JPH02122075A - Coating method with hard carbon film - Google Patents

Coating method with hard carbon film

Info

Publication number
JPH02122075A
JPH02122075A JP63275484A JP27548488A JPH02122075A JP H02122075 A JPH02122075 A JP H02122075A JP 63275484 A JP63275484 A JP 63275484A JP 27548488 A JP27548488 A JP 27548488A JP H02122075 A JPH02122075 A JP H02122075A
Authority
JP
Japan
Prior art keywords
hard carbon
carbon film
base material
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63275484A
Other languages
Japanese (ja)
Other versions
JP2689146B2 (en
Inventor
Morihiro Okada
守弘 岡田
Takumi Kono
巧 河野
Maki Sato
真樹 佐藤
Kenichi Fujimoto
研一 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Corp
Priority to JP63275484A priority Critical patent/JP2689146B2/en
Publication of JPH02122075A publication Critical patent/JPH02122075A/en
Application granted granted Critical
Publication of JP2689146B2 publication Critical patent/JP2689146B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To coat a metal substrate with a hard carbon film with high bonding strength by successively subjecting the substrate to carburization and treatment with hydrogen plasma before coating with the hard carbon film. CONSTITUTION:A metal substrate made of a metal belonging to the group IIIA, IVA, VA, VIA, VIIA or VIIIA of the periodic table or an alloy thereof is ion-carburized and the surface of the substrate is treated with hydrogen plasma. The substrate is then coated with a hard carbon film contg. 5-30atomic% hydrogen by vapor phase synthesis with a hydrocarbon compd. such as methane as starting material. The metal substrate is coated with the hard carbon film with satisfactory bonding strength and wear resistance, lubricity and corrosion resistance are rendered to the substrate.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、金属基材に硬質炭素膜をコーティングする方
法に関するもので、これにより被対象物に耐摩耗性、潤
滑性、耐腐食性等を付与するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method of coating a metal substrate with a hard carbon film, thereby imparting properties such as wear resistance, lubricity, and corrosion resistance to the object. It is intended to give.

[従来の技術] 硬質炭素膜は、ダイヤモンドに準する硬度を有しかつ耐
摩耗性、潤滑性、耐腐食性に優れているので、種々の用
途が1す1待されているが、これまで金属基材へ直接被
覆させた場合には、その付着力に問題があるために必ず
しも膜本来の優れた特性が生かされてこなかった。すな
わら、例えば、第2回ダイヤモンドシンポジウム講演要
旨集93ページ(1987年)に示されている様に、硬
質炭素膜は、シリコン、タングステン等の、炭素と共有
結合性の高い結合をする金属材料には、直接に硬質炭素
膜を被覆して付着力の強いコーティングを形成すること
が可能であるが、前記の炭素と共有結合を形成しない、
IIIA、IVA、VA、VTA、■A1■A族に属す
る金属、あるいはこれらの合金の金属材料を基材とした
場合には、直接に硬質炭素膜のコーティングを行う従来
の方法では、硬度、耐摩耗性、潤滑性、耐腐食性に優れ
、かつ基材への付着力の大きい硬質炭素膜をコーティン
グすることが困難であった。
[Prior Art] Hard carbon films have a hardness comparable to that of diamond, and have excellent wear resistance, lubricity, and corrosion resistance, so they are eagerly awaited for various uses. When coated directly onto a metal substrate, the film's original excellent properties have not always been utilized because of problems with its adhesion. For example, as shown in the Abstracts of the 2nd Diamond Symposium, page 93 (1987), hard carbon films are made of metals that form highly covalent bonds with carbon, such as silicon and tungsten. The material can be directly coated with a hard carbon film to form a highly adhesive coating, but does not form a covalent bond with the carbon.
When using metals belonging to Group IIIA, IVA, VA, VTA, ■A1■A, or their alloys as a base material, the conventional method of directly coating with a hard carbon film has problems in terms of hardness and resistance. It has been difficult to coat with a hard carbon film that has excellent abrasion resistance, lubricity, and corrosion resistance, and has strong adhesion to the substrate.

[発明が解決しようとする課題] 本発明は金属基村上に、付着力の良好な硬質炭素膜をコ
ーティングする方法を新たに開発することを目的とする
ものである。
[Problems to be Solved by the Invention] The object of the present invention is to develop a new method for coating a metal substrate with a hard carbon film having good adhesion.

[課題を解決するための手段、作用] 本発明の要旨とするところは下記のとおりである。[Means and actions to solve the problem] The gist of the present invention is as follows.

(1)金属基材に浸炭処理を施した後、該基材の表面に
水素プラズマ処理を施し、その後、硬質炭素膜を被覆す
ることを特徴とする硬質炭素膜のコーティング方法。
(1) A method for coating a hard carbon film, which comprises carburizing a metal base material, then subjecting the surface of the base material to hydrogen plasma treatment, and then coating the base material with a hard carbon film.

(2)金属基材への浸炭方法が、イオン浸炭法である前
項lに記載された硬質炭素膜のコーティング方法。
(2) The method for coating a hard carbon film according to item 1 above, wherein the carburizing method for the metal base material is an ion carburizing method.

本発明でいう硬質炭素膜とは次のようなものである。元
素の構成の主体は炭素であり、天然ダイヤモンドに準す
る硬度を持ち、非晶質で電子線回折像はハローパターン
を示す。ラマンスペクトルでは1580cm−’付近と
1360cm−’付近に非晶質特有の広いピークを示す
。硬質炭素の薄膜を走査型電子顕微鏡でio、ooo倍
程度に拡大して観察すると、結晶粒界が認められない一
様で平滑な膜である。硬質炭素は一般に炭化水素化合物
を原料とした気相合成法によって生成され、約4Qat
om%以下の水素を含有している。水素は炭素原子のダ
ングリングボンドの部分に入り、非晶質状態が安定化さ
れかつ高硬度の構造になると考えられている。
The hard carbon film referred to in the present invention is as follows. The elemental composition is mainly carbon, and it has a hardness similar to that of natural diamond.It is amorphous and shows a halo pattern in its electron diffraction image. The Raman spectrum shows broad peaks characteristic of amorphous materials near 1580 cm-' and 1360 cm-'. When a thin film of hard carbon is observed with a scanning electron microscope under magnification of about io, ooo times, it is a uniform and smooth film with no grain boundaries observed. Hard carbon is generally produced by a gas phase synthesis method using hydrocarbon compounds as raw materials, and is approximately 4Qat.
Contains less than om% hydrogen. It is thought that hydrogen enters the dangling bonds of carbon atoms, stabilizing the amorphous state and creating a highly hard structure.

適量の水素が存在することで、硬質炭素は天然ダイヤモ
ンドに準する高い硬度を示すものと推測される。硬質炭
素膜中の水素が多過ぎると軟らかい有機質の膜になる。
It is presumed that the presence of an appropriate amount of hydrogen causes hard carbon to exhibit high hardness comparable to that of natural diamond. If there is too much hydrogen in the hard carbon film, it becomes a soft organic film.

そのため本発明の硬質炭素膜としては、水素の割合は膜
中に35aton+%以下、好ましくは5〜30ato
m%、のものが適している。
Therefore, in the hard carbon film of the present invention, the proportion of hydrogen in the film is 35 aton+% or less, preferably 5 to 30 aton+%.
m% is suitable.

本発明に用いる硬質炭素膜の形成方法としては、被膜の
基材への付着性、膜質の均一性、膜表面の平滑性、生産
性という点から、特開昭59−174507号公報、特
開昭59−174508号公報等に開示されているよう
なイオン化蒸着法が好ましい。
The method for forming the hard carbon film used in the present invention is disclosed in JP-A-59-174507, JP-A-59-174507, An ionized vapor deposition method as disclosed in Japanese Patent No. 59-174508 and the like is preferred.

第1図にイオン化蒸着装置の原理図を示す。減圧下に硬
質炭素膜の原料となる炭化水素ガスを導入し、これをグ
ロー放電と赤熱させたフィラメント3によりイオン化さ
せ、電磁石4の広がり磁場でこのイオンを引き出す。電
磁石で覆われたこの部分をイオン源という。引き出され
たイオンは負のバイアス電圧がかけられた基材lに向か
って加速され、基材に衝突、蒸着する。原料ガスとして
は、メタン、エタン、アセチレン、ベンゼン等の容易に
気体として導入できる炭化水素を用いれば良いが、中で
もメタンが好ましい。水素ガスを前述の原料ガスの希釈
ガスとして用いてもさしつかえない。容器内の圧力は、
プラズマを発生させてしかもイオンを加速することが必
要なため、1×10−6TorrからI Torrでよ
いが、膜質、膜生成速度の点からはI X 10−’T
orrからI X 10−’Torrが望ましい。基材
の温度としては室温(25“C程度)から600°Cと
すると良好な薄膜が形成される。その範囲内でも特に室
温(25°C程度)から300°Cが好ましい範囲であ
る。基材温度が600°Cよりも高くなると作成される
膜は黒鉛状になりやすく、また、たとえ硬質炭素膜がで
きても放冷して室温に戻すと、基材と膜との間の残留熱
応力が大きいので、その後の使用中に膜が剥離し易くな
る。基材とイオン源との間のバイアス電圧は50Vから
−1500Vとし、中でも一500■から一1000V
が好ましい範囲である。炭化水素イオンがバイアス電圧
により加速されて基材に衝突すると、衝突エネルギーに
より衝突したイオンのC14結合が切れて、水素原子は
弾き出されてしまう。この、水素原子が弾き出される量
は、衝突するイオンの運動エネルギー即ちバイアス電圧
に従っており、バイアス電圧が小さ過ぎると水素が多い
有機的な軟らかい膜になりやすく、バイアス電圧が高過
ぎると黒鉛状の膜になり、さらには膜の自己スパッタリ
ングが生じ、成膜速度が低下する。
FIG. 1 shows a diagram of the principle of the ionization vapor deposition apparatus. Hydrocarbon gas, which is a raw material for a hard carbon film, is introduced under reduced pressure, ionized by glow discharge and red-hot filament 3, and extracted by the expanding magnetic field of electromagnet 4. This part covered with electromagnets is called the ion source. The extracted ions are accelerated toward the base material l to which a negative bias voltage is applied, collide with the base material, and are deposited. As the raw material gas, hydrocarbons that can be easily introduced as a gas such as methane, ethane, acetylene, and benzene may be used, and among them, methane is preferred. Hydrogen gas may be used as a diluent gas for the above-mentioned raw material gas. The pressure inside the container is
Since it is necessary to generate plasma and accelerate ions, 1 x 10-6 Torr to I Torr is sufficient, but in terms of film quality and film formation rate, I x 10-'T
orr to I x 10-'Torr is desirable. A good thin film is formed when the temperature of the base material is from room temperature (about 25"C) to 600°C. Within this range, a particularly preferable range is room temperature (about 25"C) to 300°C. When the material temperature is higher than 600°C, the film created tends to become graphite-like, and even if a hard carbon film is formed, if it is left to cool to room temperature, residual heat between the base material and the film will be lost. Since the stress is large, the film is likely to peel off during subsequent use.The bias voltage between the substrate and the ion source is 50V to -1500V, especially 1500V to 11000V.
is the preferred range. When hydrocarbon ions are accelerated by a bias voltage and collide with a base material, the C14 bonds of the colliding ions are broken due to the collision energy, and hydrogen atoms are ejected. The amount of hydrogen atoms ejected depends on the kinetic energy of the colliding ions, that is, the bias voltage; if the bias voltage is too low, a soft, organic film with a large amount of hydrogen tends to form, whereas if the bias voltage is too high, a graphite-like film tends to form. Furthermore, self-sputtering of the film occurs, and the film formation rate decreases.

イオン源での磁束密度は100Gから100OGの範囲
が適当であり、300Gから500Gがより好ましい範
囲である。詳細な製造条件は、装置内のガス導入口の配
置、イオン源の大きさ、基材の位置などによって変化す
るので適宜、最適条件を設定することが望ましい。
The magnetic flux density in the ion source is suitably in the range of 100G to 100OG, and more preferably in the range of 300G to 500G. The detailed manufacturing conditions vary depending on the arrangement of the gas inlet in the device, the size of the ion source, the position of the substrate, etc., and therefore it is desirable to set optimal conditions as appropriate.

本発明で対象とする金属基材は、II[A、TVA、V
A、VIA、■A、■A族に属する金属、あるいはこれ
らの合金で、炭素との共有結合を形成し難く、浸炭可能
なもの、すなわちZr、 Ta、 MoXFe。
The metal substrates targeted by the present invention are II[A, TVA, V
Metals belonging to the A, VIA, ■A, and ■A groups, or alloys thereof, which are difficult to form covalent bonds with carbon and can be carburized, such as Zr, Ta, and MoXFe.

Co、 Ti等ならどれでも使用できるが、実用的な観
点からは鉄やコバルト等が重要である。
Any Co, Ti, etc. can be used, but iron, cobalt, etc. are important from a practical standpoint.

本発明の実施にあたっては、以下の順序で浸炭処理、水
素プラズマ処理、硬質炭素膜被覆の操作を行なえばよい
。まず始めに、対象となる金属基材に浸炭処理を施す、
このとき金属基材表面層に浸炭させる炭素の量はできる
だけ多い方が良(、金属基材表面には炭素の薄い層が形
成されるような状態になることがあるが、このような状
態で次の水素プラズマ処理に移行しても差支えはない。
In implementing the present invention, carburizing treatment, hydrogen plasma treatment, and hard carbon film coating may be performed in the following order. First, the target metal base material is carburized.
At this time, it is better to carburize the surface layer of the metal base material as much as possible (a thin layer of carbon may be formed on the surface of the metal base material, but There is no problem in moving on to the next hydrogen plasma treatment.

本発明で用いる浸炭方法としては、従来から用いられて
いるガス浸炭法、溶融塩中浸炭法等の方法を用いること
ができる。この他にメタン、エタン等の炭化水素ガスを
分解、イオン化した雰囲気の容器中に、基材を高温に保
った状態で設置することで、基材に浸炭をさせると同時
に、基材表面にも炭素の薄膜を形成させるイオン浸炭法
が利用できる。後工程の炭素硬質膜形成時の膜付着性の
観点からは、イオン浸炭法が、基材への多量の浸炭と基
材表面炭素)W膜形成が可能であり、浸炭した炭素と、
表面膜の炭素との結合性が優れており、付着力の強い硬
質炭素膜のコーティングをするためには、イオン浸炭法
の適用が望ましい。
As the carburizing method used in the present invention, conventionally used methods such as gas carburizing method and molten salt carburizing method can be used. In addition, by placing the base material at a high temperature in a container with an atmosphere in which hydrocarbon gases such as methane and ethane are decomposed and ionized, the base material is carburized and at the same time, the surface of the base material is also Ionic carburization methods can be used to form a thin film of carbon. From the viewpoint of film adhesion during the formation of a hard carbon film in the subsequent process, the ion carburizing method is capable of carburizing a large amount of the base material and forming a carbon (W) film on the surface of the base material.
In order to coat with a hard carbon film that has excellent bonding properties with carbon on the surface film and strong adhesion, it is desirable to apply the ion carburization method.

次に、この様に浸炭処理を施した金属基材に水素プラズ
マ処理を施す。本発明で行う水素プラズマ処理とは、特
公昭62−120号公報に記載されているようなプラズ
マCVD装置や特開昭59−174507号公報に開示
されているプラズマCVD装置により生成した水素プラ
ズマ中に、基月を放置する方法と、特開昭61−122
197号公報に見られるようなイオンビーム装置やイオ
ンインプランテーション装置等により水素プラズマ種を
照射する方法などである。木質的には、水素分子の分解
で生成される水素原子、水素イオンを、熱や電磁場によ
り高速度で基材に衝突させることができればどのような
方法でも良い。
Next, the metal base material that has been carburized in this way is subjected to hydrogen plasma treatment. The hydrogen plasma treatment performed in the present invention refers to hydrogen plasma generated by a plasma CVD apparatus such as that described in Japanese Patent Publication No. 62-120 or a plasma CVD apparatus disclosed in Japanese Patent Application Laid-Open No. 59-174507. , how to leave Motozuki alone, and JP-A-61-122
This method includes a method of irradiating hydrogen plasma species using an ion beam device, an ion implantation device, or the like as shown in Japanese Patent No. 197. For wood, any method may be used as long as it allows hydrogen atoms and hydrogen ions produced by the decomposition of hydrogen molecules to collide with the base material at high speed using heat or an electromagnetic field.

この後、前述の硬質炭素膜の形成処理を行う。After this, the hard carbon film formation process described above is performed.

これら一連の浸炭、水素プラズマ処理、硬質炭素nり形
成の処理においては、途中で大気雰囲気にさらずと、表
面に、酸素等のガスを吸着し、硬質炭素膜の付着性が低
下するので、真空下で連続処理することが望ましい。
In these series of carburizing, hydrogen plasma treatment, and hard carbon film formation, if the surface is not exposed to the atmosphere during the process, gases such as oxygen will be adsorbed onto the surface, reducing the adhesion of the hard carbon film. Continuous processing under vacuum is desirable.

本発明の方法において、付着力の強い硬質炭素膜がコー
ティングできるメカニズムについては必ずしも明らかで
はないが、次の様に考えられる。
In the method of the present invention, the mechanism by which a hard carbon film with strong adhesion can be coated is not necessarily clear, but it is thought to be as follows.

すなわち、最初に基材に浸炭処理を行い、基材表面層に
炭素の多い層を形成することで、基材に浸炭された炭素
と表面にコーティングされている硬質炭素1漠の炭素と
の間に強固な結゛合ができるものと考えられる。基材に
浸炭処理を施しておかない場合には、基材と硬質炭素膜
との界面では、金属基材と炭素の結合しか存在しないと
考えられ、般に金属材料と炭素とでは強固な結合をつく
らないために、この方法では付着力のすぐれた膜が得ら
れない。さらには、本発明ではあらかじめ水素プラズマ
処理を施すことで、表面層を活性化しておくことで、硬
質炭素膜と炭素層との付着性が向上するものと考えられ
る。
In other words, by first carburizing the base material and forming a carbon-rich layer on the surface layer of the base material, the difference between the carbon carburized on the base material and the hard carbon coated on the surface is created. It is thought that a strong bond can be formed between the two. If the base material is not carburized, it is thought that only the bond between the metal base material and carbon exists at the interface between the base material and the hard carbon film, and generally there is a strong bond between the metal material and carbon. This method does not produce a film with good adhesion. Furthermore, in the present invention, it is thought that adhesion between the hard carbon film and the carbon layer is improved by activating the surface layer by performing hydrogen plasma treatment in advance.

[実施例コ 実施例1 表面を鏡面仕上げ加工した厚み51nInの純鉄(99
,99%)板に、試料表面のガスの表面平衡炭素濃度0
.9%、浸炭温度930’C,浸炭時間1時間の条件で
メタンガスによるガス浸炭を行った。この結果表面から
約1 mmの深さにわたって純鉄中へ浸炭がすすんでい
ることが、試料断面を電子線プローブマイクロアナライ
ザーで分析することにより確認された。
[Example Example 1 Pure iron with a thickness of 51 nIn (99
, 99%) on the plate, the surface equilibrium carbon concentration of the gas on the sample surface is 0.
.. Gas carburizing was performed using methane gas under the following conditions: 9%, carburizing temperature: 930'C, and carburizing time: 1 hour. As a result, it was confirmed by analyzing the cross section of the sample with an electron beam probe microanalyzer that carburization had proceeded into the pure iron to a depth of approximately 1 mm from the surface.

次にこの試料表面に水素ガスを原料として気圧I X 
10 ””Torr、基材バイアス電圧−1000V、
基材温度300°C、イオン電流2 mA / cf、
の条件で30分間水素プラズマ照射した。その後さらに
イオン化蒸着法により、メタンガスを原料として気圧I
 X 10−2Torr、、基材バイアス電圧−800
v、基材温度300°C、イオン電流2+nA/c++
1の条件で60分間蒸着した結果、表面が基材表面と等
しく滑らかで、かつ剥離のない約1μm厚の硬質炭素膜
が一様にコーティングできた。この膜の水素含有量は2
6aLom%であり、電子線回折像はハローバターンを
示した。ラマンスペクトルでは1580cm−’付近と
1360cm−’付近に広いピークを示した。このコー
ティングされた試料表面を9Hの鉛筆で引っ掻いても膜
の剥離や傷が生じなかった。同じ(ステンレス製のビン
セントで引っ掻くと、溝ができた。これは基材の鉄が塑
性変形をして溝状にへこんだためで、この場合でも硬質
炭素膜の剥離は見られなかった。
Next, using hydrogen gas as a raw material on the surface of this sample, the atmospheric pressure I
10”” Torr, base material bias voltage -1000V,
Substrate temperature 300 °C, ionic current 2 mA/cf,
Hydrogen plasma irradiation was performed for 30 minutes under these conditions. Thereafter, by using ionization vapor deposition method, methane gas was used as a raw material to create an atmospheric pressure I.
X 10-2 Torr, substrate bias voltage -800
v, substrate temperature 300°C, ionic current 2+nA/c++
As a result of vapor deposition for 60 minutes under the conditions of 1, a hard carbon film with a thickness of about 1 μm was uniformly coated with a surface as smooth as the surface of the base material and without peeling. The hydrogen content of this film is 2
The electron beam diffraction image showed a halo pattern. The Raman spectrum showed broad peaks near 1580 cm-' and 1360 cm-'. Even when the surface of the coated sample was scratched with a 9H pencil, no peeling or scratching of the film occurred. Similarly (when scratched with a stainless steel Vincent, grooves were formed. This was because the iron base material was plastically deformed and indented into the groove shape. Even in this case, no peeling of the hard carbon film was observed.

実施例2 厚み5 mmの純鉄(99,99%)仮の鏡面仕上げ面
に、イオン浸炭法により、メタンガスを原料として気圧
I X 10−”Torr、基材バイアス電圧−100
0■、基材温度760°C、イオン電B2mA/c+f
l、の条件で10分間蒸着し、浸炭を行った。この結果
浸炭と同時に約0.08 ttm厚の黒鉛膜が基材の表
面に析出した。基材温度が高いために、界面から約0、
5 mmの深さにわたって純鉄中へ浸炭がすすんでいる
ことが、試料断面を電子線プローブマイクロアナライザ
ーで分析することにより確認された。
Example 2 A temporary mirror-finished surface of pure iron (99.99%) with a thickness of 5 mm was coated with ion carburization using methane gas as a raw material at a pressure of I x 10-”Torr and a base material bias voltage of -100.
0■, base material temperature 760°C, ion electric current B2mA/c+f
The vapor deposition was carried out for 10 minutes under the conditions of 1, and carburization was performed. As a result, a graphite film with a thickness of about 0.08 ttm was deposited on the surface of the base material at the same time as carburizing. Due to the high base material temperature, approximately 0,
It was confirmed by analyzing the cross section of the sample with an electron beam probe microanalyzer that carburization had proceeded into the pure iron over a depth of 5 mm.

次にこの試料面に水素ガスを原料として気圧lX 10
−”Torr、基材バイアス電圧−1000V、基材温
度300’C,イオン電流’l mA / ctB、の
条件で60分間水素プラズマ照射した。その結果ラマン
散乱分光により表面炭素が硬質炭素に改質されているこ
とが判り、さらにIsN共鳴核反応法により表面から約
0.05−の深さにわたって水素が8〜2a tom%
存在していることが確認された。
Next, on this sample surface, using hydrogen gas as a raw material, the atmospheric pressure lx 10
Hydrogen plasma irradiation was performed for 60 minutes under the following conditions: -''Torr, substrate bias voltage -1000V, substrate temperature 300'C, and ion current 'l mA/ctB.As a result, the surface carbon was modified to hard carbon by Raman scattering spectroscopy. Furthermore, using the IsN resonance nuclear reaction method, it was found that hydrogen was present at a depth of about 8 to 2 atom% from the surface to a depth of about 0.05 mm.
It has been confirmed that it exists.

その後さらにイオン化蒸着法により、メタンガスを原料
として気圧I X 10−”Torr、基材バイアス電
圧−800■、基材温度300°C、イオン電流2 m
A / c+fl、の条件で60分間硬質炭素膜をコー
ティングした。この膜の水素含有量は27atom%で
あり、電子線回折像はハローパターンを示した。
Thereafter, using methane gas as a raw material, an atmospheric pressure of I x 10-''Torr, a substrate bias voltage of -800cm, a substrate temperature of 300°C, and an ion current of 2m were further applied using an ionization vapor deposition method.
The hard carbon film was coated for 60 minutes under the conditions of A/c+fl. The hydrogen content of this film was 27 atom%, and the electron beam diffraction image showed a halo pattern.

ラマンスペクトルでは1580cnr’付近と1360
an−’付近に広いピークを示した。
The Raman spectrum is around 1580cnr' and 1360cnr'
A broad peak was observed near an-'.

この試料は、表面が基材表面と等しく滑らかで、かつ−
様にコーティングされていた。この表面を9 Hの鉛筆
で引っ掻いても膜の剥離や傷が生じなかった。同じくス
テンレス製のビンセットで引っ掻くと、溝ができた。こ
れは基材の鉄が塑性変形をして溝状にへこんだためで、
この場合でも硬質炭素膜の剥離は認められなかった。
This sample has a smooth surface equal to the base material surface, and -
It was coated like that. Even when this surface was scratched with a 9H pencil, no peeling or scratching of the film occurred. When scratched with the same stainless steel bottle set, grooves were formed. This is because the iron base material undergoes plastic deformation and becomes groove-shaped.
Even in this case, no peeling of the hard carbon film was observed.

実施例3 厚み6 mmのコバルト(99,99%)板の鏡面仕上
げ面に、イオン浸炭法により、メタンガスを原料として
気圧I X 10−”Torr、 a材バイアス電圧1
000V、l材温度800°C、イオン電流3m^/c
+d 、の条件で10分間蒸着し、浸炭を行った。この
結果浸炭と同時に約0.09μm厚の黒鉛膜が基材の表
面に析出した。基材温度が高いために、界面から約0.
6 mmの深さにわたってコバルト中へ浸炭がずずんで
いることが、試料断面を電子線プローブマイクロアナラ
イザーで分析することによりIii認された。
Example 3 A mirror-finished surface of a cobalt (99.99%) plate with a thickness of 6 mm was coated with ion carburization using methane gas as a raw material at an atmospheric pressure of I x 10-” Torr and a material bias voltage of 1.
000V, material temperature 800°C, ion current 3m^/c
+d for 10 minutes, and carburization was performed. As a result, a graphite film about 0.09 μm thick was deposited on the surface of the base material simultaneously with carburization. Due to the high base material temperature, approximately 0.0 mm is removed from the interface.
It was confirmed by analyzing the cross section of the sample with an electron beam probe microanalyzer that the carburization was extending into the cobalt over a depth of 6 mm.

次にこの試料面に水素ガスを原料として気圧IX I 
O−”Torr、基材バイアス電圧−1000V、基材
温度300°C、イオン電流3 mA / c+d、の
条件で60分間水素プラズマ照射した。その結果ラマン
散乱分光により表面炭素が硬質炭素に改質されているこ
とが判り、さら番?5N共鳴核反応法により表面から約
0.05μmの深さにわたって水素が7〜2atom%
存在していることが確認された。
Next, the atmospheric pressure IX I is applied to this sample surface using hydrogen gas as a raw material.
Hydrogen plasma irradiation was performed for 60 minutes under the following conditions: O-'' Torr, substrate bias voltage -1000V, substrate temperature 300°C, and ion current 3mA/c+d.As a result, the surface carbon was modified to hard carbon by Raman scattering spectroscopy. It was found that 7 to 2 atom% of hydrogen was present at a depth of approximately 0.05 μm from the surface using Saraban-5N resonance nuclear reaction method.
It has been confirmed that it exists.

その後さらにイオン化蒸着法により、メタンガスを原料
として気圧I X 10−2Torr、基材バイアス電
圧−800■、基材温度300 ’C、イオン電?A 
3 mへ/ a+1 、の条件で60分間硬質炭素膜を
コーティングした。この膜の水素含有量は25atom
%であり、電子線回折像はハローパターンを示−した。
Thereafter, the ionization vapor deposition method was performed using methane gas as a raw material at an atmospheric pressure of I x 10-2 Torr, a base material bias voltage of -800 cm, a base material temperature of 300'C, and an ion conductor. A
The hard carbon film was coated for 60 minutes under the conditions of 3 m/a+1. The hydrogen content of this film is 25 atoms
%, and the electron beam diffraction image showed a halo pattern.

ラマンスペクトルでは1580cm−’付近と1360
c+n−’付近に広いピークを示した。
In the Raman spectrum, it is around 1580 cm-' and 1360 cm-'.
A broad peak was observed near c+n-'.

この試料は、表面が基材表面と等しく滑らかで、かつ−
様にコーティングされていた。この表面を9Hの鉛筆で
引っ掻いても膜の剥離や傷が生じなかった。同じくステ
ンレス製のビンセットで引っ掻くと、溝ができた。これ
は基材のコバルトが塑性変形をして溝状にへこんだため
で、この場合でも硬質炭素膜の剥離は認められなかった
This sample has a smooth surface equal to the base material surface, and -
It was coated like that. Even when this surface was scratched with a 9H pencil, no peeling or scratching of the film occurred. When scratched with the same stainless steel bottle set, grooves were formed. This is because the cobalt base material was plastically deformed and recessed in the shape of a groove, and even in this case, no peeling of the hard carbon film was observed.

実施例4 厚み10mmのfJ−12%コバルト−15%モリブデ
ン合金板の鏡面仕上げ面に、イオン浸炭法により、メタ
ンガスを原料として気圧I X 10− zTorr、
基材バイアス電圧−1000V、基材温度700°C、
イオン電流2mA/cni、の条件で10分間蒸着し、
浸炭を行った。この結果浸炭と同時に約0.08μm厚
の黒鉛膜が基材の表面に析出した。基材温度が高いため
に、界面から約0.6 mmの深さにわたって合金中へ
浸炭がすすんでいることが、試料断面を電子線プローブ
マイクロアナライザーで分析することにより確認された
Example 4 The mirror-finished surface of a fJ-12% cobalt-15% molybdenum alloy plate with a thickness of 10 mm was coated with an air pressure of I x 10-zTorr using methane gas as a raw material by ion carburizing.
Base material bias voltage -1000V, base material temperature 700°C,
Vapor deposition was performed for 10 minutes at an ionic current of 2 mA/cni,
Carburizing was performed. As a result, a graphite film about 0.08 μm thick was deposited on the surface of the base material simultaneously with carburization. It was confirmed by analyzing the cross section of the sample with an electron beam probe microanalyzer that carburization progressed into the alloy to a depth of approximately 0.6 mm from the interface due to the high base material temperature.

次にこの試料面に水素ガスを原料として気圧IX 10
−3Torr、基材バイアス電圧−tooo v、基材
温度300 ”C、イオン電流3mA/c+fl、の条
件で60分間水素プラズマ照射した。その結果ラマン散
乱分光により表面炭素が硬質炭素に改質されていること
が判り、さらに15N共鳴核反応法により表面から約0
.05μmの深さにわたって水素が8〜2atom%存
在していることが確認された。
Next, the sample surface is heated to an atmospheric pressure of IX 10 using hydrogen gas as a raw material.
Hydrogen plasma irradiation was performed for 60 minutes under the following conditions: -3 Torr, substrate bias voltage -too much V, substrate temperature 300"C, and ion current 3 mA/c+fl. As a result, the surface carbon was modified into hard carbon by Raman scattering spectroscopy. It was found that approximately 0
.. It was confirmed that 8 to 2 atom% of hydrogen existed over a depth of 0.05 μm.

その後さらにイオン化蒸着法により、メタンガスを原料
とした気圧I X 10−”Torr、基材バイアス電
圧−800V、基材温度300 ’C、イオン電流3 
m A / co!、の条件で60分間硬質炭素膜をコ
ーティングした。この膜の水素含有量は26atom%
であり、電子線回折像はハローパターンを示した。
Thereafter, using methane gas as a raw material, an atmospheric pressure of I x 10-''Torr, a substrate bias voltage of -800V, a substrate temperature of 300'C, and an ion current of 3
mA/co! The hard carbon film was coated for 60 minutes under the following conditions. The hydrogen content of this film is 26 atom%
The electron diffraction image showed a halo pattern.

ラマンスペクトルでは1580cm−’付近と1360
c+n−’付近に広いピークを示した。
In the Raman spectrum, it is around 1580 cm-' and 1360 cm-'.
A broad peak was observed near c+n-'.

この試料は、表面が基材表面と等しく滑らかで、かつ−
様にコーティングされていた。この表面を9Hの鉛筆で
引っ掻いても膜の剥離や傷が生じなかった。同じくジル
コニアセラミックス製のピンセットで引っ掻くと、溝が
できた。これは基材の合金が塑性変形をして溝状にへこ
んだためで、この場合でも硬質炭素膜の剥離は認められ
なかった。
This sample has a smooth surface equal to the base material surface, and -
It was coated like that. Even when this surface was scratched with a 9H pencil, no peeling or scratching of the film occurred. When scratched with tweezers also made of zirconia ceramics, a groove was created. This is because the base alloy was plastically deformed and recessed in the shape of a groove, and even in this case, no peeling of the hard carbon film was observed.

なお、実施例1.2.3及び4において、浸炭及び水素
プラズマ処理を施さなかった場合はいずれの膜も剥離し
た。
In addition, in Examples 1.2.3 and 4, when carburization and hydrogen plasma treatment were not performed, all films peeled off.

[発明の効果1 本発明により、潤滑性、耐摩耗性、耐腐食性に優れた硬
質炭素膜を、これまで直接コーティングすることが困難
であった鉄、コバルトあるいはこれらの合金等の様々な
材質の金属材料に、強い付着力でコーティングすること
ができるようになり、潤滑性コーティングや耐摩耗用コ
ーティングとしての用途が拓けた。
[Effect of the invention 1] The present invention enables a hard carbon film with excellent lubricity, wear resistance, and corrosion resistance to be applied to various materials such as iron, cobalt, or alloys thereof, which have been difficult to coat directly. It has become possible to coat metal materials with strong adhesion, opening up applications as lubricious coatings and anti-wear coatings.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はイオン化蒸着装置の原理図である。■は基材、
2はグリッド、3はフィラメント、4は電磁石、5は原
料ガス導入管である。
FIG. 1 is a diagram showing the principle of an ionization vapor deposition apparatus. ■ is the base material,
2 is a grid, 3 is a filament, 4 is an electromagnet, and 5 is a raw material gas introduction pipe.

Claims (2)

【特許請求の範囲】[Claims] (1)金属基材に浸炭処理を施した後、該基材の表面に
水素プラズマ処理を施し、その後、硬質炭素膜を被覆す
ることを特徴とする硬質炭素膜のコーティング方法。
(1) A method for coating a hard carbon film, which comprises carburizing a metal base material, then subjecting the surface of the base material to hydrogen plasma treatment, and then coating the base material with a hard carbon film.
(2)金属基材への浸炭方法が、イオン浸炭法である請
求項1に記載された硬質炭素膜のコーティング方法。
(2) The method of coating a hard carbon film according to claim 1, wherein the method of carburizing the metal substrate is an ion carburizing method.
JP63275484A 1988-10-31 1988-10-31 Hard carbon film coating method Expired - Fee Related JP2689146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63275484A JP2689146B2 (en) 1988-10-31 1988-10-31 Hard carbon film coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63275484A JP2689146B2 (en) 1988-10-31 1988-10-31 Hard carbon film coating method

Publications (2)

Publication Number Publication Date
JPH02122075A true JPH02122075A (en) 1990-05-09
JP2689146B2 JP2689146B2 (en) 1997-12-10

Family

ID=17556166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63275484A Expired - Fee Related JP2689146B2 (en) 1988-10-31 1988-10-31 Hard carbon film coating method

Country Status (1)

Country Link
JP (1) JP2689146B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2682125A1 (en) * 1991-10-07 1993-04-09 Nitruvid PROCESSING PROCESS FOR DEPOSITING A CARBON LAYER IN A STEAM PHASE ON THE SURFACE OF A METAL PART AND A PART THUS OBTAINED.
FR2705692A1 (en) * 1993-05-27 1994-12-02 Balzers Hochvakuum Method for increasing the wear resistance of the surface of a part and part treated according to this method.
US5455081A (en) * 1990-09-25 1995-10-03 Nippon Steel Corporation Process for coating diamond-like carbon film and coated thin strip
EP0703303A1 (en) * 1994-07-27 1996-03-27 Balzers Sa Corrosion and wear resistant substrate and method of manufacture
EP0731190A1 (en) * 1995-03-08 1996-09-11 General Motors Corporation Process for the formation of carbon coatings
JPH1030679A (en) * 1996-07-13 1998-02-03 Nissin Electric Co Ltd Part for automobile and manufacture thereof
US6468617B1 (en) 1993-07-20 2002-10-22 Semiconductor Energy Laboratory Co., Ltd. Apparatus for fabricating coating and method of fabricating the coating
US6835523B1 (en) 1993-05-09 2004-12-28 Semiconductor Energy Laboratory Co., Ltd. Apparatus for fabricating coating and method of fabricating the coating
JP2008144227A (en) * 2006-12-08 2008-06-26 Shimane Pref Gov Carburizing method and apparatus
JP2010248572A (en) * 2009-04-15 2010-11-04 Toyota Motor Corp Titanium-based material and production method of the same, and fuel cell separator
WO2012014507A1 (en) * 2010-07-29 2012-02-02 株式会社田中 Titanium metal wear-resistant member

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5701713B2 (en) * 2005-05-18 2015-04-15 トヨタ自動車株式会社 Carburized metal material
JP5674180B2 (en) * 2008-12-02 2015-02-25 日本パーカライジング株式会社 Method for surface modification of stainless steel materials

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5455081A (en) * 1990-09-25 1995-10-03 Nippon Steel Corporation Process for coating diamond-like carbon film and coated thin strip
US5308707A (en) * 1991-10-07 1994-05-03 Nitruvid Treatment process for depositing a layer of carbon in vapour phase on the surface of a metal article and article thus obtained
FR2682125A1 (en) * 1991-10-07 1993-04-09 Nitruvid PROCESSING PROCESS FOR DEPOSITING A CARBON LAYER IN A STEAM PHASE ON THE SURFACE OF A METAL PART AND A PART THUS OBTAINED.
US6835523B1 (en) 1993-05-09 2004-12-28 Semiconductor Energy Laboratory Co., Ltd. Apparatus for fabricating coating and method of fabricating the coating
FR2705692A1 (en) * 1993-05-27 1994-12-02 Balzers Hochvakuum Method for increasing the wear resistance of the surface of a part and part treated according to this method.
US6468617B1 (en) 1993-07-20 2002-10-22 Semiconductor Energy Laboratory Co., Ltd. Apparatus for fabricating coating and method of fabricating the coating
EP0703303A1 (en) * 1994-07-27 1996-03-27 Balzers Sa Corrosion and wear resistant substrate and method of manufacture
EP0731190A1 (en) * 1995-03-08 1996-09-11 General Motors Corporation Process for the formation of carbon coatings
JPH1030679A (en) * 1996-07-13 1998-02-03 Nissin Electric Co Ltd Part for automobile and manufacture thereof
JP2008144227A (en) * 2006-12-08 2008-06-26 Shimane Pref Gov Carburizing method and apparatus
JP2010248572A (en) * 2009-04-15 2010-11-04 Toyota Motor Corp Titanium-based material and production method of the same, and fuel cell separator
WO2012014507A1 (en) * 2010-07-29 2012-02-02 株式会社田中 Titanium metal wear-resistant member
JP2012031459A (en) * 2010-07-29 2012-02-16 Tanaka:Kk Titanium metal wear-resistant member
US9376742B2 (en) 2010-07-29 2016-06-28 Tanaka Limited Wear-resistant member made of titanium metal

Also Published As

Publication number Publication date
JP2689146B2 (en) 1997-12-10

Similar Documents

Publication Publication Date Title
JP3660866B2 (en) Method and apparatus for forming hard carbon film
JPH02122075A (en) Coating method with hard carbon film
US5541003A (en) Articles having diamond-like protective thin film
US5827613A (en) Articles having diamond-like protective film and method of manufacturing the same
EP0474369A1 (en) Diamond-like carbon coatings
US5707717A (en) Articles having diamond-like protective film
JP3187487B2 (en) Article with diamond-like thin film protective film
JP2837700B2 (en) Method for forming diamond-like thin film
JP3034241B1 (en) Method of forming high hardness and high adhesion DLC film
JP5360603B2 (en) Method for producing amorphous carbon-coated member
JPH02125861A (en) Formation of coating film on surface of material to be treated
JP3016748B2 (en) Method for depositing carbon-based high-performance material thin film by electron beam excited plasma CVD
JP2018048393A (en) Method for coating conductive component, and coating for conductive component
JPH07268607A (en) Article having diamondlike carbon thin film and its production
JP2001192206A (en) Method for manufacturing amorphous carbon-coated member
JP3130094B2 (en) Mold with diamond-like protective film
JP3056827B2 (en) Article having a diamond-like carbon protective film and method for producing the same
JPH03166370A (en) Hard carbon film coating method
JP2003013200A (en) Hard carbon film and manufacturing method therefor
JPH0445287A (en) Material coated with hard carbon film and production thereof
JPH01122912A (en) Method for coating graphite material with diamond-like carbon
JPH0912397A (en) Sintered hard film coated member and its production
JPH062937B2 (en) Method for manufacturing surface-coated steel
Sidelev et al. Stripping of carbon coatings in radio-frequency inductively coupled plasma of H2/Ar
JPH05124875A (en) Article having diamond-like thin-film protective film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees