JP2689146B2 - Hard carbon film coating method - Google Patents

Hard carbon film coating method

Info

Publication number
JP2689146B2
JP2689146B2 JP63275484A JP27548488A JP2689146B2 JP 2689146 B2 JP2689146 B2 JP 2689146B2 JP 63275484 A JP63275484 A JP 63275484A JP 27548488 A JP27548488 A JP 27548488A JP 2689146 B2 JP2689146 B2 JP 2689146B2
Authority
JP
Japan
Prior art keywords
hard carbon
film
carbon film
base material
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63275484A
Other languages
Japanese (ja)
Other versions
JPH02122075A (en
Inventor
守弘 岡田
巧 河野
真樹 佐藤
研一 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Corp
Priority to JP63275484A priority Critical patent/JP2689146B2/en
Publication of JPH02122075A publication Critical patent/JPH02122075A/en
Application granted granted Critical
Publication of JP2689146B2 publication Critical patent/JP2689146B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、金属基材に硬質炭素膜をコーティングする
方法に関するもので、これにより被対象物に耐摩耗性、
潤滑性、耐腐食性等を付与するものである。
TECHNICAL FIELD The present invention relates to a method of coating a hard carbon film on a metal base material, which enables the wear resistance of an object,
It provides lubricity and corrosion resistance.

[従来の技術] 硬質炭素膜は、ダイヤモンドに準ずる硬度を有しかつ
耐摩耗性、潤滑性、耐腐食性に優れているので、種々の
用途が期待されているが、これまで金属基材へ直接被覆
させた場合には、その付着力に問題があるために必ずし
も膜本来の優れた特性が生かされてこなかった。すなわ
ち、例えば、第2回ダイヤモンドシンポジウム講演要旨
集93ページ(1987年)に示されている様に、硬質炭素膜
は、シリコン、タングステン等の、炭素と共有結合性の
高い結合をする金属材料には、直接に硬質炭素膜を被覆
して付着力の強いコーティングを形成することが可能で
あるが、前記の炭素と共有結合を形成しない、III A、I
V A、V A、VI A、VII A、VIII A族に属する金属、ある
いはこれらの合金の金属材料を基材とした場合には、直
接に硬質炭素膜のコーティングを行う従来の方法では、
硬度、耐摩耗性、潤滑性、耐腐食性に優れ、かつ基材へ
の付着力の大きい硬質炭素膜をコーティングすることが
困難であった。
[Prior Art] Since a hard carbon film has hardness comparable to that of diamond and is excellent in wear resistance, lubricity, and corrosion resistance, it is expected to be used in various applications. In the case of direct coating, the original excellent characteristics of the film have not always been utilized due to the problem of its adhesive force. That is, for example, as shown in the second diamond symposium proceedings, page 93 (1987), the hard carbon film is made of a metal material such as silicon or tungsten that has a high covalent bond with carbon. Is capable of directly coating a hard carbon film to form a highly adherent coating, but does not form a covalent bond with the carbon, III A, I
VA, VA, VI A, VII A, VIII A, metal belonging to Group VIII A, or when using a metal material of these alloys as the base material, in the conventional method of directly coating the hard carbon film,
It has been difficult to coat a hard carbon film having excellent hardness, wear resistance, lubricity, and corrosion resistance, and having a large adhesion to the substrate.

[発明が解決しようとする課題] 本発明は金属基材上に、付着力の良好な硬質炭素膜を
コーティングする方法を新たに開発することを目的とす
るものである。
[Problems to be Solved by the Invention] An object of the present invention is to newly develop a method for coating a hard carbon film having good adhesion on a metal substrate.

[課題を解決するための手段、作用] 本発明の要旨とするところは下記のとおりである。[Means and Actions for Solving the Problems] The gist of the present invention is as follows.

(1) 金属基材に浸炭処理を施した後、該基材の表面
に水素プラズマ処理を施し、その後、硬質炭素膜を被覆
することを特徴とする硬質炭素膜のコーティング方法。
(1) A coating method for a hard carbon film, which comprises carburizing a metal base material, then subjecting the surface of the base material to hydrogen plasma treatment, and then coating the hard carbon film.

(2) 金属基材への浸炭方法が、イオン浸炭法である
前項1に記載された硬質炭素膜のコーティング方法。
(2) The method for coating a hard carbon film according to the above item 1, wherein the carburizing method on the metal substrate is an ion carburizing method.

本発明でいう硬質炭素膜とは次のようなものである。
元素の構成の主体は炭素であり、天然ダイヤモンドに準
ずる硬度を持ち、非晶質で電子線回折像はハローパター
ンを示す。ラマンスペクトルでは1580cm-1付近と1360cm
-1付近に非晶質特有の広いピークを示す。硬質炭素の薄
膜を走査型電子顕微鏡で10,000倍程度に拡大して観察す
ると、結晶粒界が認められない一様で平滑な膜である。
硬質炭素は一般に炭化水素化合物を原料とした気相合成
法によって生成され、約40atom%以下の水素を含有して
いる。水素は炭素原子のダングリングボンドの部分に入
り、非晶質状態が安定化されかつ高硬度の構造になると
考えられている。
The hard carbon film referred to in the present invention is as follows.
The element is mainly composed of carbon, has a hardness similar to that of natural diamond, is amorphous, and has a halo pattern in an electron diffraction image. Raman spectrum around 1580 cm -1 and 1360 cm
A broad peak peculiar to amorphous is shown near -1 . When a thin film of hard carbon is observed under a scanning electron microscope at a magnification of about 10,000 times, it is a uniform and smooth film with no grain boundaries.
Hard carbon is generally produced by a vapor phase synthesis method using a hydrocarbon compound as a raw material, and contains about 40 atom% or less of hydrogen. It is believed that hydrogen enters the dangling bond portion of carbon atoms, stabilizes the amorphous state, and has a high hardness structure.

適量の水素が存在することで、硬質炭素は天然ダイヤ
モンドに準ずる高い高度を示すものと推測される。硬質
炭素膜中の水素が多過ぎると軟らかい有機質の膜にな
る。そのため本発明の硬質炭素膜としては、水素の割合
は膜中に35atom%以下、好ましくは5〜30atom%のもの
が適している。
It is speculated that the presence of an appropriate amount of hydrogen causes hard carbon to exhibit a high altitude similar to that of natural diamond. Too much hydrogen in the hard carbon film results in a soft organic film. Therefore, as the hard carbon film of the present invention, a hydrogen content of 35 atom% or less, preferably 5 to 30 atom% is suitable.

本発明に用いる硬質炭素膜の形成方法としては、被膜
の基材への付着性、膜質の均一性、膜表面の平滑性、生
産性という点から、特開昭59−174507号公報、特開昭59
−174508号公報等に開示されているようなイオン化蒸着
法が好ましい。
As a method for forming a hard carbon film used in the present invention, the adhesion of the coating to the substrate, the uniformity of the film quality, the smoothness of the film surface, the productivity, JP-A-59-174507, Sho 59
Ionization vapor deposition methods such as those disclosed in JP-A-174508 are preferable.

第1図にイオン化蒸着装置の原理図を示す。減圧下に
硬質炭素膜の原料となる炭素水素ガスを導入し、これを
グロー放電と赤熱させたフィラメント3によりイオン化
させ、電磁石4の広がり磁場でこのイオンを引き出す。
電磁石で覆われたこの部分をイオン源という。引き出さ
れたイオンは負のバイアス電圧がかけられた基材1に向
かって加速され、基材に衝突、蒸着する。原料ガスとし
ては、メタン、エタン、アセチレン、ベンゼン等の容易
に気体として導入できる炭化水素を用いれば良いが、中
でもメタンが好ましい。水素ガスを前述の原料ガスの希
釈ガスとして用いてもさしつかえない。容器内の圧力
は、プラズマを発生させてしかもイオンを加速すること
が必要なため、1×10-6Torrから1Torrでよいが、膜
質、膜生成速度の点からは1×10-4Torrから1×10-1To
rrが望ましい。基材の温度としては室温(25℃程度)か
ら600℃とすると良好な薄膜が形成される。その範囲内
でも特に室温(25℃程度)から300℃が好ましい範囲で
ある。基材温度が600℃よりも高くなると作成される膜
は黒鉛状になりやすく、また、たとえ硬質炭素膜ができ
ても放冷して室温に戻すと、基材と膜との間の残留熱応
力が大きいので、その後の使用中に膜が剥離し易くな
る。基材とイオン源との間のバイアス電圧は−50Vから
−1500Vとし、中でも−500Vから−1000Vが好ましい範囲
である。炭化水素イオンがバイアス電圧により加速され
て基材に衝突すると、衝突エネルギーにより衝突したイ
オンのC−H結合が切れて、水素原子は弾き出されてし
まう。この、水素原子が弾き出される量は、衝突するイ
オンの運動エネルギー即ちバイアス電圧に従っており、
バイアス電圧が小さ過ぎると水素が多い有機的な軟らか
い膜になりやすく、バイアス電圧が高過ぎると黒鉛状の
膜になり、さらには膜の自己スパッタリングが生じ、成
膜速度が低下する。イオン源での磁束密度は100Gから10
00Gの範囲が適当であり、300Gから500Gがより好ましい
範囲である。詳細な製造条件は、装置内のガス導入口の
配置、イオン源の大きさ、基材の位置などによって変化
するので適宜、最適条件を設定することが望ましい。
FIG. 1 shows the principle of the ionization vapor deposition apparatus. Carbon-hydrogen gas, which is a raw material for the hard carbon film, is introduced under reduced pressure, and is ionized by the filament 3 that is glow-discharged and red-heated, and the ions are extracted by the spreading magnetic field of the electromagnet 4.
This part covered with an electromagnet is called an ion source. The extracted ions are accelerated toward the substrate 1 to which a negative bias voltage is applied, collide with the substrate and deposit. As the raw material gas, hydrocarbons such as methane, ethane, acetylene, and benzene which can be easily introduced as a gas may be used, and among them, methane is preferable. Hydrogen gas may be used as a diluent gas for the above-mentioned raw material gas. The pressure in the container is 1 × 10 -6 Torr to 1 Torr because it is necessary to generate plasma and accelerate ions, but from the viewpoint of film quality and film formation rate, it is 1 × 10 -4 Torr. 1 x 10 -1 To
rr is desirable. When the substrate temperature is from room temperature (about 25 ° C) to 600 ° C, a good thin film is formed. Even within this range, room temperature (about 25 ° C) to 300 ° C is particularly preferable. When the base material temperature is higher than 600 ℃, the formed film tends to become graphitic, and even if a hard carbon film is formed, if it is left to cool to room temperature, the residual heat between the base material and the film will remain. Due to the high stress, the film is likely to peel off during subsequent use. The bias voltage between the base material and the ion source is -50V to -1500V, with -500V to -1000V being the preferred range. When the hydrocarbon ions are accelerated by the bias voltage and collide with the substrate, the collision energy breaks the C—H bond of the colliding ions and the hydrogen atoms are ejected. The amount by which the hydrogen atoms are ejected depends on the kinetic energy of the colliding ions, that is, the bias voltage,
If the bias voltage is too low, an organic soft film containing a large amount of hydrogen tends to be formed, and if the bias voltage is too high, a graphite film is formed, and further, self-sputtering of the film occurs and the film formation rate decreases. The magnetic flux density at the ion source is 100G to 10
A range of 00G is suitable, and 300G to 500G is a more preferable range. Detailed manufacturing conditions vary depending on the arrangement of gas inlets in the apparatus, the size of the ion source, the position of the base material, etc. Therefore, it is desirable to set the optimum conditions appropriately.

本発明で対象とする金属基材は、III A、IV A、V A、
VI A、VII A、VIII A族に属する金属、あるいはこれら
の合金で、炭素との共有結合を形成し難く、浸炭可能な
もの、すなわちZr、Ta、Mo、Fe、Co、Ti等ならどれでも
使用できるが、実用的な観点からは鉄やコバルト等が重
要である。
Metal substrates targeted by the present invention, III A, IV A, VA,
Any metal that belongs to group VI A, VII A, VIII A, or alloys thereof that is hard to form a covalent bond with carbon and can be carburized, that is, Zr, Ta, Mo, Fe, Co, Ti, etc. Although it can be used, iron and cobalt are important from a practical point of view.

本発明の実施にあたっては、以下の順序で浸炭処理、
水素プラズマ処理、硬質炭素膜被覆の操作を行なえばよ
い。まず始めに、対象となる金属基材に浸炭処理を施
す、このとき金属基材表面層に浸炭させる炭素の量はで
きるだけ多い方が良く、金属基材表面には炭素の薄い層
が形成されるような状態になることがあるが、このよう
な状態で次の水素プラズマ処理に移行しても差支えはな
い。
In carrying out the present invention, carburizing treatment in the following order,
The hydrogen plasma treatment and the hard carbon film coating operation may be performed. First, the target metal base material is subjected to carburizing treatment. At this time, it is better to carburize the metal base material surface layer with as much carbon as possible, and a thin carbon layer is formed on the metal base material surface. Such a state may occur, but there is no problem even if the process shifts to the next hydrogen plasma treatment in such a state.

本発明で用いる浸炭方法としては、従来から用いられ
ているガス浸炭法、溶融塩中浸炭法等の方法を用いるこ
とができる。この他にメタン、エタン等の炭化水素ガス
を分解、イオン化した雰囲気の容器中に、基材を高温に
保った状態で設置することで、基材に浸炭をさせると同
時に、基材表面にも炭素の薄膜を形成させるイオン浸炭
法が利用できる。後工程の炭素硬質膜形成時の膜付着性
の観点からは、イオン浸炭法が、基材への多量の浸炭と
基材表面炭素薄膜形成が可能であり、浸炭した炭素と、
表面膜の炭素との結合性が優れており、付着力の強い硬
質炭素膜のコーティングをするためには、イオン浸炭法
の適用が望ましい。
As the carburizing method used in the present invention, conventionally used methods such as a gas carburizing method and a molten salt carburizing method can be used. In addition to this, by placing the base material in a container where the hydrocarbon gas such as methane or ethane is decomposed and ionized while keeping the base material at a high temperature, the base material is carburized and the base material surface is also Ion carburizing methods can be used to form a thin film of carbon. From the viewpoint of film adhesion at the time of forming a carbon hard film in a later step, the ion carburizing method is capable of carburizing a large amount of a base material and forming a base material surface carbon thin film, and carburized carbon,
The application of the ion carburizing method is desirable in order to coat a hard carbon film, which has a strong adhesion to the carbon of the surface film and has a strong adhesive force.

次に、この様に浸炭処理を施した金属基材に水素プラ
ズマ処理を施す。本発明で行う水素プラズマ処理とは、
特公昭62−120号公報に記載されているようなプラズマC
VD装置や特開昭59−174507号公報に開示されているプラ
ズマPVD装置により生成した水素プラズマ中に、基材を
放置する方法と、特開昭61−122197号公報に見られるよ
うなイオンビーム装置やイオンインプランテーション装
置等により水素プラズマ種を照射する方法などである。
本質的には、水素分子の分解で生成される水素原子、水
素イオンを、熱や電磁場により高速度で基材に衝突させ
ることができればどのような方法でも良い。
Next, a hydrogen plasma treatment is applied to the metal base material which has been subjected to the carburizing treatment as described above. The hydrogen plasma treatment performed in the present invention is
Plasma C as described in JP-B-62-120
A method of leaving a substrate in a hydrogen plasma generated by a plasma PVD device disclosed in Japanese Patent Laid-Open No. 59-174507 and an ion beam as disclosed in Japanese Patent Laid-Open No. 61-122197. And a method of irradiating hydrogen plasma species with an apparatus or an ion implantation apparatus.
In essence, any method can be used as long as hydrogen atoms and hydrogen ions generated by decomposition of hydrogen molecules can be made to collide with the base material at high speed by heat or an electromagnetic field.

この後、前述の硬質炭素膜の形成処理を行う。これら
一連の浸炭、水素プラズマ処理、硬質炭素膜形成の処理
においては、途中で大気雰囲気にさらすと、表面に、酸
素等のガスを吸着し、硬質炭素膜の付着性が低下するの
で、真空下で連続処理することが望ましい。
After that, the above-described hard carbon film forming process is performed. In a series of these carburizing, hydrogen plasma treatment, and hard carbon film formation processes, if exposed to an air atmosphere during the process, a gas such as oxygen will be adsorbed on the surface, and the adhesion of the hard carbon film will decrease. It is desirable to carry out continuous treatment with.

本発明の方法において、付着力の強い硬質炭素膜がコ
ーティングできるメカニズムについては必ずしも明らか
ではないが、次の様に考えられる。すなわち、最初に基
材に浸炭処理を行い、基材表面層に炭素の多い層を形成
することで、基材に浸炭された炭素と表面にコーティン
グされている硬質炭素膜の炭素との間に強固な結合がで
きるものと考えられる。基材に浸炭処理を施しておかな
い場合には、基材と硬質炭素膜との界面では、金属基材
と炭素の結合しか存在しないと考えられ、一般に金属材
料と炭素とでは強固な結合をつくらないために、この方
法では付着力のすぐれた膜が得られない。さらには、本
発明ではあらかじめ水素プラズマ処理を施すことで、表
面層を活性化しておくことで、硬質炭素膜と炭素層との
付着性が向上するものと考えられる。
In the method of the present invention, the mechanism by which a hard carbon film having strong adhesion can be coated is not necessarily clear, but it is considered as follows. That is, by first carburizing the base material and forming a carbon-rich layer on the base material surface layer, between the carbon carburized on the base material and the carbon of the hard carbon film coated on the surface. It is thought that a strong bond can be made. If the base material is not carburized, it is considered that only a bond between the metal base material and carbon exists at the interface between the base material and the hard carbon film, and in general, a strong bond is formed between the metal material and carbon. Since it is not made, a film with excellent adhesiveness cannot be obtained by this method. Further, in the present invention, it is considered that the adhesion between the hard carbon film and the carbon layer is improved by activating the surface layer by performing hydrogen plasma treatment in advance.

[実施例] 実施例1 表面を鏡面仕上げ加工した厚み5mmの純鉄(99.99%)
板に、試料表面のガスの表面平衡炭素濃度0.9%、浸炭
温度930℃、浸炭時間1時間の条件でメタンガスによる
ガス浸炭を行った。この結果表面から約1mmの深さにわ
たって純鉄中へ浸炭がすすんでいることが、試料断面を
電子線プローブマイクロアナライザーで分析することに
より確認された。
[Example] Example 1 Pure iron (99.99%) with a thickness of 5 mm whose surface was mirror-finished
The plate was subjected to gas carburization with methane gas under the conditions that the surface equilibrium carbon concentration of the sample surface gas was 0.9%, the carburization temperature was 930 ° C., and the carburization time was 1 hour. As a result, it was confirmed by analyzing the cross section of the sample with an electron probe micro-analyzer that the carburization has progressed into pure iron over a depth of about 1 mm from the surface.

次にこの試料表面に水素ガスを原料として気圧1×10
-2Torr、基材バイアス電圧−1000V、基材温度300℃、イ
オン電流2mA/cm2、の条件で30分間水素プラズマ照射し
た。その後さらにイオン化蒸着法により、メタンガスを
原料として気圧1×10-2Torr、基材バイアス電圧−800
V、基材温度300℃、イオン電流2mA/cm2の条件で60分間
蒸着した結果、表面が基材表面と等しく滑らかで、かつ
剥離のない約1μm厚の硬質炭素膜が一様にコーティン
グできた。この膜の水素含有量は26atom%であり、電子
線回折像はハローパターンを示した。ラマンスペクトル
では1580cm-1付近と1360cm-1付近に広いピークを示し
た。このコーティングされた試料表面を9Hの鉛筆で引っ
掻いても膜の剥離や傷が生じなかった。同じくステンレ
ス製のピンセットで引っ掻くと、溝ができた。これは基
材の鉄が塑性変形をして溝状にへこんだためで、この場
合でも硬質炭素膜の剥離は見られなかった。
Next, hydrogen gas was used as a raw material on the surface of this sample at atmospheric pressure of 1 × 10
Hydrogen plasma irradiation was carried out for 30 minutes under the conditions of -2 Torr, substrate bias voltage -1000 V, substrate temperature 300 ° C, and ion current 2 mA / cm 2 . Then, by ionization deposition method, methane gas is used as a raw material and the atmospheric pressure is 1 × 10 -2 Torr and the substrate bias voltage is -800.
As a result of vapor deposition for 60 minutes under conditions of V, substrate temperature of 300 ° C. and ion current of 2 mA / cm 2 , the surface is as smooth as the substrate surface and a hard carbon film with a thickness of about 1 μm without peeling can be uniformly coated. It was The hydrogen content of this film was 26 atom%, and the electron diffraction pattern showed a halo pattern. It showed a broad peak around 1580 cm -1 and around 1360 cm -1 in the Raman spectrum. Even if the coated sample surface was scratched with a 9H pencil, neither peeling of the film nor scratches occurred. Similarly, scratching with stainless steel tweezers created a groove. This is because the iron of the base material was plastically deformed and dented into a groove shape, and even in this case, peeling of the hard carbon film was not observed.

実施例2 厚み5mmの純鉄(99.99%)板の鏡面仕上げ面に、イオ
ン浸炭法により、メタンガスを原料として気圧1×10-2
Torr、基材バイアス電圧−1000V、基材温度760℃、イオ
ン電流2mA/cm2、の条件で10分間蒸着し、浸炭を行っ
た。この結果浸炭と同時に約0.08μm厚の黒鉛膜が基材
の表面に析出した。基材温度が高いために、界面から約
0.5mmの深さにわたって純鉄中へ浸炭がすすんでいるこ
とが、試料断面を電子線プローブマイクロアナライザー
で分析することにより確認された。
Example 2 On a mirror-finished surface of a pure iron (99.99%) plate having a thickness of 5 mm, methane gas was used as a raw material and an atmospheric pressure was 1 × 10 -2 by an ion carburizing method.
Carburization was performed by performing vapor deposition for 10 minutes under the conditions of Torr, substrate bias voltage of −1000 V, substrate temperature of 760 ° C., and ion current of 2 mA / cm 2 . As a result, simultaneously with carburization, a graphite film having a thickness of about 0.08 μm was deposited on the surface of the base material. Since the base material temperature is high,
It was confirmed by the electron probe microanalyzer that the cross section of the sample was analyzed for carburizing into pure iron over a depth of 0.5 mm.

次にこの試料面に水素ガスを原料として気圧1×10-2
Torr、基材バイアス電圧−1000V、基材温度300℃、イオ
ン電流2mA/cm2、の条件で60分間水素プラズマ照射し
た。その結果ラマン散乱分光により表面炭素が硬質炭素
に改質されていることが判り、さらに15N共鳴核反応法
により表面から約0.05μmの深さにわたって水素が8〜
2atom%存在していることが確認された。
Next, pressure of 1 x 10 -2 was applied to this sample surface using hydrogen gas as a raw material.
Hydrogen plasma irradiation was performed for 60 minutes under the conditions of Torr, substrate bias voltage of −1000 V, substrate temperature of 300 ° C., and ion current of 2 mA / cm 2 . As a result, it was found by Raman scattering spectroscopy that the surface carbon had been modified to hard carbon, and by the 15 N resonance nuclear reaction method, the hydrogen content of 8 to 8
It was confirmed that 2 atom% existed.

その後さらにイオン化蒸着法により、メタンガスを原
料として気圧1×10-2Torr、基材バイアス電圧−800V、
基材温度300℃、イオン電流2mA/cm2、の条件で60分間硬
質炭素膜をコーティングした。この膜の水素含有量は27
atom%であり、電子線回折像はハローパターンを示し
た。ラマンスペクトルでは1580cm-1付近と1360cm-1付近
に広いピークを示した。
Then, by ionization deposition method, atmospheric pressure of 1 × 10 -2 Torr using methane gas as a raw material, substrate bias voltage of -800 V,
A hard carbon film was coated for 60 minutes under the conditions of a substrate temperature of 300 ° C. and an ion current of 2 mA / cm 2 . The hydrogen content of this membrane is 27
atom%, and the electron diffraction pattern showed a halo pattern. It showed a broad peak around 1580 cm -1 and around 1360 cm -1 in the Raman spectrum.

この試料は、表面が基材表面と等しく滑らかで、かつ
一様にコーティングされていた。この表面を9Hの鉛筆で
引っ掻いても膜の剥離や傷が生じなかった。同じくステ
ンレス製のピンセットで引っ掻くと、溝ができた。これ
は基材の鉄が塑性変形をして溝状にへこんだためで、こ
の場合でも硬質炭素膜の剥離は認められなかった。
This sample had a surface that was as smooth and evenly coated as the substrate surface. Even if the surface was scratched with a pencil of 9H, neither peeling of the film nor scratches occurred. Similarly, scratching with stainless steel tweezers created a groove. This is because the iron of the base material was plastically deformed and dented in the shape of a groove, and in this case as well, peeling of the hard carbon film was not observed.

実施例3 厚み6mmのコバルト(99.99%)板の鏡面仕上げ面に、
イオン浸炭法により、メタンガスを原料として気圧1×
10-2Torr、基材バイアス電圧−1000V、基材温度800℃、
イオン電流3mA/cm2、の条件で10分間蒸着し、浸炭を行
った。この結果浸炭と同時に約0.09μm厚の黒鉛膜が基
材の表面に析出した。基材温度が高いために、界面から
約0.6mmの深さにわたってコバルト中へ浸炭がすすんで
いることが、試料断面を電子線プローブマイクロアナラ
イザーで分析することにより確認された。
Example 3 On a mirror-finished surface of a 6 mm thick cobalt (99.99%) plate,
Ion carburization method, using methane gas as a raw material, atmospheric pressure 1 ×
10 -2 Torr, substrate bias voltage -1000V, substrate temperature 800 ℃,
It was vapor-deposited for 10 minutes under the condition of an ion current of 3 mA / cm 2 and carburized. As a result, a graphite film having a thickness of about 0.09 μm was deposited on the surface of the base material simultaneously with carburization. It was confirmed by analyzing the sample cross section with an electron probe microanalyzer that the carburization progressed into cobalt over a depth of about 0.6 mm from the interface due to the high substrate temperature.

次にこの試料面に水素ガスを原料として気圧1×10-3
Torr、基材バイアス電圧−1000V、基材温度300℃、イオ
ン電流3mA/cm2、の条件で60分間水素プラズマ照射し
た。その結果ラマン散乱分光により表面炭素が硬質炭素
に改質されていることが判り、さらに15N共鳴核反応法
により表面から約0.05μmの深さにわたって水素が7〜
2atom%存在していることが確認された。
Next, pressure of 1 x 10 -3 was applied to this sample surface using hydrogen gas as a raw material.
Hydrogen plasma irradiation was performed for 60 minutes under the conditions of Torr, substrate bias voltage of −1000 V, substrate temperature of 300 ° C., and ion current of 3 mA / cm 2 . As a result, it was found by Raman scattering spectroscopy that the surface carbon was modified to hard carbon. Furthermore, by the 15 N resonance nuclear reaction method, hydrogen of 7 ~
It was confirmed that 2 atom% existed.

その後さらにイオン化蒸着法により、メタンガスを原
料として気圧1×10-2Torr、基材バイアス電圧−800V、
基材温度300℃、イオン電流3mA/cm2、の条件で60分間硬
質炭素膜をコーティングした。この膜の水素含有量は26
atom%であり、電子線回折像はハローパターンを示し
た。ラマンスペクトルでは1580cm-1付近と1360cm-1付近
に広いピークを示した。
Then, by ionization deposition method, atmospheric pressure of 1 × 10 -2 Torr using methane gas as a raw material, substrate bias voltage of -800 V,
A hard carbon film was coated for 60 minutes under the conditions of a substrate temperature of 300 ° C. and an ion current of 3 mA / cm 2 . The hydrogen content of this membrane is 26
atom%, and the electron diffraction pattern showed a halo pattern. It showed a broad peak around 1580 cm -1 and around 1360 cm -1 in the Raman spectrum.

この試料は、表面が基材表面と等しく滑らかで、かつ
一様にコーティングされていた。この表面を9Hの鉛筆で
引っ掻いても膜の剥離や傷が生じなかった。同じくステ
ンレス製のピンセットで引っ掻くと、溝ができた。これ
は基材のコバルトが塑性変形をして溝状にへこんだため
で、この場合でも硬質炭素膜の剥離は認められなかっ
た。
This sample had a surface that was as smooth and evenly coated as the substrate surface. Even if the surface was scratched with a pencil of 9H, neither peeling of the film nor scratches occurred. Similarly, scratching with stainless steel tweezers created a groove. This is because the cobalt of the substrate was plastically deformed and dented in the shape of a groove, and in this case as well, peeling of the hard carbon film was not observed.

実施例4 厚み10mmの鉄−12%コバルト−15%モリブデン合金板
の鏡面仕上げ面に、イオン浸炭法により、メタンガスを
原料として気圧1×10-2Torr、基材バイアス電圧−1000
V、基材温度700℃、イオン電流2mA/cm2、の条件で10分
間蒸着し、浸炭を行った。この結果浸炭と同時に約0.08
μm厚の黒鉛膜が基材の表面に析出した。基材温度が高
いために、界面から約0.6mmの深さにわたって合金中へ
浸炭がすすんでいることが、試料断面を電子線プローブ
マイクロアナライザーで分析することにより確認され
た。
Example 4 On a mirror-finished surface of an iron-12% cobalt-15% molybdenum alloy plate having a thickness of 10 mm, methane gas was used as a raw material and an atmospheric pressure was 1 × 10 -2 Torr and a substrate bias voltage was -1000.
Carburization was performed by vapor deposition for 10 minutes under the conditions of V, substrate temperature 700 ° C., and ion current 2 mA / cm 2 . As a result, about 0.08
A μm thick graphite film was deposited on the surface of the substrate. It was confirmed by analyzing the cross section of the sample with an electron probe microanalyzer that the carburization progressed into the alloy at a depth of about 0.6 mm from the interface due to the high substrate temperature.

次にこの試料面に水素ガスを原料として気圧1×10-3
Torr、基材バイアス電圧−1000V、基材温度300℃、イオ
ン電流3mA/cm2、の条件で60分間水素プラズマ照射し
た。その結果ラマン散乱分光により表面炭素が硬質炭素
に改質されていることが判り、さらに15N共鳴核反応法
により表面から約0.05μmの深さにわたって水素が8〜
2atom%存在していることが確認された。
Next, pressure of 1 x 10 -3 was applied to this sample surface using hydrogen gas as a raw material.
Hydrogen plasma irradiation was performed for 60 minutes under the conditions of Torr, substrate bias voltage of −1000 V, substrate temperature of 300 ° C., and ion current of 3 mA / cm 2 . As a result, it was found by Raman scattering spectroscopy that the surface carbon had been modified to hard carbon, and by the 15 N resonance nuclear reaction method, the hydrogen content of 8 to 8
It was confirmed that 2 atom% existed.

その後さらにイオン化蒸着法により、メタンガスを原
料とした気圧1×10-2Torr、基材バイアス電圧−800V、
基材温度300℃、イオン電流3mA/cm2、の条件で60分間硬
質炭素膜をコーティングした。この膜の水素含有量は26
atom%であり、電子線回折像はハローパターンを示し
た。ラマンスペクトルでは1580cm-1付近と1360cm-1付近
に広いピークを示した。
Then, by ionization deposition method, atmospheric pressure of methane gas as a raw material was 1 × 10 -2 Torr, substrate bias voltage was -800V,
A hard carbon film was coated for 60 minutes under the conditions of a substrate temperature of 300 ° C. and an ion current of 3 mA / cm 2 . The hydrogen content of this membrane is 26
atom%, and the electron diffraction pattern showed a halo pattern. It showed a broad peak around 1580 cm -1 and around 1360 cm -1 in the Raman spectrum.

この試料は、表面が基材表面と等しく滑らかで、かつ
一様にコーティングされていた。この表面を9Hの鉛筆で
引っ掻いても膜や剥離や傷が生じなかった。同じくジル
コニアセラミックス製のピンセットで引っ掻くと、溝が
できた。これは基材の合金が塑性変形をして溝状にへこ
んだためで、この場合でも硬質炭素膜の剥離は認められ
なかった。
This sample had a surface that was as smooth and evenly coated as the substrate surface. No film, peeling, or scratches were formed even when the surface was scratched with a 9H pencil. Similarly, when scratched with zirconia ceramic tweezers, a groove was formed. This is because the alloy of the base material was plastically deformed and dented in the shape of a groove, and in this case as well, peeling of the hard carbon film was not observed.

なお、実施例1、2、3及び4において、浸炭及び水
素プラズマ処理を施さなかった場合はいずれの膜も剥離
した。
In addition, in Examples 1, 2, 3 and 4, when neither carburizing nor hydrogen plasma treatment was performed, all films were peeled off.

[発明の効果] 本発明により、潤滑性、耐摩耗性、耐腐食性に優れた
硬質炭素膜を、これまで直接コーティングすることが困
難であった鉄、コバルトあるいはこれらの合金等の様々
な材質の金属材料に、強い付着力でコーティングするこ
とができるようになり、潤滑性コーティングや耐摩耗用
コーティングとしての用途が拓けた。
[Effects of the Invention] According to the present invention, various materials such as iron, cobalt or alloys thereof, which have been difficult to directly coat a hard carbon film excellent in lubricity, wear resistance and corrosion resistance, have been used. It has become possible to coat the metal materials of the above with a strong adhesive force, and has opened up applications as a lubricious coating and an abrasion resistant coating.

【図面の簡単な説明】[Brief description of the drawings]

第1図はイオン化蒸着装置の原理図である。1は基材、
2はグリッド、3はフィラメント、4は電磁石、5は原
料ガス導入管である。
FIG. 1 is a principle diagram of an ionization vapor deposition apparatus. 1 is the base material,
2 is a grid, 3 is a filament, 4 is an electromagnet, and 5 is a source gas introduction tube.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C23C 16/02 C23C 16/02 (72)発明者 佐藤 真樹 神奈川県川崎市中原区井田1618番地 新 日本製鐵株式會社第1技術研究所内 (72)発明者 藤本 研一 神奈川県川崎市中原区井田1618番地 新 日本製鐵株式會社第1技術研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C23C 16/02 C23C 16/02 (72) Inventor Maki Sato 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Shin (72) Inventor Kenichi Fujimoto, 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Nippon Steel Co., Ltd.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金属基材に浸炭処理を施した後、該基材の
表面に水素プラズマ処理を施し、その後、硬質炭素膜を
被覆することを特徴とする硬質炭素膜のコーティング方
法。
1. A method for coating a hard carbon film, which comprises subjecting a metal substrate to a carburizing treatment, subjecting the surface of the substrate to a hydrogen plasma treatment, and then coating a hard carbon film.
【請求項2】金属基材への浸炭方法が、イオン浸炭法で
ある請求項1に記載された硬質炭素膜のコーティング方
法。
2. The method for coating a hard carbon film according to claim 1, wherein the method of carburizing the metal substrate is an ion carburizing method.
JP63275484A 1988-10-31 1988-10-31 Hard carbon film coating method Expired - Fee Related JP2689146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63275484A JP2689146B2 (en) 1988-10-31 1988-10-31 Hard carbon film coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63275484A JP2689146B2 (en) 1988-10-31 1988-10-31 Hard carbon film coating method

Publications (2)

Publication Number Publication Date
JPH02122075A JPH02122075A (en) 1990-05-09
JP2689146B2 true JP2689146B2 (en) 1997-12-10

Family

ID=17556166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63275484A Expired - Fee Related JP2689146B2 (en) 1988-10-31 1988-10-31 Hard carbon film coating method

Country Status (1)

Country Link
JP (1) JP2689146B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010132937A (en) * 2008-12-02 2010-06-17 Nippon Parkerizing Co Ltd Surface modifying method of stainless steel material
JP2012012706A (en) * 2005-05-18 2012-01-19 Toyota Motor Corp Carburized metal material

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5455081A (en) * 1990-09-25 1995-10-03 Nippon Steel Corporation Process for coating diamond-like carbon film and coated thin strip
FR2682125A1 (en) * 1991-10-07 1993-04-09 Nitruvid PROCESSING PROCESS FOR DEPOSITING A CARBON LAYER IN A STEAM PHASE ON THE SURFACE OF A METAL PART AND A PART THUS OBTAINED.
US6835523B1 (en) 1993-05-09 2004-12-28 Semiconductor Energy Laboratory Co., Ltd. Apparatus for fabricating coating and method of fabricating the coating
DE4416525B4 (en) * 1993-05-27 2008-06-05 Oerlikon Trading Ag, Trübbach Method for producing a coating of increased wear resistance on workpiece surfaces, and its use
US5932302A (en) 1993-07-20 1999-08-03 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating with ultrasonic vibration a carbon coating
EP0703303A1 (en) * 1994-07-27 1996-03-27 Balzers Sa Corrosion and wear resistant substrate and method of manufacture
US5458927A (en) * 1995-03-08 1995-10-17 General Motors Corporation Process for the formation of wear- and scuff-resistant carbon coatings
JP3637687B2 (en) * 1996-07-13 2005-04-13 日新電機株式会社 Manufacturing method of diaphragm for automobile
JP2008144227A (en) * 2006-12-08 2008-06-26 Shimane Pref Gov Carburizing method and apparatus
JP2010248572A (en) * 2009-04-15 2010-11-04 Toyota Motor Corp Titanium-based material and production method of the same, and fuel cell separator
JP5657940B2 (en) * 2010-07-29 2015-01-21 株式会社田中 Titanium metal wear-resistant parts

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012012706A (en) * 2005-05-18 2012-01-19 Toyota Motor Corp Carburized metal material
JP2010132937A (en) * 2008-12-02 2010-06-17 Nippon Parkerizing Co Ltd Surface modifying method of stainless steel material

Also Published As

Publication number Publication date
JPH02122075A (en) 1990-05-09

Similar Documents

Publication Publication Date Title
JP2689146B2 (en) Hard carbon film coating method
Colligon Energetic condensation: Processes, properties, and products
US6372303B1 (en) Method and device for vacuum-coating a substrate
JP3589467B2 (en) Apparatus and method for sputtering carbon
EP0474369A1 (en) Diamond-like carbon coatings
US5541003A (en) Articles having diamond-like protective thin film
Narayan Laser processing of diamond-like carbon–metal composites
JPH10237627A (en) Hard carbon coating-coated member
JP3187487B2 (en) Article with diamond-like thin film protective film
JPH02125861A (en) Formation of coating film on surface of material to be treated
JPH03274269A (en) Method for synthesizing diamondlike thin film and diamondlike thin film
JP3016748B2 (en) Method for depositing carbon-based high-performance material thin film by electron beam excited plasma CVD
JP2909248B2 (en) Boron nitride coated member
JP3025743B2 (en) Hard carbon film forming equipment
JPH07268607A (en) Article having diamondlike carbon thin film and its production
JP2777543B2 (en) Hard carbon coated substrate and method of forming the same
JPH03166370A (en) Hard carbon film coating method
JP2000094564A (en) Base with highly functional coat formed and method for forming the base
JP3056827B2 (en) Article having a diamond-like carbon protective film and method for producing the same
JPH0445287A (en) Material coated with hard carbon film and production thereof
JPH062937B2 (en) Method for manufacturing surface-coated steel
Manory Some principles for understanding surface modification of metals by glow discharge processes
JPH07330490A (en) Hard carbon film substrate and its formation
JPH06346239A (en) Production of ceramic coated metallic material
JP2003013200A (en) Hard carbon film and manufacturing method therefor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees