JPH0723258U - Noise characteristic measuring device for light emitting device - Google Patents

Noise characteristic measuring device for light emitting device

Info

Publication number
JPH0723258U
JPH0723258U JP5792493U JP5792493U JPH0723258U JP H0723258 U JPH0723258 U JP H0723258U JP 5792493 U JP5792493 U JP 5792493U JP 5792493 U JP5792493 U JP 5792493U JP H0723258 U JPH0723258 U JP H0723258U
Authority
JP
Japan
Prior art keywords
noise
light emitting
measuring device
receiving element
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5792493U
Other languages
Japanese (ja)
Other versions
JP2597778Y2 (en
Inventor
昌利 ▲べんどう▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP1993057924U priority Critical patent/JP2597778Y2/en
Priority to US08/309,904 priority patent/US5534996A/en
Publication of JPH0723258U publication Critical patent/JPH0723258U/en
Application granted granted Critical
Publication of JP2597778Y2 publication Critical patent/JP2597778Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

(57)【要約】 【目的】 発光素子の相対強度雑音を測定する測定装置
に於いて、アベレージパワーとノイズを一つの測定系で
測定を行い、そのため、絶対値補正が不要であり、高精
度な、発光素子用雑音特性測定装置を提供する。 【構成】 受光素子1の周辺に、連続エネルギーを一定
周期の交流周波数f0 に変換する変換器を設ける。そし
て、当該変換されたアベレージパワー成分をスペクトラ
ムアナライザ5で測定する。そして、ノイズ成分とアベ
レージパワー成分とを共通の測定系で測定して、発光素
子用雑音特性測定装置を構成する。また、上述の変換器
として、受光素子1の前段に、機械的チョッパ11を設
けてもよい。また、電気的チョッパ21を設けてもよ
い。
(57) [Abstract] [Purpose] In a measuring device for measuring the relative intensity noise of light emitting elements, average power and noise are measured by one measuring system, so absolute value correction is not required and high accuracy is achieved. A noise characteristic measuring device for a light emitting device is provided. [Constitution] A converter for converting continuous energy into an AC frequency f 0 having a constant period is provided around the light receiving element 1. Then, the converted average power component is measured by the spectrum analyzer 5. Then, the noise component and the average power component are measured by a common measurement system to configure a noise characteristic measuring device for a light emitting element. Further, as the above-mentioned converter, a mechanical chopper 11 may be provided in front of the light receiving element 1. Further, the electric chopper 21 may be provided.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は発光素子の雑音を測定する場合、特に相対強度雑音(Relative Inten sity Noise :RIN) を測定する場合の、発光素子用雑音特性測定装置に関する。 The present invention relates to a noise characteristic measuring device for a light emitting element when measuring the noise of the light emitting element, particularly when measuring relative intensity noise (RIN).

【0002】[0002]

【従来の技術】[Prior art]

一般に、レーザー等の発光素子から入射した光の雑音成分を測定する場合には 、相対強度雑音を測定する必要があり、この定義式が定まっている。 従来、受光素子により電気信号に変換された雑音成分と、アベレージパワー成 分とは別々の測定器により測定がなされ、機器間の補正を行って相対強度雑音が 求められていた。 Generally, when measuring a noise component of light incident from a light emitting element such as a laser, it is necessary to measure relative intensity noise, and this definition formula is set. Conventionally, the noise component converted into an electric signal by the light receiving element and the average power component were measured by separate measuring instruments, and the relative intensity noise was obtained by correcting between the instruments.

【0003】 図4は、従来の相対強度雑音の測定装置の構成例を示すブロック図である。受 光素子1に入力した光は、電気信号に変換される。バイアスティー2に於いて分 岐し、雑音成分は、ゲインGを有する増幅器4を通り、ノイス測定用スペクトラ ムアナライザ5によって、ノイズ量が測定される。一方、バイアスティー2に於 いて分岐し、アベレージパワーは、アベレージパワーモニタ用電流計3によって 、電流量が測定される。FIG. 4 is a block diagram showing a configuration example of a conventional relative intensity noise measuring apparatus. The light input to the light receiving element 1 is converted into an electric signal. The noise component branched in the bias tee 2 passes through the amplifier 4 having the gain G, and the noise amount is measured by the spectrum analyzer 5 for measuring noise. On the other hand, the current is branched at the bias tee 2, and the average power is measured by the average power monitor ammeter 3.

【0004】 ここで、全雑音をPtotal、測定系の熱雑音をPth 、受光素子で生じるショッ ト雑音をPshとし、受光素子に流れる電流をIp とすると、相対強度雑音(RIN )は次の定義式により表される。 RIN=((Ptotal−Pth)/G−Psh)/Ip 2・R・B 但し、受光素子負荷インピーダンス又は増幅器入力インピーダンスをRとし、測 定帯域幅をBとする。Here, if total noise is P total , thermal noise of the measurement system is P th , shot noise generated in the light receiving element is P sh, and current flowing in the light receiving element is I p , relative intensity noise (RIN) Is expressed by the following defining equation. RIN = ((P total −P th ) / G−P sh ) / I p 2 · R · B However, the light receiving element load impedance or the amplifier input impedance is R, and the measurement bandwidth is B.

【0005】 上記のPtotalとPth は、増幅器を通過してスペクトラムアナライザで測定さ れる。また、Ip は、増幅器を通過しないで、電流計で測定される。このように 、ノイズ系とアベレージパワー系とは、各々別の測定器により測定されるので、 測定値は絶対値まで正確でなくてはならず、(相対値のみ正確でも、誤差を持つ )このため、絶対値補正が必要である。The above P total and P th pass through an amplifier and are measured by a spectrum analyzer. Also, I p is measured by an ammeter without passing through the amplifier. In this way, the noise system and the average power system are measured by different measuring instruments, so the measured values must be accurate to the absolute value (even if only the relative value is accurate, there is an error). Therefore, absolute value correction is necessary.

【0006】[0006]

【考案が解決しようとする課題】[Problems to be solved by the device]

従来の発光素子用雑音特性測定装置は次のような欠点をもっていた。 The conventional noise characteristic measuring device for a light emitting device has the following drawbacks.

【0007】 一般に、上述のように、相対強度雑音を測定する場合には、2系統の測定器の 絶対値補正が必要であるため、測定手順が複雑となってしまう。また、各誤差が 集積されるため、演算結果にも誤差を含んでしまう。Generally, as described above, when measuring the relative intensity noise, it is necessary to correct the absolute values of the measuring instruments of two systems, which complicates the measurement procedure. Moreover, since each error is accumulated, the calculation result also includes an error.

【0008】 本考案は、上述したような従来の技術が有する問題点に鑑みてなされるもので あって、アベレージパワーとノイズを一つの測定系で測定を行い、そのため、絶 対値補正が不要であり、高精度な、発光素子用雑音特性測定装置を提供するもの である。The present invention has been made in view of the problems of the above-described conventional techniques, and average power and noise are measured by one measurement system, and therefore absolute value correction is unnecessary. The present invention provides a highly accurate noise characteristic measuring device for light emitting devices.

【0009】[0009]

【課題を解決するための手段】[Means for Solving the Problems]

この考案によれば、発光素子の相対強度雑音を測定する測定装置に於いて、受 光素子1の周辺に、連続エネルギーを一定周期の交流周波数f0 に変換する変換 器を設ける。そして、当該変換されたアベレージパワー成分をスペクトラムアナ ライザ5で測定する。そして、ノイズ成分とアベレージパワー成分とを共通の測 定系で測定して、発光素子用雑音特性測定装置を構成する。According to the present invention, in the measuring device for measuring the relative intensity noise of the light emitting element, the converter for converting the continuous energy into the AC frequency f 0 having a constant period is provided around the light receiving element 1. Then, the converted average power component is measured by the spectrum analyzer 5. Then, the noise component and the average power component are measured by a common measurement system, and a noise characteristic measuring device for a light emitting element is configured.

【0010】 また、上述の連続エネルギーを一定周期の交流周波数f0 に変換する変換器と して、受光素子1の前段に、機械的チョッパ11を設けてもよい。そして、入射 光をチョップして、上述の発光素子用雑音特性測定装置を構成する。Further, a mechanical chopper 11 may be provided in front of the light receiving element 1 as a converter for converting the continuous energy into the AC frequency f 0 having a constant cycle. Then, the incident light is chopped to configure the above-described noise characteristic measuring device for a light emitting element.

【0011】 また、上述の連続エネルギーを一定周期の交流周波数f0 に変換する変換器と して、受光素子1の後段に、電気的チョッパ21を設けてもよい。そして、受光 電気信号をチョップして、上述の、発光素子用雑音特性測定装置を構成する。Further, an electric chopper 21 may be provided at the subsequent stage of the light receiving element 1 as a converter for converting the above continuous energy into an AC frequency f 0 having a constant period. Then, the received light electrical signal is chopped to configure the above-described noise characteristic measuring device for light emitting element.

【0012】[0012]

【作用】[Action]

本考案では、発光素子用雑音特性測定装置に於いて、アベレージパワーとノイ ズとを一つの測定系で測定しているので、絶対値補正の必要が無くなり、その相 対値がわかれば高精度な相対強度雑音の測定を行うことができる。 In the present invention, in the noise characteristic measuring device for light emitting device, the average power and the noise are measured by one measuring system, so that it is not necessary to correct the absolute value, and if the relative value is known, it is highly accurate. Relative intensity noise can be measured.

【0013】[0013]

【実施例】【Example】

本考案の実施例について図面を参照して説明する。図1は本考案の1実施例を 示すブロック図である。 An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of the present invention.

【0014】 (実施例1) 図1に於いて示すように、受光素子1の前段に、チョッパ11を配置する。チ ョッパ11は、図示の例のように、円盤の一部にスリットを設け、光が透過でき る構造にしてある。そして、ステッピング・モータ等により、この円盤を回転さ せ、周期的に透過光を断続させる。この制御は、チョッパ制御器12を設けて、 これにより行う。又、チョッパの断続状態は、チョップ信号101により、スペ クトラムアナライザ5に接続し、外部からチョッパの状態がモニタできるような 構造としている。Example 1 As shown in FIG. 1, a chopper 11 is arranged in front of the light receiving element 1. As in the illustrated example, the chopper 11 has a structure in which a slit is provided in a part of the disk so that light can be transmitted. Then, the disc is rotated by a stepping motor or the like to periodically interrupt the transmitted light. This control is performed by providing the chopper controller 12. The intermittent state of the chopper is connected to the spectrum analyzer 5 by the chop signal 101 so that the state of the chopper can be monitored from the outside.

【0015】 従って、受光素子1に入射する光は、チョッパ1の断続状態に応じて、断続す る。図3にタイムチャートを示す。チョップ信号101がオフの場合は、受光素 子1の出力は、断(受光素子の暗電流に相当)となる。チョップ信号101がオ ンの場合は、受光素子1の出力は、続(受光素子の受光電流に相当)となる。こ の受光電流には、ノイズが図示のように重畳している。Therefore, the light incident on the light receiving element 1 is intermittent according to the intermittent state of the chopper 1. FIG. 3 shows a time chart. When the chop signal 101 is off, the output of the light receiving element 1 is cut off (corresponding to the dark current of the light receiving element). When the chop signal 101 is ON, the output of the light receiving element 1 continues (corresponding to the light receiving current of the light receiving element). Noise is superimposed on the received light current as shown in the figure.

【0016】 本構成の場合、相対強度雑音(RIN)は、次の式で表すことができる。 RIN=(Ptotal−Pth−Psh)/G・kf0・Ip 2(f0)・R・B 但し、kf0はアベレージパワーをチョップ周波数f0でチョップして測定した時の 補正係数である。 (1)先ず、スペクトラムアナライザでチョップ周波数f0に於けるスペクトルを 測定し、アベレージパワーをIp 2(f0)・Rとして測定する。 (2)次に、ノイズを測定するときは、スペクトラムアナライザが有しているゲ ーテッドスイープ機能を利用して、チョップ信号をゲートに接続し、チョップ信 号がオンの時だけスイープを動作させれば、スペクトラムアナライザは連続して 、ノイズ成分を支障なく容易に測定できる。 (3)上述のように、測定系を一つにできたため、RIN 式に於けるノイズとアベ レージパワーの比(分子と分母の比)の相対値がわかるので、絶対値の補正なし に、RIN値を誤差なしに求めることができる。In the case of this configuration, the relative intensity noise (RIN) can be expressed by the following equation. RIN = (P total −P th −P sh ) / G · k f0 · I p 2 ( f0 ) · R · B However, k f0 is a correction coefficient when the average power is chopped at the chopping frequency f0. is there. (1) First, the spectrum at a chop frequency f0 is measured with a spectrum analyzer, and the average power is measured as I p 2 ( f0 ) · R. (2) Next, when measuring noise, use the gated sweep function of the spectrum analyzer to connect the chop signal to the gate, and operate the sweep only when the chop signal is on. The spectrum analyzer can continuously and easily measure the noise component without any trouble. (3) As mentioned above, since the measurement system can be integrated into one, the relative value of the ratio of noise to average power (ratio of numerator and denominator) in the RIN equation can be known. The RIN value can be obtained without error.

【0017】 (実施例2) 次に、チョッパを電気的に構成した例を図2に示す。受光素子1の後段に、チ ョッパ21を配置する。チョッパ21は、図示の例のように、スイッチ23を設 け、受光電流が通過できる構造にしてある。そして、チョッパ制御器22を設け て、チョッパ信号を発生させ、周期的にスイッチを断続させる。又、チョッパの 断続状態は、チョップ信号101により、スペクトラムアナライザ5に接続し、 外部からチョッパの状態がモニタできるような構造としている。Second Embodiment Next, an example in which a chopper is electrically configured is shown in FIG. The chopper 21 is arranged at the subsequent stage of the light receiving element 1. As in the illustrated example, the chopper 21 is provided with a switch 23 and has a structure through which a received light current can pass. Then, a chopper controller 22 is provided to generate a chopper signal and periodically switch the switch. The intermittent state of the chopper is connected to the spectrum analyzer 5 by the chop signal 101 so that the chopper state can be monitored from the outside.

【0018】 従って、受光素子1による受光電流は、チョッパ1の断続状態に応じて、断続 する。図3にタイムチャートを示す。チョップ信号101がオフの場合は、受光 素子1の出力は、断となる。チョップ信号101がオンの場合は、受光素子1の 出力は、続(受光素子の受光電流に相当)となる。この受光電流には、ノイズが 図示のように重畳している。Therefore, the light receiving current by the light receiving element 1 is intermittent according to the intermittent state of the chopper 1. FIG. 3 shows a time chart. When the chop signal 101 is off, the output of the light receiving element 1 is cut off. When the chop signal 101 is on, the output of the light receiving element 1 is continuous (corresponding to the light receiving current of the light receiving element). Noise is superimposed on the received light current as shown in the figure.

【0019】 本構成の場合も、相対強度雑音(RIN) は、実施例1の場合と同じく、次の式で 表すことができる。 RIN=(Ptotal−Pth−Psh)/G・kf0・Ip 2(f0)・R・B そして、測定系を一つにできたため、RIN 式に於けるノイズとアベレージパワー の比(分子と分母の比)の相対値がわかるので、絶対値の補正なしに、RIN 値を 誤差なしに求めることができる。Also in the case of this configuration, the relative intensity noise (RIN) can be expressed by the following equation, as in the case of the first embodiment. RIN = (P total −P th −P sh ) / G · k f0 · I p 2 ( f0 ) · R · B Then, because the measurement system can be made one, the ratio of noise and average power in the RIN equation is Since the relative value of (ratio of numerator and denominator) is known, RIN value can be obtained without error without correction of absolute value.

【0020】 以上のように、本考案による発光素子用雑音特性測定装置に於いては、アベレ ージパワーとノイズとを一つの測定系で測定しているので、絶対値補正の必要が 無くなり、その相対値がわかれば高精度な相対強度雑音の測定を行うことができ る。なお、上記説明で、チョッパは断続信号により行っているが、ミキサーを設 けて、一定の周波数と混合を行い、サンプリング波形を抽出するように構成して もよい。この場合も、上記の効果が得られる。As described above, in the light emitting device noise characteristic measuring device according to the present invention, since the average power and the noise are measured by one measuring system, it is not necessary to correct the absolute value. If the value is known, the relative intensity noise can be measured with high accuracy. In the above description, the chopper uses the intermittent signal, but a mixer may be provided to mix with a constant frequency and extract the sampling waveform. Also in this case, the above effect can be obtained.

【0021】[0021]

【考案の効果】[Effect of device]

以上説明したように本考案は構成されているので、次に記載する効果を奏する 。 Since the present invention is configured as described above, it has the following effects.

【0022】 発光素子用雑音特性測定装置に於いて、アベレージパワーとノイズとを一つの 測定系で測定するように構成したので、絶対値補正の必要が無くなり、そのため 、高精度な、発光素子用雑音特性測定装置が実現できた。In the noise characteristic measuring device for a light emitting device, since the average power and the noise are measured by one measuring system, it is not necessary to correct the absolute value. Therefore, a highly accurate light emitting device A noise characteristic measuring device was realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の実施例1の構成を示すブロック図であ
る。
FIG. 1 is a block diagram showing a configuration of a first embodiment of the present invention.

【図2】本考案の実施例2の構成を示すブロック図であ
る。
FIG. 2 is a block diagram showing a configuration of a second embodiment of the present invention.

【図3】本考案の動作を示すタイミングチャート図であ
る。
FIG. 3 is a timing chart showing the operation of the present invention.

【図4】従来の構成を示すブロック図である。FIG. 4 is a block diagram showing a conventional configuration.

【符号の説明】[Explanation of symbols]

1 受光素子 2 バイアスティー 3 電流計 4 増幅器 5 スペクトラムアナライザ 11、21 チョッパ 12、22 チョッパ制御器 23 スイッチ 101 チョップ信号 1 light receiving element 2 bias tee 3 ammeter 4 amplifier 5 spectrum analyzer 11, 21 chopper 12, 22 chopper controller 23 switch 101 chop signal

Claims (3)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 発光素子の相対強度雑音を測定する測定
装置に於いて、 受光素子(1)の周辺に、連続エネルギーを一定周期の
交流周波数(f0) に変換する変換器を設け、 当該変換されたアベレージパワー成分をスペクトラムア
ナライザ(5)で測定し、 ノイズ成分とアベレージパワー成分とを共通の測定系で
測定することを特徴とする、発光素子用雑音特性測定装
置。
1. A measuring device for measuring relative intensity noise of a light emitting element, wherein a converter for converting continuous energy into an alternating frequency (f 0 ) of a constant cycle is provided around the light receiving element (1), A noise characteristic measuring device for a light emitting element, characterized in that the converted average power component is measured by a spectrum analyzer (5), and the noise component and the average power component are measured by a common measurement system.
【請求項2】 連続エネルギーを一定周期の交流周波数
(f0) に変換する変換器として、受光素子(1)の前
段に、機械的チョッパ(11)を設けて入射光をチョッ
プする請求項1記載の、発光素子用雑音特性測定装置。
2. A mechanical chopper (11) is provided in front of the light receiving element (1) as a converter for converting continuous energy into an AC frequency (f 0 ) having a constant period, and the incident light is chopped. A noise characteristic measuring device for a light emitting device as described above.
【請求項3】 連続エネルギーを一定周期の交流周波数
(f0) に変換する変換器として、受光素子(1)の後
段に、電気的チョッパ(21)を設けて受光電気信号を
チョップする請求項1記載の、発光素子用雑音特性測定
装置。
3. An electric chopper (21) is provided after the light receiving element (1) as a converter for converting continuous energy into an AC frequency (f 0 ) of a constant cycle, and the received light electric signal is chopped. 1. The noise characteristic measuring device for a light emitting device according to 1.
JP1993057924U 1993-09-21 1993-09-30 Noise characteristic measuring device for light emitting device Expired - Fee Related JP2597778Y2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1993057924U JP2597778Y2 (en) 1993-09-30 1993-09-30 Noise characteristic measuring device for light emitting device
US08/309,904 US5534996A (en) 1993-09-21 1994-09-21 Measurement apparatus for evaluating characteristics of light emitting devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1993057924U JP2597778Y2 (en) 1993-09-30 1993-09-30 Noise characteristic measuring device for light emitting device

Publications (2)

Publication Number Publication Date
JPH0723258U true JPH0723258U (en) 1995-04-25
JP2597778Y2 JP2597778Y2 (en) 1999-07-12

Family

ID=13069560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1993057924U Expired - Fee Related JP2597778Y2 (en) 1993-09-21 1993-09-30 Noise characteristic measuring device for light emitting device

Country Status (1)

Country Link
JP (1) JP2597778Y2 (en)

Also Published As

Publication number Publication date
JP2597778Y2 (en) 1999-07-12

Similar Documents

Publication Publication Date Title
JP2814362B2 (en) High precision voltage measuring device
JPS61292067A (en) Method for measuring electric energy
JPH0723258U (en) Noise characteristic measuring device for light emitting device
JP2560772B2 (en) Deterioration detection device for lightning arrester
JPH0754823Y2 (en) Light intensity measuring device
JP2564009Y2 (en) Spectrometer
EP1235075A3 (en) Power measurement device for motors
JPH05264352A (en) Spectorophotometer
JP2525982Y2 (en) Swept optical interferometer
SU615515A1 (en) Arrangement for monitoring and registering vehicle performance ratings
SU1474562A1 (en) Device for measuring deviations of direct sequence voltages
KR19990032201A (en) DC motor speed measuring instrument and measuring method
JPS6063471A (en) Resonance impedance measuring device
JP3618543B2 (en) A high-resolution electric field sweeper in a mass spectrometer.
JP3469369B2 (en) Electric measuring instrument
JPH0526811A (en) Chemical analysis method
SU808972A1 (en) Device for measuring frequency response of input resistance module in a powered distribution network
JPH0792209A (en) Watthour meter
SU1401386A1 (en) Device for measuring weak currents
RU2368875C1 (en) Measuring-calculating complex of periodical control and testing of light sources for radiation of plants
SU1465837A1 (en) Method of testing integrated circuits
JPH0458143A (en) Water measuring instrument for grain
KR0146125B1 (en) Selection ground relay
JPH03172775A (en) Method for calibrating level of waveform analysis device
SU1030667A2 (en) Device for remote measuring of temperature

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990413

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees