

【0037】次にAl及びTiイオンを照射した板材
を、Al及びTiイオン照射面以外はテープでマスキン
グして、10%,20℃の塩酸溶液中に50時間浸漬し
て耐食性を評価した。浸漬後の基板の外観に変化は認め
られず、金属光沢を保っていた。
Next, the plate material irradiated with Al and Ti ions was masked with a tape except the surface irradiated with Al and Ti ions, and immersed in a hydrochloric acid solution of 10% and 20 ° C. for 50 hours to evaluate the corrosion resistance. No change was observed in the appearance of the substrate after immersion, and the metallic luster was maintained.

【0038】実施例14 カソードをCrAl合金(Al含有率は50原子%)に
変えた他は実施例13と同様の方法でCr及びAlイオ
ンを照射した板材を作製した。反応容器内真空下で板材
を冷却した後取り出したところ、外観は金属光沢を有
し、ビッカース硬度はHv=760であった。この板材
をSIMS(二次イオン質量分析装置)により板材表面
から深さ方向にAl及びCrの分布を測定した。SIM
Sのスパッタリング開始後40分間一定値以上のAl及
びCrが連続して検出され、母材SKH51鋼に含まれ
るV濃度よりも明かに高い濃度のCr、及びAlが板材
表面から0.5μm以上の深さまで単調に濃度を減少さ
せながら存在していることが確認された。次にAl及び
Crイオンを照射した板材を、Al及びCrイオン照射
面以外はテープでマスキングして、10%,20℃の塩
酸溶液中に50時間浸漬して耐食性を評価した。浸漬後
の基板の外観に変化は認められず、金属光沢を保ってい
た。
Example 14 A plate material irradiated with Cr and Al ions was prepared in the same manner as in Example 13 except that the cathode was changed to a CrAl alloy (Al content is 50 atomic%). When the plate material was taken out after being cooled under vacuum in the reaction vessel, the appearance had metallic luster and the Vickers hardness was Hv = 760. The distribution of Al and Cr of this plate material was measured in the depth direction from the surface of the plate material by SIMS (Secondary Ion Mass Spectrometer). SIM
Al and Cr of a certain value or more were continuously detected for 40 minutes after the start of S sputtering, and Cr and Al of a concentration clearly higher than the V concentration contained in the base metal SKH51 steel were 0.5 μm or more from the plate surface. It was confirmed that the monolayer was present with a monotonically decreasing concentration up to the depth. Next, the plate material irradiated with Al and Cr ions was masked with a tape except the surface irradiated with Al and Cr ions, and immersed in a hydrochloric acid solution of 10% and 20 ° C. for 50 hours to evaluate corrosion resistance. No change was observed in the appearance of the substrate after immersion, and the metallic luster was maintained.

【0039】実施例15 カソードをZrAl合金(Al含有率は55原子%)に
変えた他は実施例13と同様の方法でAl及びZrイオ
ンを照射した板材を作製した。反応容器内真空下で板材
を冷却した後取り出したところ、外観は金属光沢を有
し、ビッカース硬度はHv=730であった。この板材
をSIMS(二次イオン質量分析装置)により板材表面
から深さ方向にAl及びZrの分布を測定した。SIM
Sのスパッタリング開始後40分間一定値以上のAl及
びZrが連続して検出され、Al及びZrが板材表面か
ら0.6μm以上の深さまで単調に濃度を減少させなが
ら存在していることが確認された。次にAl及びZrイ
オンを照射した板材を、Al及びZrイオン照射面以外
はテープでマスキングして、10%,20℃の塩酸溶液
中に50時間浸漬して耐食性を評価した。浸漬後の基板
の外観に変化は認められず、金属光沢を保っていた。
Example 15 A plate material irradiated with Al and Zr ions was prepared in the same manner as in Example 13 except that the cathode was changed to ZrAl alloy (Al content was 55 atomic%). When the plate material was taken out after being cooled under vacuum in the reaction vessel, the appearance had metallic luster and the Vickers hardness was Hv = 730. The distribution of Al and Zr of this plate material was measured in the depth direction from the surface of the plate material by SIMS (Secondary Ion Mass Spectrometer). SIM
Al and Zr above a certain value were continuously detected for 40 minutes after the start of S sputtering, and it was confirmed that Al and Zr existed monotonically decreasing the concentration from the surface of the plate material to a depth of 0.6 μm or more. It was Next, the plate material irradiated with Al and Zr ions was masked with a tape except the surface irradiated with Al and Zr ions, and immersed in a hydrochloric acid solution of 10% and 20 ° C. for 50 hours to evaluate corrosion resistance. No change was observed in the appearance of the substrate after immersion, and the metallic luster was maintained.

【0040】実施例16 カソードをHfAl合金(Al含有率は55原子%)に
変えた他は実施例13と同様の方法でAl及びHfイオ
ンを照射した板材を作製した。反応容器内真空下で板材
を冷却した後取り出したところ、外観は金属光沢を有
し、ビッカース硬度はHv=790であった。この板材
をSIMS(二次イオン質量分析装置)により板材表面
から深さ方向にAl及びHfの分布を測定した。SIM
Sのスパッタリング開始後40分間一定値以上のAl及
びHfが連続して検出され、Al及びHfが板材表面か
ら0.6μm以上の深さまで単調に濃度を減少させなが
ら存在していることが確認された。次にAl及びHfイ
オンを照射した板材を、Al及びHfイオン照射面以外
はテープでマスキングして、10%,20℃の塩酸溶液
中に50時間浸漬して耐食性を評価した。浸漬後の基板
の外観に変化は認められず、金属光沢を保っていた。
Example 16 A plate material irradiated with Al and Hf ions was produced in the same manner as in Example 13 except that the cathode was changed to the HfAl alloy (Al content was 55 atomic%). When the plate material was taken out after cooling in a reaction vessel under vacuum, the appearance had metallic luster and the Vickers hardness was Hv = 790. The distribution of Al and Hf of this plate material was measured in the depth direction from the surface of the plate material by SIMS (secondary ion mass spectrometer). SIM
Al and Hf above a certain value were continuously detected for 40 minutes after the start of S sputtering, and it was confirmed that Al and Hf existed while monotonically decreasing the concentration from the surface of the plate material to a depth of 0.6 μm or more. It was Next, the plate material irradiated with Al and Hf ions was masked with a tape except the surface irradiated with Al and Hf ions, and immersed in a hydrochloric acid solution of 10% and 20 ° C. for 50 hours to evaluate corrosion resistance. No change was observed in the appearance of the substrate after immersion, and the metallic luster was maintained.

【0041】実施例17 カソードをAlV合金(Al含有率は50原子%)に変
えた他は実施例13と同様の方法でAl及びVイオンを
照射した板材を作製した。反応容器内真空下で板材を冷
却した後取り出したところ、外観は金属光沢を有し、ビ
ッカース硬度はHv=730であった。この板材をSI
MS(二次イオン質量分析装置)により板材表面から深
さ方向にAl及びVの分布を測定した。SIMSのスパ
ッタリング開始後40分間一定値以上のAl及びVが連
続して検出され、母材SKH51鋼に含まれるV濃度よ
りも明かに高い濃度のV及びAlが板材表面から0.5
μm以上の深さまで単調に濃度を減少させながら存在し
ていることが確認された。次にAl及びVイオンを照射
した板材を、Al及びVイオン照射面以外はテープでマ
スキングして、10%,20℃の塩酸溶液中に50時間
浸漬して耐食性を評価した。浸漬後の基板の外観に変化
は認められず、金属光沢を保っていた。
Example 17 A plate material irradiated with Al and V ions was prepared in the same manner as in Example 13 except that the cathode was changed to AlV alloy (Al content is 50 atomic%). When the plate material was taken out after being cooled under vacuum in the reaction vessel, the appearance had metallic luster and the Vickers hardness was Hv = 730. SI this plate material
The distribution of Al and V was measured in the depth direction from the surface of the plate material by MS (secondary ion mass spectrometer). Al and V of a certain value or more were continuously detected for 40 minutes after the start of SIMS sputtering, and V and Al having a concentration clearly higher than the V concentration contained in the base metal SKH51 steel was 0.5 from the plate surface.
It was confirmed that the particles were present while monotonically decreasing the concentration to a depth of μm or more. Next, the plate material irradiated with Al and V ions was masked with a tape except the surface irradiated with Al and V ions, and immersed in a hydrochloric acid solution at 10% and 20 ° C. for 50 hours to evaluate corrosion resistance. No change was observed in the appearance of the substrate after immersion, and the metallic luster was maintained.

【0042】実施例18 カソードをNbAl合金(Al含有率は50原子%)に
変えた他は実施例13と同様の方法でAl及びNbイオ
ンを照射した板材を作製した。反応容器内真空下で板材
を冷却した後取り出したところ、外観は金属光沢を有
し、ビッカース硬度はHv=750であった。この板材
をSIMS(二次イオン質量分析装置)により板材表面
から深さ方向にAl及びNbの分布を測定した。SIM
Sのスパッタリング開始後40分間一定値以上のAl及
びNbが連続して検出され、Al及びNbが板材表面か
ら0.5μm以上の深さまで単調に濃度を減少させなが
ら存在していることが確認された。次にAl及びNbイ
オンを照射した板材を、Al及びNbイオン照射面以外
はテープでマスキングして、10%,20℃の塩酸溶液
中に50時間浸漬して耐食性を評価した。浸漬後の基板
の外観に変化は認められず、金属光沢を保っていた。
Example 18 A plate material irradiated with Al and Nb ions was prepared in the same manner as in Example 13 except that the cathode was changed to NbAl alloy (Al content is 50 atomic%). When the plate material was taken out after being cooled under vacuum in the reaction vessel, the appearance had metallic luster and the Vickers hardness was Hv = 750. The distribution of Al and Nb of this plate material was measured in the depth direction from the surface of the plate material by SIMS (Secondary Ion Mass Spectrometer). SIM
Al and Nb above a certain value were continuously detected for 40 minutes after the start of S sputtering, and it was confirmed that Al and Nb existed while monotonously decreasing the concentration from the surface of the plate material to a depth of 0.5 μm or more. It was Next, the plate material irradiated with Al and Nb ions was masked with a tape except the surface irradiated with Al and Nb ions, and immersed in a hydrochloric acid solution at 10% and 20 ° C. for 50 hours to evaluate corrosion resistance. No change was observed in the appearance of the substrate after immersion, and the metallic luster was maintained.

【0043】実施例19 カソードをTaAl合金(Al含有率は55原子%)に
変えた他は実施例13と同様の方法でAl及びTaイオ
ンを照射した板材を作製した。反応容器内真空下で板材
を冷却した後取り出したところ、外観は金属光沢を有
し、ビッカース硬度はHv=780であった。この板材
をSIMS(二次イオン質量分析装置)により板材表面
から深さ方向にAl及びTaの分布を測定した。SIM
Sのスパッタリング開始後40分間一定値以上のAl及
びTaが連続して検出され、Al及びTaが板材表面か
ら0.5μm以上の深さまで単調に濃度を減少させなが
ら存在していることが確認された。次にAl及びTaイ
オンを照射した板材を、Al及びTaイオン照射面以外
はテープでマスキングして、10%,20℃の塩酸溶液
中に50時間浸漬して耐食性を評価した。浸漬後の基板
の外観に変化は認められず、金属光沢を保っていた。
Example 19 A plate material irradiated with Al and Ta ions was prepared in the same manner as in Example 13 except that the cathode was changed to a TaAl alloy (Al content was 55 atomic%). When the plate material was taken out after being cooled under vacuum in the reaction vessel, the appearance had metallic luster and the Vickers hardness was Hv = 780. The distribution of Al and Ta of this plate material was measured in the depth direction from the surface of the plate material by SIMS (Secondary Ion Mass Spectrometer). SIM
It was confirmed that Al and Ta above a certain value were continuously detected for 40 minutes after the start of S sputtering, and Al and Ta existed while monotonically decreasing the concentration from the surface of the plate material to a depth of 0.5 μm or more. It was Next, the plate material irradiated with Al and Ta ions was masked with a tape except for the surface irradiated with Al and Ta ions, and immersed in a hydrochloric acid solution of 10% and 20 ° C. for 50 hours to evaluate corrosion resistance. No change was observed in the appearance of the substrate after immersion, and the metallic luster was maintained.

【0044】比較例5 バイアス電圧を200Vにした他は実施例13と同様の
方法でAl及びTiイオンを照射した板材を作製し、S
IMSにより板材表面から深さ方向にAl及びTiの分
布を測定したところ、板材表面から深さ0.2μmまで
金属Al及びTiの層が形成され、Al及びTiイオン
照射によって打ち込まれたAl及びTiは板材表面から
深さ0.4μmまでしか検出されなかった。実施例1と
同様の方法で耐食性の調査したところ、浸漬後の基板は
金属光沢を失い、変色した。
Comparative Example 5 A plate material irradiated with Al and Ti ions was prepared in the same manner as in Example 13 except that the bias voltage was set to 200V.
When the distribution of Al and Ti was measured from the surface of the plate material in the depth direction by IMS, a layer of metal Al and Ti was formed from the surface of the plate material to a depth of 0.2 μm, and Al and Ti were implanted by Al and Ti ion irradiation. Was detected only up to a depth of 0.4 μm from the surface of the plate material. When the corrosion resistance was investigated by the same method as in Example 1, the substrate after immersion lost the metallic luster and was discolored.

【0045】比較例6 バイアス電圧を2200Vにした他は実施例13と同様
の方法でAl及びTiイオンを照射した板材を作製した
ところ、板材表面が損傷により荒れてしまった。
Comparative Example 6 A plate material irradiated with Al and Ti ions was prepared in the same manner as in Example 13 except that the bias voltage was set to 2200 V. The surface of the plate material was damaged and damaged.

【0046】[0046]

【発明の効果】本願により耐食性が大幅に向上した新規
な耐食性金属物品及びその製造方法が得られた。
According to the present invention, a novel corrosion resistant metal article having significantly improved corrosion resistance and a method for producing the same are obtained.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 金属物品の表面から0.5μm以上の深
さまでTi,Zr,Hf,V,Nb及びTaからなる群
から選ばれる少なくとも一種の金属が濃度を減少させな
がら分散している耐食性金属物品。
1. A corrosion-resistant metal in which at least one metal selected from the group consisting of Ti, Zr, Hf, V, Nb and Ta is dispersed in a decreasing concentration from the surface of a metal article to a depth of 0.5 μm or more. Goods.
【請求項2】 金属物品の表面にイオンプレーティング
法によりTi,Zr,Hf,V,Nb及びTaからなる
群から選ばれる少なくとも一種の金属のカソードを用い
該金属のイオンを該金属物品に照射することを特徴とす
る請求項1記載の耐食性金属物品の製造方法。
2. A metal article is irradiated with ions of the metal by using a cathode of at least one metal selected from the group consisting of Ti, Zr, Hf, V, Nb and Ta on the surface of the metal article by an ion plating method. The method for producing a corrosion-resistant metal article according to claim 1, wherein
【請求項3】 金属物品の表面から0.5μm以上の深
さまでTi,Zr,Hf,V,NbもしくはTaからな
る群から選ばれる少なくとも一種の金属とCrとが濃度
を減少させながら分散している耐食性金属物品。
3. At least one metal selected from the group consisting of Ti, Zr, Hf, V, Nb or Ta and Cr are dispersed while decreasing the concentration from the surface of the metal article to a depth of 0.5 μm or more. Corrosion resistant metal articles.
【請求項4】 金属物品の表面にイオンプレーティング
法によりTi,Zr,Hf,V,NbもしくはTaから
なる群から選ばれる少なくとも一種の金属のカソードと
Crのカソードを用いこれらの金属のイオンを該金属物
品に照射することを特徴とする請求項3記載の耐食性金
属物品の製造方法。
4. An ion plating method is used to deposit at least one metal cathode selected from the group consisting of Ti, Zr, Hf, V, Nb, and Ta on the surface of a metal article, and a Cr cathode is used to generate ions of these metals. The method for producing a corrosion-resistant metal article according to claim 3, wherein the metal article is irradiated.
【請求項5】 金属物品の表面から0.5μm以上の深
さまでTi,Cr,Zr,Hf,V,NbもしくはTa
からなる群から選ばれる少なくとも一種の金属とAlと
が濃度を減少させながら分散している耐食性金属物品。
5. Ti, Cr, Zr, Hf, V, Nb or Ta from the surface of the metal article to a depth of 0.5 μm or more.
A corrosion-resistant metal article in which at least one metal selected from the group consisting of and Al are dispersed with decreasing concentration.
【請求項6】 金属物品の表面にイオンプレーティング
法によりTi,Cr,Zr,Hf,V,NbもしくはT
aからなる群から選ばれる少なくとも一種の金属とAl
との合金のカソードを用いこれらの金属のイオンを該金
属物品に照射することを特徴とする請求項5記載の耐食
性金属物品の製造方法。
6. Ti, Cr, Zr, Hf, V, Nb or T on the surface of a metal article by an ion plating method.
at least one metal selected from the group consisting of a and Al
6. The method for producing a corrosion-resistant metal article according to claim 5, wherein the metal article is irradiated with ions of these metals by using a cathode of an alloy of.
JP2683494A 1994-02-24 1994-02-24 Corrosion resistant metallic article and its production Pending JPH07233466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2683494A JPH07233466A (en) 1994-02-24 1994-02-24 Corrosion resistant metallic article and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2683494A JPH07233466A (en) 1994-02-24 1994-02-24 Corrosion resistant metallic article and its production

Publications (1)

Publication Number Publication Date
JPH07233466A true JPH07233466A (en) 1995-09-05

Family

ID=12204305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2683494A Pending JPH07233466A (en) 1994-02-24 1994-02-24 Corrosion resistant metallic article and its production

Country Status (1)

Country Link
JP (1) JPH07233466A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10222453A1 (en) * 2002-05-22 2003-12-04 Voith Paper Patent Gmbh Process for the surface treatment of a doctor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10222453A1 (en) * 2002-05-22 2003-12-04 Voith Paper Patent Gmbh Process for the surface treatment of a doctor element

Similar Documents

Publication Publication Date Title
JP3039381B2 (en) Method of forming composite hard coating with excellent high temperature oxidation resistance
US6261424B1 (en) Method of forming diamond-like carbon coating in vacuum
JP2689146B2 (en) Hard carbon film coating method
Xu et al. A novel plasma surface metallurgy: Xu-Tec process
US7279078B2 (en) Thin-film coating for wheel rims
JPH01129958A (en) Formation of titanium nitride film having high adhesive strength
JP2001192861A (en) Surface treating method and surface treating device
JPS6154869B2 (en)
RU2705817C1 (en) Method of forming near-surface hardened layer on titanium alloys
Xu et al. Plasma surface alloying
JPH07233466A (en) Corrosion resistant metallic article and its production
JPH0784642B2 (en) Method for forming a film on the surface of an object to be treated
JPS63166957A (en) Surface coated steel product
JPH05320876A (en) Corrosion resistant metallic article and its production
JPH07268605A (en) Production of alloyed zn-mg vapor deposition-coated steel sheet
JPH062937B2 (en) Method for manufacturing surface-coated steel
Li et al. Carburising of steel AISI 1010 by using a cathode arc plasma process
RU2760309C1 (en) Method for ion nitriding of products made of construction alloy steels
JP3572240B2 (en) Method and apparatus for physically modifying a conductive member
JPH05320872A (en) Metallic article with corrosion resistant coating film and its production
KR950004779B1 (en) Hard blacking film with an excellant adhesion and method for making the same
Fancey et al. The influence of neon in the deposition of titanium nitride by plasma-assisted physical vapour deposition
JPH0551661B2 (en)
KR860000016B1 (en) Highly hard material coated articles
JPH1068069A (en) Formation of metallic boride coating film