JPH07233416A - Production of building low yield ratio ts (tensile strength) 590n/mm2 class steel tube by cold forming - Google Patents

Production of building low yield ratio ts (tensile strength) 590n/mm2 class steel tube by cold forming

Info

Publication number
JPH07233416A
JPH07233416A JP2534394A JP2534394A JPH07233416A JP H07233416 A JPH07233416 A JP H07233416A JP 2534394 A JP2534394 A JP 2534394A JP 2534394 A JP2534394 A JP 2534394A JP H07233416 A JPH07233416 A JP H07233416A
Authority
JP
Japan
Prior art keywords
steel
less
steel pipe
cold forming
steel tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2534394A
Other languages
Japanese (ja)
Inventor
Yuzuru Yoshida
譲 吉田
Hiroshi Tamehiro
博 為広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2534394A priority Critical patent/JPH07233416A/en
Publication of JPH07233416A publication Critical patent/JPH07233416A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To secure a low yield ratio and to improve the productivity and economical efficiency by limiting working conditions at the time of tube making using a hot rolled steel tube with a specified compsn. subjected to hardening and tempering treatment. CONSTITUTION:A steel having a compsn. contg., by weight, 0.04 to 0.11% C, <=0.5% Si, 0.6 to 1.6% Mn, <=0.03% P, <=0.1% S, 0.7 to 1.2% Cu, 0.30 to 1.00% Ni, 0.05 to 0.50% Cr, 0.05 to 0.30% Mo, 0.005 to 0.25% Ti, <=0.06% Al and 0.001 to 0.006% N, furthermore satisfying the conditions in Di shown by the formula, and the balance Fe with inevitable impurities is subjected to hot rolling and is thereafter subjected to air cooling or forced cooling. After that, it is reheated to a temp. of the Ac3 or above and is thereafter subjected to hardening or hardening and tempering. By the use of this steel plate, it is formed into a steel tube by cold forming in the range of t/D (t: plate thickness and D: the outer diameter of the steel tube) <=10%, which is thereafter reheated to the temp. range of 650 to 750 deg.C and is annealed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、建築、土木分野におい
て各種構造物に用いる冷間成形による低降伏比TS59
0N/mm2 級鋼管の製造法に関する。
The present invention relates to a low yield ratio TS59 by cold forming used for various structures in the fields of construction and civil engineering.
The present invention relates to a method for manufacturing a 0 N / mm 2 class steel pipe.

【0002】[0002]

【従来の技術】一般的に、鋼材に対して冷間加工を加え
ると、加工硬化によりYP(降伏点)、TSが上昇し、
その際TSに比べてYPの上昇が大きいため降伏比(以
下YRと呼ぶ)も上昇してしまう。このため、冷間成形
による鋼管は降伏後の塑性変形能力が小さく、建築構造
物には適用し難いという欠点があった。
2. Description of the Related Art Generally, when cold working is applied to a steel material, YP (yield point) and TS rise due to work hardening,
At that time, since the increase in YP is larger than that in TS, the yield ratio (hereinafter referred to as YR) also increases. Therefore, the cold-formed steel pipe has a small plastic deformation ability after yielding, and is difficult to apply to a building structure.

【0003】一方、低YR鋼管の製造法としては、遠心
鋳造法、鋼管を焼入れ、焼戻しする方法などがあるが、
遠心鋳造法はその生産性の低さおよび経済性の面で、ま
た鋼管を焼入れ、焼戻しする方法ではその経済性および
鋼管の寸法精度の面で、鋼板を冷間成形することにより
製造した鋼管と比較して劣っていた。
On the other hand, as a method of manufacturing a low YR steel pipe, there are a centrifugal casting method, a method of quenching and tempering a steel tube, and the like.
The centrifugal casting method is low in productivity and economical efficiency, and the method of quenching and tempering a steel tube is economical and dimensional accuracy of the steel tube. It was inferior in comparison.

【0004】[0004]

【発明が解決しようとする課題】本発明は、冷間成形に
よるYRの低い鋼管の製造法を提供することを目的とす
るものである。本発明により製造した鋼管は、低YR
で、かつ高い生産性、経済性および寸法精度を有する。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for manufacturing a steel pipe having a low YR by cold forming. The steel pipe manufactured according to the present invention has a low YR.
And has high productivity, economy and dimensional accuracy.

【0005】[0005]

【課題を解決するための手段】本発明は、前述の課題を
解決して目的を達成するもので、その要旨とするところ
は下記のとおりである。 (1)重量比でC:0.04〜0.11%、Si:0.
5%以下、Mn:0.6〜1.6%、P:0.03%以
下、S:0.01%以下、Cu:0.7〜1.2%、N
i:0.30〜1.00%、Cr:0.05〜0.50
%、Mo:0.05〜0.30%、Ti:0.005〜
0.025%、Al:0.06%以下、N:0.001
〜0.006%を含有し、さらに、Di≡0.367√
C(1+0.7Si)(1+3.33Mn)(1+0.
35Cu)(1+0.36Ni)(1+2.16Cr)
(1+3Mo)(1+1.7V)(1+1.77Al)
=1.5〜2.5を満足し、残部が鉄および不可避的不
純物からなる鋼を熱間圧延した後、空冷あるいは制御冷
却を行い、Ac3 以上の温度に再加熱して焼入れあるい
は焼入れ、焼戻しを行い、得られた鋼板にt/D(t:
板厚、D:鋼管外径)≦10%の範囲で冷間成形を施し
て鋼管を製作し、次いで650〜750℃の温度範囲に
再加熱して焼ならしすることを特徴とする冷間成形によ
る建築用低降伏比TS(引張強度)590N/mm2
鋼管の製造法。
Means for Solving the Problems The present invention solves the above-mentioned problems and achieves the object, and the gist thereof is as follows. (1) C: 0.04 to 0.11% by weight, Si: 0.
5% or less, Mn: 0.6 to 1.6%, P: 0.03% or less, S: 0.01% or less, Cu: 0.7 to 1.2%, N
i: 0.30 to 1.00%, Cr: 0.05 to 0.50
%, Mo: 0.05 to 0.30%, Ti: 0.005 to
0.025%, Al: 0.06% or less, N: 0.001
˜0.006%, and further Di≡0.367√
C (1 + 0.7Si) (1 + 3.33Mn) (1 + 0.
35Cu) (1 + 0.36Ni) (1 + 2.16Cr)
(1 + 3Mo) (1 + 1.7V) (1 + 1.77Al)
= 1.5 to 2.5, and hot rolling the steel with the balance being iron and unavoidable impurities, followed by air cooling or controlled cooling and reheating to a temperature of Ac 3 or higher for quenching or quenching, After tempering, the obtained steel sheet was t / D (t:
Cold forming characterized by cold forming in the range of plate thickness, D: steel pipe outer diameter) ≦ 10% to produce a steel pipe, and then reheating to a temperature range of 650 to 750 ° C. to normalize Manufacturing method of low yield ratio TS (tensile strength) 590 N / mm 2 class steel pipe for building by molding.

【0006】(2)重量比でC:0.04〜0.11
%、Si:0.5%以下、Mn:0.6〜1.6%、
P:0.03%以下、S:0.01%以下、Cu:0.
7〜1.2%、Ni:0.30〜1.00%、Cr:
0.05〜0.50%、Mo:0.05〜0.30%、
Ti:0.005〜0.025%、Al:0.06%以
下、N:0.001〜0.006%を含有し、さらに、
Nb:0.005〜0.03%、V:0.01〜0.0
5%、Ca:0.001〜0.006%の1種または2
種以上を含有し、さらに、Di≡0.367√C(1+
0.7Si)(1+3.33Mn)(1+0.35C
u)(1+0.36Ni)(1+2.16Cr)(1+
3Mo)(1+1.7V)(1+1.77Al)=1.
5〜2.5を満足し、残部が鉄および不可避的不純物か
らなる鋼を熱間圧延した後空冷あるいは制御冷却を行
い、Ac3 以上の温度に再加熱して焼入れあるいは焼入
れ、焼戻しを行い、得られた鋼板にt/D(t:板厚、
D:鋼管外径)≦10%の範囲で冷間成形を施して鋼管
を製作し、次いで650〜750℃の温度範囲に再加熱
して焼ならしすることを特徴とする冷間成形による建築
用低降伏比TS(引張強度)590N/mm2 級鋼管の
製造法。
(2) C: 0.04 to 0.11 by weight ratio
%, Si: 0.5% or less, Mn: 0.6 to 1.6%,
P: 0.03% or less, S: 0.01% or less, Cu: 0.
7-1.2%, Ni: 0.30-1.00%, Cr:
0.05 to 0.50%, Mo: 0.05 to 0.30%,
Ti: 0.005 to 0.025%, Al: 0.06% or less, N: 0.001 to 0.006%, and
Nb: 0.005-0.03%, V: 0.01-0.0
5%, Ca: 0.001 to 0.006% of 1 type or 2
Containing more than one species, and further, Di≡0.367√C (1+
0.7Si) (1 + 3.33Mn) (1 + 0.35C
u) (1 + 0.36Ni) (1 + 2.16Cr) (1+
3 Mo) (1 + 1.7 V) (1 + 1.77 Al) = 1.
Steel satisfying 5 to 2.5 and the balance being iron and unavoidable impurities is hot-rolled, then air-cooled or controlled-cooled, and reheated to a temperature of Ac 3 or higher for quenching or quenching, tempering, T / D (t: plate thickness,
D: Steel pipe outer diameter) cold-formed within a range of ≦ 10% to produce a steel pipe, and then reheat to a temperature range of 650 to 750 ° C. to normalize and construct by cold forming Low yield ratio TS (tensile strength) 590N / mm 2 class steel pipe manufacturing method.

【0007】[0007]

【作用】以下、本発明について詳細に説明する。本発明
者らは、種々研究の結果、冷間加工後のYRを低くする
ためには、鋼板の成分の適正化と冷間加工後の適切な熱
処理(焼ならし)を組み合わせることが必要であること
を知見した。
The present invention will be described in detail below. As a result of various studies, the inventors of the present invention need to combine the optimization of the components of the steel sheet with an appropriate heat treatment (normalizing) after cold working in order to reduce YR after cold working. I found that there is.

【0008】本発明の要点は、(1)冷間加工に供する
鋼板の成分および製造法の限定と、(2)その鋼板を冷
間加工した後の熱処理による材質制御技術にある。ま
ず、本発明の出発鋼の成分範囲限定理由について説明す
る。Cは母材の強度を確保するために必要であるが、多
量に含有させると冷間成形後に施す熱処理(焼ならし)
で著しい靱性劣化が生じる。このような観点から、C含
有量は0.04〜0.11%の範囲とした。
The main points of the present invention are (1) the limitation of the components and manufacturing method of the steel sheet to be subjected to cold working, and (2) the material control technology by heat treatment after cold working of the steel sheet. First, the reason for limiting the component range of the starting steel of the present invention will be described. C is necessary to secure the strength of the base material, but if it is contained in a large amount, it is a heat treatment (normalizing) performed after cold forming.
Causes significant deterioration in toughness. From such a viewpoint, the C content is set to a range of 0.04 to 0.11%.

【0009】Siは溶接性、HAZ(熱影響部)靱性上
好ましくない元素であるため、その上限を0.5%とし
た。また、鋼の脱酸はAl、Tiのみでも十分であり、
Siは必ずしも添加する必要はない。Mnは強度、靱性
を確保する上で不可欠な元素であり、その下限は0.6
%である。しかし、Mn量が多すぎると溶接性、母材お
よびHAZの靱性劣化を招くため、上限を1.6%とし
た。
Since Si is an element unfavorable in terms of weldability and HAZ (heat affected zone) toughness, its upper limit was made 0.5%. Further, Al and Ti alone are sufficient for deoxidizing steel,
Si does not necessarily have to be added. Mn is an essential element for securing strength and toughness, and its lower limit is 0.6.
%. However, if the Mn content is too large, the weldability and the toughness of the base material and HAZ deteriorate, so the upper limit was made 1.6%.

【0010】本発明の出発鋼において、不純物である
P、Sをそれぞれ0.03%以下、0.01%以下とし
た理由は、母材、溶接部の低温靱性をより一層向上させ
るためである。P量の低減は粒界破壊を防止し、S量の
低減はMnSによる靱性の劣化を防止する。好ましい
P、S量は、それぞれ0.01%以下、0.005%以
下である。
In the starting steel of the present invention, the reason why the impurities P and S are 0.03% or less and 0.01% or less, respectively, is to further improve the low temperature toughness of the base material and the welded portion. . A decrease in the amount of P prevents grain boundary fracture, and a decrease in the amount of S prevents deterioration of toughness due to MnS. The preferable amounts of P and S are 0.01% or less and 0.005% or less, respectively.

【0011】CuはTS590N/mm2 級鋼管として
の特性を得るために、最低0.7%は必要である。しか
し、1.2%を超えるCuの添加ではYRを十分に低下
させることが困難となるため、その上限を1.2%とし
た。Niは、溶接性、HAZ靱性に悪影響を及ぼすこと
なく、母材の強度、靱性を向上させるほか、Cu−クラ
ックの防止にも効果がある。しかし、Ni量が0.30
%未満ではその効果はなく、また1.00%を超える添
加は、Niが極めて高価な元素であるため経済性を損な
うので、上限を1.00%とした。
Cu is required to be at least 0.7% in order to obtain characteristics as a TS590N / mm 2 class steel pipe. However, addition of Cu in excess of 1.2% makes it difficult to sufficiently reduce YR, so the upper limit was made 1.2%. Ni improves the strength and toughness of the base metal without adversely affecting the weldability and HAZ toughness, and is also effective in preventing Cu-cracks. However, the Ni content is 0.30
If it is less than 0.1%, the effect is not obtained, and if it exceeds 1.00%, since Ni is an extremely expensive element and the economic efficiency is impaired, the upper limit was made 1.00%.

【0012】Crは母材、溶接部の強度を高める元素
で、最低でも0.05%は必要である。しかし、Cr量
が多すぎると溶接性やHAZ靱性を著しく劣化させるの
で、その上限を0.50%とした。Moは強度、靱性を
共に向上させる元素で、TS590N/mm2 級鋼管に
は0.05%以上添加することが必要である。しかし、
Mo量が多すぎると溶接性、HAZ靱性上好ましくない
ため、その上限を0.30%とした。
[0012] Cr is an element that enhances the strength of the base material and the welded portion, and at least 0.05% is necessary. However, if the amount of Cr is too large, the weldability and HAZ toughness are significantly deteriorated, so the upper limit was made 0.50%. Mo is an element that improves both strength and toughness, and it is necessary to add 0.05% or more to the TS590N / mm 2 class steel pipe. But,
If the amount of Mo is too large, the weldability and HAZ toughness are unfavorable, so the upper limit was made 0.30%.

【0013】Tiは炭窒化物を形成してHAZ靱性を向
上させる。Al量が少ない場合、Tiの酸化物を形成し
てHAZ靱性を向上させるが、Ti量が0.005%未
満では効果がなく、また0.025%を超えるとHAZ
靱性に好ましくない影響があるため、その添加範囲を
0.005〜0.025%に限定する。Alは一般に脱
酸上鋼に含まれる元素であるが、SiおよびTiによっ
ても脱酸は行われるので、本発明においては、その下限
は限定しない。しかし、Al量が多くなると鋼の清浄度
が悪くなり、溶接部の靱性を劣化させるので、上限を
0.06%とした。
Ti forms carbonitrides and improves HAZ toughness. When the amount of Al is small, an oxide of Ti is formed to improve the HAZ toughness, but when the amount of Ti is less than 0.005%, there is no effect, and when it exceeds 0.025%, the HAZ is increased.
Since it has an unfavorable effect on toughness, its addition range is limited to 0.005 to 0.025%. Al is generally an element contained in deoxidized upper steel, but since deoxidation is also performed by Si and Ti, the lower limit is not limited in the present invention. However, if the amount of Al increases, the cleanliness of the steel deteriorates and the toughness of the welded portion deteriorates, so the upper limit was made 0.06%.

【0014】Nは一般的に不可避的不純物として鋼中に
含まれるものであるが、Nb、Vと結合して炭窒化物を
形成して強度を増加させ、またTiNを形成して前述の
ようにHAZの性質を高める。このためN量として最低
0.001%が必要である。しかしながら、N量が多く
なるとHAZ靱性の劣化や連続鋳造スラブの表面キズの
発生等を助長するので、その上限を0.006%とし
た。
N is generally contained in steel as an unavoidable impurity, but it is combined with Nb and V to form a carbonitride to increase strength, and TiN is formed to form the above-mentioned material. Enhances the properties of HAZ. Therefore, the N content must be at least 0.001%. However, if the amount of N increases, it deteriorates the HAZ toughness and the occurrence of surface flaws in the continuously cast slab, so the upper limit was made 0.006%.

【0015】本発明の出発鋼の基本成分は以上のとおり
であり、これにより十分に目的を達成することができる
ものであるが、以下に述べる元素、即ちNb、V、Ca
を選択的に添加することにより、強度、靱性の特性向上
について、さらに好ましい結果が得られる。以下に、選
択添加元素の添加量について説明する。
The basic components of the starting steel of the present invention are as described above, and the objects can be sufficiently achieved by this, but the elements described below, that is, Nb, V and Ca.
By selectively adding, more preferable results can be obtained with respect to the improvement of strength and toughness characteristics. The added amount of the selective addition element will be described below.

【0016】Nbは微細な炭窒化物を形成し、強度を増
加させ、またHAZ靱性を向上させる。しかし、Nb量
が0.005%未満では効果が少なく、また0.03%
を超えるとYRを十分に低下させることが困難となる。
VはNbとほぼ同じ効果を持つ元素であるが、Nbに比
較して析出硬化能はやや劣る。V量が0.01%未満で
は効果が少なく、また0.05%を超えるとYRを十分
に低下させることが困難となる。
Nb forms fine carbonitrides to increase strength and improve HAZ toughness. However, when the amount of Nb is less than 0.005%, the effect is small, and 0.03%
When it exceeds, it becomes difficult to sufficiently reduce YR.
V is an element having almost the same effect as Nb, but its precipitation hardening ability is slightly inferior to that of Nb. If the V content is less than 0.01%, the effect is small, and if it exceeds 0.05%, it becomes difficult to sufficiently reduce YR.

【0017】Caは硫化物(MnS)の形態を制御し、
シャルピー吸収エネルギーを増加させ、また低温靱性を
向上させる効果がある。しかし、Ca量が0.001%
未満では実用上効果がなく、また0.006%を超える
とCaO、CaSが多量に生成して大型介在物となり、
鋼の靱性のみならず清浄度も害し、溶接性、耐ラメラテ
ィア性にも悪影響を与えるので、Ca添加量の範囲を
0.001〜0.006%とした。
Ca controls the morphology of sulfide (MnS),
It has the effects of increasing Charpy absorbed energy and improving low temperature toughness. However, the amount of Ca is 0.001%
If it is less than 0.006%, there is no practical effect, and if it exceeds 0.006%, a large amount of CaO and CaS is formed to become a large inclusion,
Not only the toughness of steel but also the cleanliness is impaired, and the weldability and lamella tear resistance are adversely affected. Therefore, the range of the amount of Ca added is set to 0.001 to 0.006%.

【0018】また、鋼管でのYRを所定の値(80%)
以下にするためには、鋼の焼入れ性を適切な範囲に調整
することが必要であり、このため、Di≡0.367√
C(1+0.7Si)(1+3.33Mn)(1+0.
35Cu)(1+0.36Ni)(1+2.16Cr)
(1+3Mo)(1+1.7V)(1+1.77Al)
で示される指標にて1.5から2.5の範囲に調整する
必要がある。その理由は、この値が1.5未満では後述
する焼ならし熱処理にてYRが十分に低下せず、また
2.5を超えるとTS590N/mm2 級鋼管として強
度超過並びに著しい靱性劣化が起こるためである。
Also, the YR of the steel pipe is set to a predetermined value (80%).
In order to achieve the following, it is necessary to adjust the hardenability of steel to an appropriate range, and therefore Di≡0.367√
C (1 + 0.7Si) (1 + 3.33Mn) (1 + 0.
35Cu) (1 + 0.36Ni) (1 + 2.16Cr)
(1 + 3Mo) (1 + 1.7V) (1 + 1.77Al)
It is necessary to adjust within the range of 1.5 to 2.5 with the index indicated by. The reason is that if this value is less than 1.5, the YR will not be sufficiently reduced by the normalizing heat treatment described below, and if it exceeds 2.5, the TS590N / mm 2 class steel pipe will have excessive strength and a significant deterioration in toughness. This is because.

【0019】鋼板の製造方法は、上記成分に限定した鋼
を熱間圧延した後、空冷あるいは制御冷却を行い、Ac
3 以上の温度に再加熱して焼入れあるいは焼入れ、焼戻
しを行う。この場合、熱間圧延後の冷却は、空冷、制御
冷却のどちらでも必要特性は得られるが、制御冷却の方
が組織の細粒化による靱性向上という点で好ましい。次
に、冷間成形(t/D≦10%)後の熱処理(焼なら
し)温度は、冷間加工での歪を十分に開放し、YRの低
下を行わせるため、その下限温度を650℃とする。ま
た、高すぎる温度での焼ならしは、冷間歪の開放だけで
なく、強度不足、特にCuの析出硬化が低下することに
よる著しいYPの低下を招くため、その上限温度を75
0℃とする。
The method for producing a steel sheet is as follows. After hot-rolling the steel limited to the above components, air cooling or controlled cooling is performed to obtain an Ac
Reheat to a temperature of 3 or higher and quench or quench and temper. In this case, as for the cooling after hot rolling, the required characteristics can be obtained by either air cooling or controlled cooling, but controlled cooling is preferable from the viewpoint of improving the toughness due to grain refinement of the structure. Next, the heat treatment (normalizing) temperature after cold forming (t / D ≦ 10%) has a lower limit temperature of 650 in order to sufficiently release the strain in cold working and lower YR. ℃. Further, normalizing at a temperature that is too high causes not only release of cold strain but also insufficient strength, particularly significant decrease in YP due to decrease in precipitation hardening of Cu, so the upper limit temperature is set to 75.
Set to 0 ° C.

【0020】[0020]

【実施例】周知の転炉、連続鋳造、厚板工程により鋼板
を製造し、その強度、靱性などを調査した。表1の1〜
7に本発明例、8〜15に比較例の化学成分を示す。表
2に本発明例と比較例の鋼管製造条件とその機械的性質
を示す。
EXAMPLE A steel plate was manufactured by a known converter, continuous casting, and thick plate process, and its strength and toughness were investigated. 1 of Table 1
7 shows the chemical composition of the present invention, and 8-15 shows the chemical composition of the comparative example. Table 2 shows the steel pipe manufacturing conditions of the present invention example and the comparative example and their mechanical properties.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】表2の本発明例1〜7は、母材の強度、Y
R、靱性がバランスよく達成できている。これに対し
て、比較例8ではDi値が低いため、YRが高くなって
いる。比較例9はC量が高く、鋼管での靱性が劣化して
いる。比較例10ではCu量が低く、鋼管で強度不足と
なっている。また、比較例11ではCu量が高く、鋼管
でのYRが高くなっている。また、比較例12ではDi
値が高すぎるため、鋼管の強度が規格強度を超過し、靱
性も劣化している。比較例13では焼ならし温度が63
0℃と低いため、鋼管のYRが高くなっている。比較例
14では焼ならし温度が770℃と高いため、YSが著
しく低くなり規格強度を下回っている。比較例15では
t/Dが12%と高いため、鋼管のYRが高くなってい
る。
Inventive Examples 1 to 7 in Table 2 are the strength of the base material, Y
A good balance of R and toughness is achieved. On the other hand, in Comparative Example 8, since the Di value is low, YR is high. In Comparative Example 9, the C content is high, and the toughness of the steel pipe is deteriorated. In Comparative Example 10, the amount of Cu is low, and the strength of the steel pipe is insufficient. Further, in Comparative Example 11, the amount of Cu is high and the YR of the steel pipe is high. In Comparative Example 12, Di
Since the value is too high, the strength of the steel pipe exceeds the specified strength and the toughness is deteriorated. In Comparative Example 13, the normalizing temperature was 63.
Since it is as low as 0 ° C, the YR of the steel pipe is high. In Comparative Example 14, since the normalizing temperature is as high as 770 ° C., YS is significantly low and is below the standard strength. In Comparative Example 15, since t / D is as high as 12%, the YR of the steel pipe is high.

【0024】[0024]

【発明の効果】本発明により製造した鋼管は、YRが低
く、降伏後の塑性変形能力に優れた鋼管である。その結
果、建築、橋梁等の構造物の安全性を大きく高めること
ができる。
INDUSTRIAL APPLICABILITY The steel pipe manufactured according to the present invention has a low YR and an excellent plastic deformation capacity after yielding. As a result, the safety of structures such as buildings and bridges can be greatly improved.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量比で C :0.04〜0.11%、 Si:0.5%以下、 Mn:0.6〜1.6%、 P :0.03%以下、 S :0.01%以下、 Cu:0.7〜1.2%、 Ni:0.30〜1.00%、 Cr:0.05〜0.50%、 Mo:0.05〜0.30%、 Ti:0.005〜0.025%、 Al:0.06%以下、 N :0.001〜0.006% を含有し、さらに Di≡0.367√C(1+0.7Si)(1+3.3
3Mn)(1+0.35Cu)(1+0.36Ni)
(1+2.16Cr)(1+3Mo)(1+1.7V)
(1+1.77Al)=1.5〜2.5 を満足し、残部が鉄および不可避的不純物からなる鋼を
熱間圧延した後、空冷あるいは制御冷却を行い、Ac3
以上の温度に再加熱して焼入れあるいは焼入れ、焼戻し
を行い、得られた鋼板にt/D(t:板厚、D:鋼管外
径)≦10%の範囲で冷間成形を施して鋼管を製作し、
次いで650〜750℃の温度範囲に再加熱して焼なら
しすることを特徴とする冷間成形による建築用低降伏比
TS(引張強度)590N/mm2 級鋼管の製造法。
1. By weight ratio, C: 0.04 to 0.11%, Si: 0.5% or less, Mn: 0.6 to 1.6%, P: 0.03% or less, S: 0.0. 01% or less, Cu: 0.7 to 1.2%, Ni: 0.30 to 1.00%, Cr: 0.05 to 0.50%, Mo: 0.05 to 0.30%, Ti: 0.005 to 0.025%, Al: 0.06% or less, N: 0.001 to 0.006%, and Di ≡ 0.367√C (1 + 0.7Si) (1 + 3.3)
3Mn) (1 + 0.35Cu) (1 + 0.36Ni)
(1 + 2.16Cr) (1 + 3Mo) (1 + 1.7V)
(1 + 1.77Al) = 1.5 to 2.5 is satisfied, and the balance is steel and iron and inevitable impurities are hot-rolled, followed by air cooling or controlled cooling to obtain Ac 3
Reheating to the above temperature and quenching or quenching and tempering, the obtained steel sheet is subjected to cold forming within the range of t / D (t: sheet thickness, D: steel pipe outer diameter) ≤ 10% to form a steel pipe. Made,
Then, a method for manufacturing a low yield ratio TS (tensile strength) 590 N / mm 2 class steel pipe for construction by cold forming, which comprises reheating to a temperature range of 650 to 750 ° C. and normalizing.
【請求項2】 重量比で C :0.04〜0.11%、 Si:0.5%以下、 Mn:0.6〜1.6%、 P :0.03%以下、 S :0.01%以下、 Cu:0.7〜1.2%、 Ni:0.30〜1.00%、 Cr:0.05〜0.30%、 Mo:0.05〜0.30%、 Ti:0.005〜0.025%、 Al:0.06%以下、 N :0.001〜0.006% を含有し、さらに Nb:0.005〜0.03%、 V:0.01〜0.05%、 Ca:0.001〜0.006% の1種または2種以上を含有し、さらに Di≡0.367√C(1+0.7Si)(1+3.3
3Mn)(1+0.35Cu)(1+0.36Ni)
(1+2.16Cr)(1+3Mo)(1+1.7V)
(1+1.77Al)=1.5〜2.5 を満足し、残部が鉄および不可避的不純物からなる鋼を
熱間圧延した後、空冷あるいは制御冷却を行い、Ac3
以上の温度に再加熱して焼入れあるいは焼入れ、焼戻し
を行い、得られた鋼板にt/D(t:板厚、D:鋼管外
径)≦10%の範囲で冷間成形を施して鋼管を製作し、
次いで650〜750℃の温度範囲に再加熱して焼なら
しすることを特徴とする冷間成形による建築用低降伏比
TS(引張強度)590N/mm2 級鋼管の製造法。
2. A weight ratio of C: 0.04 to 0.11%, Si: 0.5% or less, Mn: 0.6 to 1.6%, P: 0.03% or less, S: 0.0. 01% or less, Cu: 0.7 to 1.2%, Ni: 0.30 to 1.00%, Cr: 0.05 to 0.30%, Mo: 0.05 to 0.30%, Ti: 0.005 to 0.025%, Al: 0.06% or less, N: 0.001 to 0.006%, and Nb: 0.005 to 0.03%, V: 0.01 to 0 0.05%, Ca: 0.001 to 0.006%, one or more kinds are contained, and further, Di≡0.367√C (1 + 0.7Si) (1 + 3.3
3Mn) (1 + 0.35Cu) (1 + 0.36Ni)
(1 + 2.16Cr) (1 + 3Mo) (1 + 1.7V)
(1 + 1.77Al) = 1.5 to 2.5 is satisfied, and the balance is steel and iron and inevitable impurities are hot-rolled, followed by air cooling or controlled cooling to obtain Ac 3
Reheating to the above temperature and quenching or quenching and tempering, the obtained steel sheet is subjected to cold forming within the range of t / D (t: sheet thickness, D: steel pipe outer diameter) ≤ 10% to form a steel pipe. Made,
Then, a method for manufacturing a low yield ratio TS (tensile strength) 590 N / mm 2 class steel pipe for construction by cold forming, which comprises reheating to a temperature range of 650 to 750 ° C. and normalizing.
JP2534394A 1994-02-23 1994-02-23 Production of building low yield ratio ts (tensile strength) 590n/mm2 class steel tube by cold forming Withdrawn JPH07233416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2534394A JPH07233416A (en) 1994-02-23 1994-02-23 Production of building low yield ratio ts (tensile strength) 590n/mm2 class steel tube by cold forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2534394A JPH07233416A (en) 1994-02-23 1994-02-23 Production of building low yield ratio ts (tensile strength) 590n/mm2 class steel tube by cold forming

Publications (1)

Publication Number Publication Date
JPH07233416A true JPH07233416A (en) 1995-09-05

Family

ID=12163255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2534394A Withdrawn JPH07233416A (en) 1994-02-23 1994-02-23 Production of building low yield ratio ts (tensile strength) 590n/mm2 class steel tube by cold forming

Country Status (1)

Country Link
JP (1) JPH07233416A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023093802A1 (en) * 2021-11-25 2023-06-01 宝山钢铁股份有限公司 Oil cylinder steel pipe and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023093802A1 (en) * 2021-11-25 2023-06-01 宝山钢铁股份有限公司 Oil cylinder steel pipe and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JPH0598350A (en) Production of line pipe material having high strength and low yield ratio for low temperature use
JP3247907B2 (en) High strength cold rolled steel sheet excellent in ductility and delayed fracture resistance and method for producing the same
JP3410241B2 (en) Method for producing ultra-thick H-section steel excellent in strength, toughness and weldability
JPH07109521A (en) Production of 600n/mm2 class steel tube with low yield ratio for construction use by cold forming
JP2687841B2 (en) Low yield ratio high strength steel pipe manufacturing method
JP3245224B2 (en) Manufacturing method of low yield ratio steel pipe for building by cold forming.
KR20160078844A (en) Steel sheet having excellent resistance to hydrogen induced cracking, and method of manufacturing the same
JPH07150247A (en) Production of steel tube with high strength and low yield ratio for construction use
JP2529044B2 (en) Manufacturing method of low yield ratio steel pipe for building by cold forming.
JPH07233416A (en) Production of building low yield ratio ts (tensile strength) 590n/mm2 class steel tube by cold forming
JP2529042B2 (en) Manufacturing method of low yield ratio steel pipe for building by cold forming.
JP2618563B2 (en) High strength electric resistance welded steel pipe which is hardly softened in welding heat affected zone and method of manufacturing the same
JP3245223B2 (en) Manufacturing method of low yield ratio steel pipe for building by cold forming.
JPH07188748A (en) Production of steel tube having high strength and low yield ratio for construction use
JPH06128641A (en) Production of steel tube with low yield ratio for construction use by cold forming
JPH04333526A (en) Hot rolled high tensile strength steel plate having high ductility and its production
JP3007247B2 (en) Method for producing TS590N / mm2 class high strength steel with excellent weldability and yield ratio of 80% or less
JP3426047B2 (en) Method for producing low yield ratio 590 N / mm2 class high strength steel with excellent weldability
JP3007246B2 (en) Method for producing 590 N / mm2 class high strength steel with excellent weldability and yield ratio of 80% or less
JP2529045B2 (en) Manufacturing method of low yield ratio 60kgf / mm2 grade steel pipe for construction by cold forming
KR20010062901A (en) A method for manufacturing high strength cold rolled steel sheet having superior ductility by continuous annealing
JPH05339637A (en) Production of steel pipe or square pipe having low yield ratio and excellent weatherability
JPH06264143A (en) Production of steel tube with low yield ratio for construction use by cold forming
JPH06264144A (en) Production of steel tube with low yield ratio for construction use by cold forming
JPH05339638A (en) Production of steel tube or square tube reduced in yield ratio and excellent in atmospheric corrosion resistance

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010508