JPH07226531A - Manufacture of photodetector - Google Patents

Manufacture of photodetector

Info

Publication number
JPH07226531A
JPH07226531A JP6017113A JP1711394A JPH07226531A JP H07226531 A JPH07226531 A JP H07226531A JP 6017113 A JP6017113 A JP 6017113A JP 1711394 A JP1711394 A JP 1711394A JP H07226531 A JPH07226531 A JP H07226531A
Authority
JP
Japan
Prior art keywords
insulating film
type
mesa
organic compound
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6017113A
Other languages
Japanese (ja)
Inventor
Katsuhiko Mitani
克彦 三谷
Kazuhiro Ito
和弘 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6017113A priority Critical patent/JPH07226531A/en
Publication of JPH07226531A publication Critical patent/JPH07226531A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To manufacture a mesa type photodetector wherein a parasitic capacitance caused by an electrode and a pad part is small. CONSTITUTION:A mask 106 composed of a first insulating film 105 is formed on a P-type semiconductor layer and an N-type semiconductor layer formed on a substrate 100. By using the mask 106, a part of the P-type and the N-type semiconductor layers is etched, and a mesa type photodetection region is formed. By a CVD method wherein organic compound of silicon is used as raw material, a second insulating film 107 is deposited, and the mesa is filled and flatened to form a P-type electrode and a pad 108, and an N-type electrode and a pad 109 in desired regions. Since at least a part of the P-type electrode and the pad and the N-type electrode and the pad is formed on the second insulating film capable of forming a thick film, a parasitic capacitance caused by the electrode part is reduced. Further the element surface is flattened and the subsequent process is facilitated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、大容量,高速光伝送・
通信用の受光素子の製造方法に係り、特に、実装及び配
線に必要となる電極・配線或いは該パッド部に起因する
寄生容量の小さい受光素子の製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to large capacity, high speed optical transmission.
The present invention relates to a method for manufacturing a light receiving element for communication, and more particularly to a method for manufacturing a light receiving element having a small parasitic capacitance due to electrodes / wirings required for mounting and wiring or the pad portion.

【0002】[0002]

【従来の技術】光ファイバを用いた光伝送用の受信デバ
イスとしてInGaAs/InP系のp−i−nフォト
ダイオード(pin−PD)、特にアレー状に配置され
たp−i−n PDが注目されている。フォトダイオー
ドにより変換された電気信号は電子回路部に入力され
る。受光素子と電子回路部の接続は、例えば、ジャーナ
ルオブ ライトウェーブ テクノロジ 第8巻 第6号
(1990年)883−887頁に記載されているよう
に受光素子の電極パッドと電子回路部或いは中継用マウ
ント上のパッドを実装技術を用いてワイヤにより接続し
ている。受光素子側のパッド部はメサ形状のダイオード
構造に被覆した絶縁膜上に設けられている。
2. Description of the Related Art As a receiving device for optical transmission using an optical fiber, an InGaAs / InP-based pin photodiode (pin-PD), particularly a pin PD arranged in an array, is noted. Has been done. The electric signal converted by the photodiode is input to the electronic circuit unit. The connection between the light receiving element and the electronic circuit section is performed, for example, as described in Journal of Light Wave Technology Vol. 8, No. 6 (1990), pages 883-887, and the electrode pad of the light receiving element and the electronic circuit section or for relaying. The pads on the mount are connected by wires using mounting technology. The pad portion on the side of the light receiving element is provided on the insulating film that covers the mesa-shaped diode structure.

【0003】[0003]

【発明が解決しようとする課題】上述した従来技術で
は、絶縁膜上に設けたパッド部に起因する容量がフォト
ダイオードの寄生容量として加わる。このようなフォト
ダイオードの寄生容量は次世代の高速光伝送システムを
実現する上で大きな障害となるため、極力低減する必要
がある。
In the above-mentioned conventional technique, the capacitance due to the pad portion provided on the insulating film is added as the parasitic capacitance of the photodiode. Since the parasitic capacitance of such a photodiode becomes a major obstacle in realizing a next-generation high-speed optical transmission system, it is necessary to reduce it as much as possible.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、半導体基板上に形成したpn接合を含む半導体層を
形成し、第1の絶縁膜マスクを用いて前記半導体層をエ
ッチングすることによりメサ形状のダイオード構造を形
成する。その後、前記第1の絶縁膜マスクを含む前記メ
サ形状ダイオード上に珪素の有機化合物の分解酸化反応
を用いて第2の絶縁膜を形成する。その後、前記メサ形
状のフォトダイオードの周辺上の前記第2の絶縁膜上に
電極・配線及びパッドの一部を形成する。
In order to solve the above problems, a semiconductor layer including a pn junction formed on a semiconductor substrate is formed, and the semiconductor layer is etched using a first insulating film mask. A mesa-shaped diode structure is formed. Then, a second insulating film is formed on the mesa-shaped diode including the first insulating film mask by using a decomposition and oxidation reaction of an organic compound of silicon. After that, a part of electrodes / wirings and pads is formed on the second insulating film on the periphery of the mesa-shaped photodiode.

【0005】[0005]

【作用】本発明では、珪素の有機化合物の分解酸化反応
を用いて形成した第2の絶縁膜の膜内応力は小さいた
め、通常のSiH4 ガス等を用いたCVDによる絶縁膜
に比べ厚い絶縁膜の形成(1〜2μm以上)が可能にな
る。従って、第2の絶縁膜上に設けたパッド部に起因す
る寄生容量は第2の絶縁膜の膜厚に反比例して低減す
る。また、珪素の有機化合物を用いた第2の絶縁膜の形
成を第1の絶縁膜マスクを含むメサ形状ダイオード上に
対して行っている。このとき第2の絶縁膜の堆積速度
は、メサ周辺の半導体層が露出した領域上の方が第1の
絶縁膜上に比べて大きいことが実験的に確かめられてい
る。そのため、メサ周辺上の第2の絶縁膜が第1の絶縁
膜上の第2の絶縁膜に比べて相対的に厚くでき、第2の
絶縁膜を用いてメサ形状のダイオード構造を埋込み、自
己平坦化することが可能になる。
In the present invention, since the second insulating film formed by the decomposition and oxidation reaction of the organic compound of silicon has a small stress in the film, the second insulating film is thicker than the insulating film formed by ordinary CVD using SiH 4 gas or the like. A film can be formed (1 to 2 μm or more). Therefore, the parasitic capacitance due to the pad portion provided on the second insulating film is reduced in inverse proportion to the film thickness of the second insulating film. Further, the formation of the second insulating film using the organic compound of silicon is performed on the mesa-shaped diode including the first insulating film mask. At this time, it is experimentally confirmed that the deposition rate of the second insulating film is higher on the exposed region of the semiconductor layer around the mesa than on the first insulating film. Therefore, the second insulating film on the periphery of the mesa can be made relatively thicker than the second insulating film on the first insulating film, and the second insulating film is used to embed the mesa-shaped diode structure. It becomes possible to flatten.

【0006】[0006]

【実施例】【Example】

(実施例1)本発明の一実施例として、InGaAs/
InP系のp−i−n型PDの製造に適用した例を図1
および図2に示す素子断面の工程図を用いて説明する。
InP基板100上にMOCVD法を用いてn型InP
層101,低濃度InGaAs層102及び低濃度In
P層103を順次積層した(図1(a))。次いで、p型
ドーパントとなるZnを低濃度InP層103の所望の
領域に選択的に導入してp型InP層104を形成した
(図1(b))。Znの導入方法は通常、気相拡散法或い
はイオン注入法が一般的に用いられる。次に通常のCV
D法を用いて第1の絶縁膜105を形成した(図1
(c))。次いで、通常のリソグラフィとエッチング技術
を用いてp型InP層104を含む領域に第1の絶縁膜
105よりなるマスク106を形成した(図1(d))。
(Example 1) As one example of the present invention, InGaAs /
FIG. 1 shows an example applied to the production of an InP-based pin PD.
And it demonstrates using the process drawing of the element cross section shown in FIG.
N-type InP is formed on the InP substrate 100 using the MOCVD method.
Layer 101, low concentration InGaAs layer 102 and low concentration In
P layers 103 were sequentially laminated (FIG. 1A). Then, Zn serving as a p-type dopant was selectively introduced into a desired region of the low-concentration InP layer 103 to form a p-type InP layer 104 (FIG. 1B). As a method for introducing Zn, a vapor phase diffusion method or an ion implantation method is generally used. Then a normal CV
The first insulating film 105 was formed by using the D method (see FIG. 1).
(c)). Then, a mask 106 made of the first insulating film 105 was formed in the region including the p-type InP layer 104 by using ordinary lithography and etching techniques (FIG. 1 (d)).

【0007】次に、第1の絶縁膜105よりなるマスク
106を用いて低濃度InP層103及び低濃度InGa
As層102をエッチングしてメサ形状のダイオードを
形成した(図2(a))。次いで、通常のリソグラフィと
エッチング技術をn型InP層101の所望の領域を除
去して素子間の分離を行った(図2(b))。その後、T
EOS(tetraethoxysilane)とO3ガスを原料とした常圧
CVD法を用いて第2の絶縁膜107を堆積して、メサ
形状を埋め込み平坦化した(図2(c))。このときのメ
サ周辺上の第2の絶縁膜107の厚さは約4μmであ
る。また、CVD原料ガスはTEOSガスは液体原料を
バブリングして供給し、O3 はオゾン発生装置を用いて
2〜6%濃度のO3をO2ベースで供給した。このときの
基板温度は300〜350℃と低温でありInP表面の
損傷・劣化は起こらない。次いで通常のリソグラフィ、
エッチング及びリフトオフ技術を用いてp型電極及びパ
ッド108とn型電極及びパッド109を形成する(図
2(d))。
Next, the low-concentration InP layer 103 and the low-concentration InGa are formed using the mask 106 made of the first insulating film 105.
The As layer 102 was etched to form a mesa-shaped diode (FIG. 2A). Then, the desired regions of the n-type InP layer 101 were removed by the usual lithography and etching techniques to separate the elements (FIG. 2B). Then T
A second insulating film 107 was deposited by the atmospheric pressure CVD method using EOS (tetraethoxysilane) and O 3 gas as raw materials, and the mesa shape was embedded and flattened (FIG. 2C). At this time, the thickness of the second insulating film 107 on the periphery of the mesa is about 4 μm. Further, CVD source gas TEOS gas is supplied by bubbling a liquid raw material, O 3 is the O 3 2-6% strength by using the ozone generator was fed at a O 2 basis. At this time, the substrate temperature is as low as 300 to 350 ° C., and the InP surface is not damaged or deteriorated. Then normal lithography,
The p-type electrode and pad 108 and the n-type electrode and pad 109 are formed by using the etching and lift-off technique (FIG. 2D).

【0008】本実施例では、厚さ約4μmの第2の絶縁
膜107上にp型電極及びパッド108とn型電極及び
パッド109を形成しており、電極及びパッドに起因す
る寄生容量は通常のSiH4 ガスを用いた絶縁膜(厚さ
0.5〜0.7μm)上に形成された場合に比べて一桁程
度小さくできる。
In this embodiment, the p-type electrode and pad 108 and the n-type electrode and pad 109 are formed on the second insulating film 107 having a thickness of about 4 μm, and the parasitic capacitance due to the electrode and pad is usually It can be reduced by about an order of magnitude as compared with the case where it is formed on an insulating film (thickness of 0.5 to 0.7 μm) using SiH 4 gas.

【0009】また、TEOS(tetraethoxysilane)とO3
ガスを原料とした常圧CVD法で形成した第2の絶縁膜
107の膜厚は半導体の露出したメサ周辺上(約4μ
m)に比べて第1の絶縁膜105よりなるマスク106
上では2μmと小さくなる。即ち、第2の絶縁膜107
の堆積速度の下地材料依存性によりメサ形状が自己平坦
化埋め込みされている。このような素子表面の平坦化は
特に後に続くリソグラフィ工程を容易にする。
In addition, TEOS (tetraethoxysilane) and O 3
The film thickness of the second insulating film 107 formed by the atmospheric pressure CVD method using gas as a raw material is about 4 μm above the exposed mesa of the semiconductor.
The mask 106 made of the first insulating film 105 as compared with FIG.
Above, it becomes as small as 2 μm. That is, the second insulating film 107
The mesa shape is embedded by self-planarization due to the dependency of the deposition rate of the underlayer on the underlying material. Such planarization of the device surface facilitates especially the subsequent lithography process.

【0010】本実施例ではTEOS/O3 系の常圧CV
D法により第2の絶縁膜107を形成してメサ形状を埋
め込み平坦化しているが、その他のSiを含む有機化合
物、例えば、B〔OSi(CH3)33 を用いたCVD法
を用いても同様にメサ形状の埋め込み平坦化が可能であ
る。また、第2の絶縁膜107用のCVD原料ガスとし
てSiを含む有機化合物とO3を用いているが、さらに
F系ガス、例えば、CF4 等を添加することにより第2
の絶縁膜107の膜質の向上を図ることが可能である。
また、上述した実施例では第2の絶縁膜107の形成は
TEOS/O3 系の常圧CVD法の一方式で形成してい
るが、TEOSガスを用いたプラズマCVD法等も併用
した複数方式による多層絶縁膜よりなる第2の絶縁膜1
07の形成が可能である。
In this embodiment, the TEOS / O 3 system atmospheric pressure CV is used.
Although the second insulating film 107 is formed by the D method and the mesa shape is embedded and planarized, a CVD method using another organic compound containing Si, for example, B [OSi (CH 3 ) 3 ] 3 is used. However, the mesa shape can be similarly embedded and flattened. Further, although an organic compound containing Si and O 3 are used as a CVD source gas for the second insulating film 107, it is possible to add a F-based gas such as CF 4 to obtain a second
It is possible to improve the film quality of the insulating film 107.
Further, although the second insulating film 107 is formed by one method of the TEOS / O 3 -based atmospheric pressure CVD method in the above-described embodiment, a plurality of methods are also used together with the plasma CVD method using TEOS gas. Second insulating film 1 made of a multi-layer insulating film
It is possible to form 07.

【0011】(実施例2)本発明の第2の実施例とし
て、InGaAs/InP系のp−i−n型PDの製造
に適用した例を図3および図4に示す素子断面の工程概
略図を用いて説明する。InP基板200上にMOCV
D法を用いてn型InP層201,低濃度InGaAs
層202及び低濃度InP層203を順次積層した(図
3(a))。次いで、p型ドーパントとなるZnを低濃度
InP層203の所望の領域に選択的に導入してp型I
nP層204を形成した(図3(b))。Znの導入方法
は通常、気相拡散法或いはイオン注入法が一般的に用い
られる。次に通常のリソグラフィとリフトオフ法を用い
てp型InP層204を含む領域に第1の絶縁膜205
よりなるマスク206を形成した(図3(c))。次に、第
1の絶縁膜205よりなるマスク206を用いて低濃度
InP層203及び低濃度InGaAs層202202
をエッチングしてメサ形状のダイオードを形成した(図
3(d))。
(Embodiment 2) As a second embodiment of the present invention, an example applied to the manufacture of an InGaAs / InP-based pin type PD is shown in FIG. 3 and FIG. Will be explained. MOCV on InP substrate 200
N-type InP layer 201, low concentration InGaAs using the D method
The layer 202 and the low-concentration InP layer 203 were sequentially stacked (FIG. 3A). Then, Zn serving as a p-type dopant is selectively introduced into a desired region of the low-concentration InP layer 203 to p-type I.
An nP layer 204 was formed (FIG. 3 (b)). As a method for introducing Zn, a vapor phase diffusion method or an ion implantation method is generally used. Next, the first insulating film 205 is formed in the region including the p-type InP layer 204 by using ordinary lithography and lift-off method.
To form a mask 206 (FIG. 3C). Next, the low-concentration InP layer 203 and the low-concentration InGaAs layer 202202 are formed by using the mask 206 made of the first insulating film 205.
Was etched to form a mesa-shaped diode (FIG. 3D).

【0012】次いで、通常のリソグラフィとエッチング
技術をn型InP層201の所望の領域を除去して素子
間の分離を行った(図4(a))。その後、TEOS(te
traethoxysilane)とO3 ガスを原料とした常圧CVD法
を用いて第2の絶縁膜207を堆積して、メサ形状を埋
め込み平坦化した(図4(b))。このときのメサ周辺上
の第2の絶縁膜207の厚さは約4μmである。また、
CVD原料ガスはTEOSガスは液体原料をバブリング
して供給し、O3 はオゾン発生装置を用いて2〜6%濃
度のO3をO2ベースで供給した。このときの基板温度は
300〜350℃と低温でありInP表面の損傷・劣化
は起こらない。次いで通常のリソグラフィ,エッチング
及びリフトオフ技術を用いてp型電極及びパッド208
とn型電極及びパッド209を形成する(図4(c))。
Then, the desired regions of the n-type InP layer 201 were removed by the usual lithography and etching technique to separate the elements (FIG. 4A). After that, TEOS (te
The second insulating film 207 was deposited by the atmospheric pressure CVD method using traethoxysilane) and O 3 gas as raw materials, and the mesa shape was embedded and flattened (FIG. 4B). At this time, the thickness of the second insulating film 207 on the periphery of the mesa is about 4 μm. Also,
CVD source gas TEOS gas is supplied by bubbling a liquid raw material, O 3 is the O 3 2-6% strength by using the ozone generator was fed at a O 2 basis. At this time, the substrate temperature is as low as 300 to 350 ° C., and the InP surface is not damaged or deteriorated. Then p-type electrodes and pads 208 are formed using conventional lithography, etching and lift-off techniques.
Then, the n-type electrode and the pad 209 are formed (FIG. 4C).

【0013】本実施例では、厚さ約4μmの第2の絶縁
膜207上にp型電極及びパッド208とn型電極及び
パッド209を形成しており、電極及びパッドに起因す
る寄生容量は通常のSiH4 ガスを用いた絶縁膜(厚さ
0.5〜0.7μm)上に形成された場合に比べて一桁程
度小さくできる。
In this embodiment, the p-type electrode and pad 208 and the n-type electrode and pad 209 are formed on the second insulating film 207 having a thickness of about 4 μm, and the parasitic capacitance due to the electrode and the pad is usually It can be reduced by about an order of magnitude as compared with the case where it is formed on an insulating film (thickness of 0.5 to 0.7 μm) using SiH 4 gas.

【0014】また、TEOS(tetraethoxysilane)とO3
ガスを原料とした常圧CVD法で形成した第2の絶縁膜
207の膜厚は半導体の露出したメサ周辺上(約4μ
m)に比べて第1の絶縁膜205よりなるマスク206
上では2μmと小さくなる。即ち、第2の絶縁膜207
の堆積速度の下地材料依存性によりメサ形状が自己平坦
化埋め込みされている。このような素子表面の平坦化は
後に続くリソグラフィ工程を容易にする。
In addition, TEOS (tetraethoxysilane) and O 3
The film thickness of the second insulating film 207 formed by the atmospheric pressure CVD method using gas as a raw material is about 4 μm above the exposed mesa of the semiconductor.
The mask 206 made of the first insulating film 205 as compared with FIG.
Above, it becomes as small as 2 μm. That is, the second insulating film 207
The mesa shape is embedded by self-planarization due to the dependency of the deposition rate of the underlayer on the underlying material. Such planarization of the device surface facilitates the subsequent lithography process.

【0015】上述した実施例ではTEOS/O3 系の常
圧CVD法により第2の絶縁膜207を形成してメサ形
状を埋め込み平坦化しているが、その他のSiを含む有
機化合物、例えば、B〔OSi(CH3)33 を用いた
CVD法を用いても同様にメサ形状の埋め込み平坦化が
可能である。また、第2の絶縁膜207用のCVD原料
ガスとしてSiを含む有機化合物とO3 を用いている
が、さらにF系ガス例えばCF4 等を添加することによ
り第2の絶縁膜207の膜質の向上を図ることが可能で
ある。また、上述した実施例では第2の絶縁膜206の
形成はTEOS/O3 系の常圧CVD法の一方式で形成
しているが、TEOSガスを用いたプラズマCVD法等
も併用した複数方式による多層絶縁膜よりなる第2の絶
縁膜206の形成が可能である。
In the above-mentioned embodiment, the second insulating film 207 is formed by the TEOS / O 3 -based atmospheric pressure CVD method to fill the mesa shape and flatten it. However, other organic compounds containing Si, for example, B Even if the CVD method using [OSi (CH 3 ) 3 ] 3 is used, the mesa shape can be similarly embedded and flattened. Although an organic compound containing Si and O 3 are used as the CVD source gas for the second insulating film 207, the quality of the second insulating film 207 can be improved by further adding an F-based gas such as CF 4 . It is possible to improve. Further, although the second insulating film 206 is formed by one method of the TEOS / O 3 -based atmospheric pressure CVD method in the above-described embodiments, a plurality of methods are also used together with the plasma CVD method using TEOS gas. It is possible to form the second insulating film 206 made of a multi-layer insulating film.

【0016】(実施例3)本発明の第3の実施例とし
て、マッハ・ツェンダー型光変調器の製造への適用例を
図5および図6に示したマッハ・ツェンダー型光変調器
の電極形成部断面の工程図を用いて説明する。n型In
P基板300上にn型InAlAs層301,GaAs
/AlGaAs系の多重量子井戸層302,p型InA
lAs層303及びp型InGaAs層304を順次積
層した(図5(a))。次に通常のCVD法を用いて第1
の絶縁膜305を形成した(図5(b))。次いで通常の
リソグラフィとエッチング技術を用いて第1の絶縁膜3
05よりなるマスク306を形成した(図5(c))。
(Third Embodiment) As a third embodiment of the present invention, an example of application to manufacture of a Mach-Zehnder interferometer type optical modulator shown in FIGS. 5 and 6 is used to form electrodes of the Mach-Zehnder interferometer type optical modulator. The process will be described with reference to process drawings of cross sections. n-type In
N-type InAlAs layer 301, GaAs on P substrate 300
/ AlGaAs multiple quantum well layer 302, p-type InA
The 1As layer 303 and the p-type InGaAs layer 304 were sequentially laminated (FIG. 5A). Next, using the normal CVD method, the first
The insulating film 305 was formed (FIG. 5B). Then, the first insulating film 3 is formed by using ordinary lithography and etching techniques.
A mask 306 made of No. 05 was formed (FIG. 5C).

【0017】その後、マスク306を用いてリアクティ
ブ・イオン・ビーム・エッチング(RIBE)法によりp
型InGaAs層304,p型InAlAs層303及
びGaAs/AlGaAs系の多重量子井戸層302を
エッチングして垂直断面形状を有する導波路を形成した
(図6(a))。次に、TEOS(tetraethoxysilane)とO
3 ガスを原料とした常圧CVD法を用いて第2の絶縁膜
307を堆積して、導波路を埋め込み平坦化した(図6
(b))。このときの導波路周辺上の第2の絶縁膜307
の厚さは約2μmである。次いで、通常のリソグラフィ
とリフトオフ技術によりp型InGaAs層304上に
p型電極308形成し、通常の蒸着法によりn型InP
基板300の裏面にn型電極309を形成した(図6
(c))。
After that, using the mask 306, p-type etching is performed by the reactive ion beam etching (RIBE) method.
-Type InGaAs layer 304, p-type InAlAs layer 303, and GaAs / AlGaAs-based multiple quantum well layer 302 were etched to form a waveguide having a vertical cross-sectional shape.
(FIG. 6 (a)). Next, TEOS (tetraethoxysilane) and O
A second insulating film 307 was deposited by the atmospheric pressure CVD method using 3 gas as a raw material, and the waveguide was buried and flattened (FIG. 6).
(b)). The second insulating film 307 on the periphery of the waveguide at this time
Has a thickness of about 2 μm. Next, a p-type electrode 308 is formed on the p-type InGaAs layer 304 by a normal lithography and lift-off technique, and an n-type InP is formed by a normal vapor deposition method.
An n-type electrode 309 was formed on the back surface of the substrate 300 (see FIG. 6).
(c)).

【0018】本実施例ではp型電極308の一部及びパ
ッド部が厚い第2の絶縁膜(膜厚2μm)307上に形
成されるためp型電極308に起因する寄生容量が小さ
くできる。
In this embodiment, a part of the p-type electrode 308 and the pad portion are formed on the thick second insulating film (film thickness 2 μm) 307, so that the parasitic capacitance due to the p-type electrode 308 can be reduced.

【0019】また、本実施例ではマッハ・ツェンダー型
光変調器の製造に適用した例を説明したが、類似の構造
を有する導波路型デバイスにおける電極寄生容量の低減
に有効である。
In addition, although the example applied to the manufacture of the Mach-Zehnder type optical modulator has been described in the present embodiment, it is effective for reducing the electrode parasitic capacitance in the waveguide type device having a similar structure.

【0020】[0020]

【発明の効果】本発明によれば、第1の絶縁膜マスクを
具備したメサ形状或いは導波路形状の周辺を厚い第2の
絶縁膜で埋め込み自己平坦化しているため、第2の絶縁
膜上に形成された電極或いはパッド部に起因する寄生容
量を大幅に低減できる。その結果、メサ形状或いは導波
路形状を有するデバイス及びデバイスを採用したシステ
ムの高速・高性能化を図ることが可能である。また、第
2の絶縁膜により自己平坦化されたデバイス表面は引き
続く工程、特にリソグラフィ工程を容易にする。
According to the present invention, since the periphery of the mesa shape or the waveguide shape having the first insulating film mask is filled with the thick second insulating film and is self-planarized, the second insulating film is formed on the second insulating film. It is possible to significantly reduce the parasitic capacitance due to the electrode or the pad portion formed on. As a result, it is possible to achieve high speed and high performance of a device having a mesa shape or a waveguide shape and a system employing the device. In addition, the device surface self-planarized by the second insulating film facilitates subsequent steps, particularly lithography steps.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の第1工程の断面図。FIG. 1 is a sectional view of a first step of Example 1 of the present invention.

【図2】本発明の実施例1の第2工程の断面図。FIG. 2 is a sectional view of a second step of the first embodiment of the present invention.

【図3】本発明の実施例2の第1工程の断面図。FIG. 3 is a sectional view of a first step of Example 2 of the present invention.

【図4】本発明の実施例2の第2工程の断面図。FIG. 4 is a sectional view of a second step of the second embodiment of the present invention.

【図5】本発明の実施例3の第1工程の断面図。FIG. 5 is a sectional view of a first step of Example 3 of the present invention.

【図6】本発明の実施例3の第2工程の断面図。FIG. 6 is a sectional view of a second step of Example 3 of the present invention.

【符号の説明】[Explanation of symbols]

100…InP基板、101…n型InP層、102…
低濃度InGaAs層、103…低濃度InP層、10
4…p型InP層、105…第1の絶縁膜、106…マ
スク、107…第2の絶縁膜、108…p型電極及びパ
ッド、109…n型電極及びパッド。
100 ... InP substrate, 101 ... n type InP layer, 102 ...
Low concentration InGaAs layer, 103 ... Low concentration InP layer, 10
4 ... p-type InP layer, 105 ... first insulating film, 106 ... mask, 107 ... second insulating film, 108 ... p-type electrode and pad, 109 ... n-type electrode and pad.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】半導体基板上にp型及びn型を含む半導体
層を形成する工程、前記p型及びn型を含む半導体層上
に第1の絶縁膜よりなるマスクパターンを形成する工
程、前記第1の絶縁膜よりなるマスクパターンを用いて
前記p型及びn型を含む半導体層の少なくとも一部をエ
ッチングしてメサ形状の受光領域を形成する工程、前記
第1の絶縁膜よりなるマスクパターンと前記メサ形状の
受光領域の周辺上に珪素の有機化合物の分解酸化反応を
用いて第2の絶縁膜を形成する工程、その後、前記メサ
形状の受光領域周辺上の前記第2の絶縁膜上に電極・配
線及びパッドの一部を形成する工程を含むことを特徴と
する受光素子の製造方法。
1. A step of forming a semiconductor layer containing p-type and n-type on a semiconductor substrate, a step of forming a mask pattern made of a first insulating film on the semiconductor layer containing p-type and n-type, A step of etching at least a part of the semiconductor layer containing p-type and n-type using a mask pattern made of a first insulating film to form a mesa-shaped light-receiving region; and a mask pattern made of the first insulating film And a step of forming a second insulating film on the periphery of the mesa-shaped light receiving region by using a decomposition and oxidation reaction of an organic compound of silicon, and then on the second insulating film on the periphery of the mesa-shaped light receiving region. A method of manufacturing a light-receiving element, comprising the step of forming a part of an electrode / wiring and a pad.
【請求項2】請求項1において、前記第1の絶縁膜より
なるマスクパターンと前記メサ形状の受光領域の周辺上
に珪素の有機化合物の分解酸化反応を用いて前記第2の
絶縁膜を形成する工程において、珪素の有機化合物を原
料ガスとして用いた化学気相堆積法により前記第2の絶
縁膜を形成する受光素子の製造方法。
2. The second insulating film according to claim 1, wherein the second insulating film is formed on the periphery of the mask pattern made of the first insulating film and the mesa-shaped light receiving region by using a decomposition and oxidation reaction of an organic compound of silicon. In the step of, the method for producing a light receiving element, wherein the second insulating film is formed by a chemical vapor deposition method using an organic compound of silicon as a source gas.
【請求項3】請求項1において、前記第1の絶縁膜より
なるマスクパターンと前記メサ形状の受光領域周辺上に
珪素の有機化合物の分解酸化反応を用いて第2の絶縁膜
を形成する工程において、珪素の有機化合物及びO3
原料ガスとして用いた化学気相堆積法により前記第2の
絶縁膜を形成する受光素子の製造方法。
3. The process according to claim 1, wherein the second insulating film is formed on the mask pattern made of the first insulating film and on the periphery of the mesa-shaped light receiving region by using a decomposition and oxidation reaction of an organic compound of silicon. 2. A method for manufacturing a light-receiving element, wherein the second insulating film is formed by a chemical vapor deposition method using an organic compound of silicon and O 3 as source gases.
【請求項4】請求項1において、前記第1の絶縁膜より
なるマスクパターンと前記メサ形状の受光領域周辺上に
珪素の有機化合物の分解酸化反応を用いて第2の絶縁膜
を形成する工程において、前記珪素の有機化合物として
Si(OC25)4 或いはB〔OSi(CH)33を用いた
化学気相堆積法により前記第2の絶縁膜を形成する受光
素子の製造方法。
4. The process according to claim 1, wherein a second insulating film is formed on the mask pattern made of the first insulating film and on the periphery of the mesa-shaped light receiving region by using a decomposition and oxidation reaction of an organic compound of silicon. 2. A method for manufacturing a light-receiving element, wherein the second insulating film is formed by a chemical vapor deposition method using Si (OC 2 H 5 ) 4 or B [OSi (CH) 3 ] 3 as the organic compound of silicon.
【請求項5】半導体基板上高濃度n型InP層,低濃度
InGaAs層及び低濃度InP層をエピタキシャル成
長する工程,前記低濃度InP層に対して選択的にp型
ドーパントの導入を行う工程,前記p型ドーパントを導
入したp型InP層を含む領域上に第1の絶縁膜よりな
るマスクパターンを形成する工程,前記第1の絶縁膜よ
りなるマスクパターンを用いて前記p型InP層の領域
周辺の前記低濃度InP層を含む半導体層をエッチングし
てメサ形状の受光領域を形成する工程,前記第1の絶縁
膜よりなるマスクパターンと前記メサ形状の受光領域の
周辺上に珪素の有機化合物の分解酸化反応を用いて第2
の絶縁膜を形成する工程、次いで、前記p型ドーパント
を導入した前記低濃度InP層上にオーミック電極を形
成する際に前記オーミック電極の配線或いはパッド部を
前記メサ形状の受光領域の周辺上の前記第2の絶縁膜上
に形成する工程を含むことを特徴とする受光素子の製造
方法。
5. A step of epitaxially growing a high-concentration n-type InP layer, a low-concentration InGaAs layer and a low-concentration InP layer on a semiconductor substrate, a step of selectively introducing a p-type dopant into the low-concentration InP layer, forming a mask pattern made of a first insulating film on a region including a p-type InP layer into which a p-type dopant is introduced, and using the mask pattern made of the first insulating film, a region around the p-type InP layer Of etching the semiconductor layer including the low-concentration InP layer to form a mesa-shaped light receiving region, a mask pattern made of the first insulating film, and an organic compound of silicon on the periphery of the mesa-shaped light receiving region. Second using decomposition oxidation reaction
The step of forming an insulating film, and then, when forming an ohmic electrode on the low-concentration InP layer into which the p-type dopant is introduced, the wiring or pad portion of the ohmic electrode is formed on the periphery of the mesa-shaped light receiving region. A method of manufacturing a light-receiving element, comprising the step of forming on the second insulating film.
JP6017113A 1994-02-14 1994-02-14 Manufacture of photodetector Pending JPH07226531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6017113A JPH07226531A (en) 1994-02-14 1994-02-14 Manufacture of photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6017113A JPH07226531A (en) 1994-02-14 1994-02-14 Manufacture of photodetector

Publications (1)

Publication Number Publication Date
JPH07226531A true JPH07226531A (en) 1995-08-22

Family

ID=11934987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6017113A Pending JPH07226531A (en) 1994-02-14 1994-02-14 Manufacture of photodetector

Country Status (1)

Country Link
JP (1) JPH07226531A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6319844B1 (en) 1999-04-09 2001-11-20 Nec Corporation Method of manufacturing semiconductor device with via holes reaching interconnect layers having different top-surface widths
US7307250B2 (en) 2003-02-06 2007-12-11 Seiko Epson Corporation Light-receiving element and manufacturing method of the same, optical module and optical transmitting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6319844B1 (en) 1999-04-09 2001-11-20 Nec Corporation Method of manufacturing semiconductor device with via holes reaching interconnect layers having different top-surface widths
US7307250B2 (en) 2003-02-06 2007-12-11 Seiko Epson Corporation Light-receiving element and manufacturing method of the same, optical module and optical transmitting device

Similar Documents

Publication Publication Date Title
US6730990B2 (en) Mountable microstructure and optical transmission apparatus
KR102171268B1 (en) manufacturing method of Hybrid silicon laser
JPH05502761A (en) Novel structure of indium phosphide/indium gallium phosphide arsenide buried heterostructure semiconductor laser and its manufacturing method
JP3230785B2 (en) Semiconductor laser and method of manufacturing the same
US8039282B2 (en) Semiconductor optical device and method of fabricating the same
US4662988A (en) Semiconductor devices and their fabrication
JP2003197953A (en) Semiconductor photodetector and its manufacturing method
JP2017220581A (en) Semiconductor device and manufacturing method thereof, optical interconnect system
JP2007165393A (en) Semiconductor optical element
JP7010546B2 (en) Optical semiconductor devices and their manufacturing methods
JP2002243964A (en) Semiconductor optical integrated element and method for manufacturing the same
CN111987585B (en) Silicon waveguide output laser
JPH07226531A (en) Manufacture of photodetector
CN112042069A (en) Optical semiconductor element and method for manufacturing the same, and optical integrated semiconductor element and method for manufacturing the same
JP4833457B2 (en) Fabrication method of optical integrated device
JP2012124404A (en) Photodiode and manufacturing method therefor
JP6213222B2 (en) Optical semiconductor device and manufacturing method thereof
JP3356858B2 (en) Method of forming electrodes and pads
JPH05110186A (en) Monolithic optical element and manufacture of the same
KR19990003500A (en) Laser diode and manufacturing method thereof
JPH08292336A (en) Production of optical semiconductor integrated circuit
JPH05102615A (en) Semiconductor device and manufacture thereof
JPH07111361A (en) Buried type semiconductor laser device and manufacture thereof
CN114899697B (en) Dual-wavelength cascade semiconductor laser and preparation method thereof
US6751246B2 (en) Buried ribbon semiconductor laser and a method of fabrication

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020806