JPH07226407A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH07226407A
JPH07226407A JP1502494A JP1502494A JPH07226407A JP H07226407 A JPH07226407 A JP H07226407A JP 1502494 A JP1502494 A JP 1502494A JP 1502494 A JP1502494 A JP 1502494A JP H07226407 A JPH07226407 A JP H07226407A
Authority
JP
Japan
Prior art keywords
fet
monitor
power
recess
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1502494A
Other languages
Japanese (ja)
Inventor
Yuji Oda
雄二 小田
Kazuhiro Arai
一弘 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1502494A priority Critical patent/JPH07226407A/en
Publication of JPH07226407A publication Critical patent/JPH07226407A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make the depths of the recesses of both power and monitor FETs equal to each other and make the values of the currents of both the power and monitor FETs each of which flows in between the source and drain of each FET equal to each other, by providing an electrode which is contacted in an ohmic way with a part of the n-type semiconductor layer extended from the n-type active layer of the power FET, and by recess-etching the surface of the n-type semiconductor layers of both the power and monitor FETs. CONSTITUTION:In the method of manufacturing a semiconductor device, by the use of an ion implanting method, on the surface of a semi-insulation GaAs substrate, n-type active layers 1, 3 and high-concentration n<+>-contact layers 2, 4 of both power and monitor FETs are formed respectively, and further, an n-type semiconductor layer 1a is formed. Moreover, source electrodes 5, 7 an drain electrodes 6, 8 of both the power and monitor FETs are formed respectively, and further, a third electrode 5a is formed. In the recess-etching process of the manufacturing method, regarding both the power and monitor FETs, the regions to be recess-etched and the AuGe electrodes connected respectively with the n-type active layers are dipped into an etching liquid, and therefore, the so-called battery effect acts equally on both the power and monitor FETs, and as a result, the recess-etching quantities of both the power and monitor FETs are made equal to each other.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置、特に電界効
果トランジスタの製造方法に係り、ゲート電極がn型能
動層表面の凹部に設けられたいわゆるリセスゲート構造
の電力FETの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a method for manufacturing a field effect transistor, and more particularly to a method for manufacturing a power FET having a so-called recess gate structure in which a gate electrode is provided in a concave portion on the surface of an n-type active layer.

【0002】[0002]

【従来の技術】GaAs電界効果トランジスタ(以下G
aAs FETと略称)は、優れた高周波特性を有する
ためマイクロ波通信機器に広く用いられている。GaA
s FETの出力を上げ、高周波特性を向上させるため
には、高いドレイン耐圧と低いソース抵抗が必要であ
り、これを実現するためにリセスゲート構造が一般的に
採用されている。リセスゲート構造とは、ソース電極、
ドレイン電極間のn型能動層の一部に溝を設けてこの溝
(リセス)内にゲート電極を設けた構造をいう。この構
造を採用したGaAs FETでは、リセス部分以外の
n型能動層の厚さを十分厚くできるために低いソース抵
抗を実現でき、また、ゲート・ドレイン間にかかる高電
界領域がゲート電極エッジだけでなくリセスエッジにも
分散されるために高いドレイン耐圧が実現できる。
2. Description of the Related Art GaAs field effect transistors (hereinafter G
The aAs FET is abbreviated) and is widely used in microwave communication devices because it has excellent high frequency characteristics. GaA
In order to increase the output of the s FET and improve the high frequency characteristics, a high drain breakdown voltage and a low source resistance are required, and a recess gate structure is generally adopted to realize this. The recess gate structure is the source electrode,
A structure in which a groove is provided in a part of the n-type active layer between the drain electrodes and the gate electrode is provided in the groove (recess). In a GaAs FET adopting this structure, a low source resistance can be realized because the thickness of the n-type active layer other than the recessed portion can be made sufficiently thick, and the high electric field region applied between the gate and the drain is only at the gate electrode edge. High drain withstand voltage can be realized because it is distributed to the recess edge instead.

【0003】上記リセスゲート構造GaAs FETの
製造においてリセスエッチング工程と呼ばれる工程が用
いられている。この工程は、後にゲート電極が設けられ
る領域のn型能動層表面に溝(リセス)を形成する工程
で、この溝の深さはソース・ドレイン間電流が所望の電
流値となるように調整される。一般に、多数のゲート電
極を平行に並べた構造の電力FETの製造においては、
インプロセスで直接そのソース・ドレイン間電流を測定
することが不可能なため、製造しようとする電力FET
の構造とほぼ同一の基本的構造を有する小さなゲート幅
のモニタFETを同時に形成し、このFETの電流値を
チェックしながらリセスのエッチング量を定めている。
A process called a recess etching process is used in manufacturing the recess gate structure GaAs FET. This step is a step of forming a groove (recess) on the surface of the n-type active layer in a region where a gate electrode will be provided later, and the depth of this groove is adjusted so that the source-drain current has a desired current value. It Generally, in manufacturing a power FET having a structure in which a large number of gate electrodes are arranged in parallel,
Since it is impossible to directly measure the source-drain current in-process, the power FET to be manufactured
A monitor FET having a small gate width and having a basic structure almost the same as that of (1) is simultaneously formed, and the etching amount of the recess is determined while checking the current value of this FET.

【0004】以下に従来のリセスゲート構造FETの製
造方法の一例を図3ないし図5を用いて説明する。
An example of a conventional method for manufacturing a recess gate structure FET will be described below with reference to FIGS.

【0005】イオン注入法を用いて半絶縁性GaAs基
板表面に電力FETのn型能動層201、高濃度n+
ンタクト層202およびモニタFETのn型能動層20
3、高濃度n+ コンタクト層204を形成する(図
3)。
The n-type active layer 201 of the power FET, the high-concentration n + contact layer 202, and the n-type active layer 20 of the monitor FET are formed on the surface of the semi-insulating GaAs substrate by the ion implantation method.
3. A high concentration n + contact layer 204 is formed (FIG. 3).

【0006】次にリフトオフ法を用いてAuGeからな
る電力FETのソース電極205とドレイン電極206
およびモニタFETのソース電極207とドレイン電極
208を形成し、さらに全面にSiO2 膜209を化学
的気相成長法で形成する(図4(a))。
Next, the source electrode 205 and the drain electrode 206 of the power FET made of AuGe are formed by using the lift-off method.
Then, the source electrode 207 and the drain electrode 208 of the monitor FET are formed, and the SiO 2 film 209 is further formed on the entire surface by the chemical vapor deposition method (FIG. 4A).

【0007】次にフォトレジスト膜210を被着し、ゲ
ート電極形成予定域に開口211を設ける。なお、モニ
タFETにおいては、開口211に加えてソース電極と
ドレイン電極上にも開口212を設け、さらにこのフォ
トレジスト膜をマスクとして、SiO2 膜をエッチング
してゲート電極を形成する領域のGaAs表面およびモ
ニタFETソース電極207とドレイン電極208を露
出させる(図4(b))。
Next, a photoresist film 210 is deposited, and an opening 211 is provided in a region where a gate electrode will be formed. In the monitor FET, in addition to the opening 211, an opening 212 is provided on the source electrode and the drain electrode, and the SiO 2 film is etched using the photoresist film as a mask to form a gate electrode on the GaAs surface. The monitor FET source electrode 207 and the drain electrode 208 are exposed (FIG. 4B).

【0008】次に燐酸系エッチング液を用いてGaAs
表面をエッチングしリセス213を形成する(図4
(c))。このとき、エッチングはモニタFETの露出
したソース電極207とドレイン電極208間の電流を
チェックしながら行い、所望の電流値になった時点でエ
ッチングを終了させる。
Next, using a phosphoric acid-based etching solution, GaAs
The surface is etched to form the recess 213 (FIG. 4).
(C)). At this time, the etching is performed while checking the current between the exposed source electrode 207 and drain electrode 208 of the monitor FET, and the etching is terminated when the desired current value is reached.

【0009】次にゲート電極用金属、例えばAl膜を全
面に蒸着した後、リフトオフ法を用いて、ゲート電極2
14を形成する。このときモニタFETのソース電極2
07とドレイン電極208上にもAl膜215は被着す
る(図5)。次に、ボンディング用パッドメタルAu/
Pt/Tiをリフトオフ法を用いて形成しFETを完成
する(図示省略)。
Next, after depositing a metal for the gate electrode, for example, an Al film on the entire surface, the gate electrode 2 is formed by the lift-off method.
14 is formed. At this time, the source electrode 2 of the monitor FET
The Al film 215 is also deposited on 07 and the drain electrode 208 (FIG. 5). Next, the bonding pad metal Au /
Pt / Ti is formed using the lift-off method to complete the FET (not shown).

【0010】しかしながら、上記製造方法によるGaA
s FETにおいては以下にあげる問題点がある。すな
わち、モニタFETと完成した電力FETのソース・ド
レイン電流値が必ずしも予想通りに対応しないことであ
る。これはリセスエッチングを行うときにモニタFET
ではAuGeからなるオーミック電極がエッチング液に
露出された状態でn型能動層がエッチングされるのに対
し、電力FETにおいてはAuGeからなるオーミック
電極はエッチング液に露出されない状態でn型能動層が
エッチングされるというように条件が異なっているため
である。すなわちモニタFETのリセスエッチングにお
いては、能動層と能動層に接続されたAuGe電極が同
時にエッチング液に浸り、いわゆる電池効果が働いてい
るためである。このためにモニタFETのリセスの深さ
と電力FETのリセスの深さは一致せずに、一般にモニ
タFETのリセスの深さの方がより深くなり従って電力
FETの電流値はモニタFETから予想される値に比べ
て大きくなる。
However, GaA produced by the above manufacturing method
The s FET has the following problems. That is, the source / drain current values of the monitor FET and the completed power FET do not necessarily correspond as expected. This is a monitor FET when performing recess etching.
Then, while the n-type active layer is etched in a state where the ohmic electrode made of AuGe is exposed to the etching solution, in the power FET, the ohmic electrode made of AuGe is etched in the state where the n-type active layer is not exposed to the etching solution. This is because the conditions are different, such as being done. That is, in the recess etching of the monitor FET, the active layer and the AuGe electrode connected to the active layer are simultaneously immersed in the etching solution, and a so-called battery effect is exerted. For this reason, the depth of the recess of the monitor FET does not match the depth of the recess of the power FET, and generally the depth of the recess of the monitor FET becomes deeper. Therefore, the current value of the power FET is expected from the monitor FET. It is larger than the value.

【0011】叙上の不都合を解消するためには、電力F
ETと同じ様にモニタFETのAuGeからなるオーミ
ック電極がエッチング液に露出されないようにすれば良
いが、この場合にはモニタFETのAuGeからなるオ
ーミック電極がSiO2 に覆われているためにソース電
極・ドレイン電極に電流測定のためのプローブを接触さ
せることが困難となる。
In order to eliminate the inconvenience, the electric power F
It is sufficient to prevent the ohmic electrode made of AuGe of the monitor FET from being exposed to the etching solution as in the case of ET. In this case, however, the ohmic electrode made of AuGe of the monitor FET is covered with SiO 2 so that the source electrode is formed. -It becomes difficult to bring a probe for current measurement into contact with the drain electrode.

【0012】[0012]

【発明が解決しようとする課題】本発明は、上記事情を
考慮してなされたもので、モニタFETと電力FETの
リセスエッチングが同一の条件下で行われ、したがって
リセスの深さ、ひいてはソース・ドレイン間電流値が同
一になるようなMESFETの製造方法を提供すること
を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above circumstances, and the recess etching of the monitor FET and the power FET is performed under the same condition. It is an object of the present invention to provide a method for manufacturing MESFETs in which the drain current values are the same.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る半導体装置の製造方法は、GaAs電
力FETの製造方法において電力FETとモニタFET
を同一半導体基板上に形成するに当たり、電力FETの
n型能動層から延在するn型半導体層の一部にオーミッ
ク接合する電極を設け、この電極がエッチング液に露出
された状態で電力FETのn型能動層表面をリセスエッ
チングする工程を含むことを特徴とする。
In order to achieve the above object, a method of manufacturing a semiconductor device according to the present invention is a method of manufacturing a GaAs power FET.
In forming the same on the same semiconductor substrate, an electrode that makes ohmic contact with a part of the n-type semiconductor layer extending from the n-type active layer of the power FET is provided, and the electrode of the power FET is exposed with the electrode exposed to the etching solution. The method is characterized by including a step of recess etching the surface of the n-type active layer.

【0014】[0014]

【作用】本発明に係るFETの製造方法によれば、電力
FETおよびモニタFETのリセスエッチングはともに
電池効果の起こる同一の条件下で行われることになり、
電力FETとモニタFETのリセスの深さ、ソース・ド
レイン間電流値は同一となり、モニタFETによる電流
制御の精度が格段に向上する。
According to the FET manufacturing method of the present invention, the recess etching of the power FET and the monitor FET are both performed under the same condition in which the battery effect occurs.
The recess depth of the power FET and the monitor FET and the current value between the source and the drain are the same, and the accuracy of current control by the monitor FET is significantly improved.

【0015】[0015]

【実施例】以下、図1および図2を参照しながら本発明
の実施例について詳細に説明する。
Embodiments of the present invention will be described in detail below with reference to FIGS. 1 and 2.

【0016】イオン注入法を用い、半絶縁性GaAs基
板表面に電力FETのn型能動層1、高濃度n+ コンタ
クト層2、そしてこの高濃度n+ コンタクト層から延在
するn型半導体層1aおよびモニタFETのn型能動層
3、高濃度n+ コンタクト層4を形成する(図1
(a))。
Using the ion implantation method, the n-type active layer 1 of the power FET, the high-concentration n + contact layer 2, and the n-type semiconductor layer 1a extending from the high-concentration n + contact layer are formed on the surface of the semi-insulating GaAs substrate. Then, the n-type active layer 3 and the high-concentration n + contact layer 4 of the monitor FET are formed (FIG. 1).
(A)).

【0017】次にAuGe薄膜をリフトオフすることに
より、電力FETのソース電極5とドレイン電極6、さ
らに前記n型半導体層1aとオーミック接合する第3の
電極5a、およびモニタFETのソース電極7とドレイ
ン電極8を形成したのち、全面にSiO2 膜9を化学的
気相成長法で被着する(図1(b))。
Then, the AuGe thin film is lifted off, so that the source electrode 5 and the drain electrode 6 of the power FET, the third electrode 5a which makes an ohmic contact with the n-type semiconductor layer 1a, and the source electrode 7 and the drain of the monitor FET. After forming the electrode 8, a SiO 2 film 9 is deposited on the entire surface by chemical vapor deposition (FIG. 1B).

【0018】次にフォトレジスト膜10を被着し、ゲー
ト電極形成予定域に開口11を設ける。なおこの工程
で、モニタFETにおいては開口11に加えて、ソース
電極7とドレイン電極8上にも開口12を設ける。さら
に本発明の特徴である第3の電極5a上にも開口12a
を設ける。次にこのフォトレジスト膜10をマスクとし
て、SiO2 膜をエッチングしてゲート電極を形成する
領域のGaAs表面およびモニタFETソース電極7と
ドレイン電極8、さらに第3の電極5aを露出させる
(図1(c))。
Next, a photoresist film 10 is deposited, and an opening 11 is provided in a region where a gate electrode will be formed. In this step, in addition to the opening 11 in the monitor FET, the opening 12 is also provided on the source electrode 7 and the drain electrode 8. Further, the opening 12a is formed on the third electrode 5a, which is a feature of the present invention.
To provide. Next, using the photoresist film 10 as a mask, the SiO 2 film is etched to expose the GaAs surface in the region where the gate electrode is to be formed, the monitor FET source electrode 7 and the drain electrode 8, and the third electrode 5a (FIG. 1). (C)).

【0019】次に燐酸系エッチング液を用いてGaAs
表面をエッチングしリセス13を形成する(図2
(a))。このとき、エッチングはモニタFETの露出
したソース電極7とドレイン電極8間の電流をエッチン
グしながら行い、所望の電流値になった時点でエッチン
グを終了させる。
Next, using a phosphoric acid type etching solution, GaAs
The surface is etched to form the recess 13 (see FIG. 2).
(A)). At this time, the etching is performed while etching the current between the exposed source electrode 7 and drain electrode 8 of the monitor FET, and the etching is terminated when the desired current value is reached.

【0020】このリセスエッチング工程では、電力FE
TとモニタFETともに、リセスエッチングする領域と
能動層に接続されたAuGe電極がエッチング液に浸る
ために、いわゆる電池効果が同等に働き電力FETとモ
ニタFETのリセスエッチング量は等しくなる。
In this recess etching step, power FE is used.
In both T and the monitor FET, since the region to be recess-etched and the AuGe electrode connected to the active layer are immersed in the etching solution, the so-called battery effect works equally and the recess etching amounts of the power FET and the monitor FET become equal.

【0021】次にゲート電極用金属、例えばAl膜を全
面に蒸着した後、リフトオフ法を用いて、ゲート電極1
4を形成する。このとき、モニタFETのソース電極7
とドレイン電極8および第3の電極5a上にもAl膜1
5は被着する(図2(b))。
Next, after depositing a metal for the gate electrode, for example, an Al film on the entire surface, the gate electrode 1 is formed by the lift-off method.
4 is formed. At this time, the source electrode 7 of the monitor FET
Al film 1 also on the drain electrode 8 and the third electrode 5a.
5 is attached (FIG. 2 (b)).

【0022】次に、ボンディング用パッドメタルAu/
Pt/Tiをリフトオフ法を用いて形成しFETが完成
する(図示省略)。なお、n型半導体層1aおよびこの
n型半導体層1aに接合されている第3の電極5aは電
力FETの特性に実質的になんら影響を及ぼすものでな
い。また、n型半導体層は上記実施例では能動層と同じ
n層で形成したがn+ コンタクト層と同じn+ 層で形成
しても良い。
Next, the bonding pad metal Au /
FET is completed by forming Pt / Ti using the lift-off method (not shown). The n-type semiconductor layer 1a and the third electrode 5a joined to the n-type semiconductor layer 1a do not substantially affect the characteristics of the power FET. Further, n-type semiconductor layer was formed in the same n layer and the active layer in the above embodiments may be formed in the same n + layer and n + contact layer.

【0023】[0023]

【発明の効果】以上述べたように本発明によれば、モニ
タFETを用いたリセスゲート構造の電力FETの製造
におけるソース・ドレイン電流制御の精度の向上が達成
されて品質の向上と、製造における歩留りの顕著な向上
がはかられる。
As described above, according to the present invention, the precision of the source / drain current control in the manufacture of the power FET having the recess gate structure using the monitor FET is improved, the quality is improved, and the yield in the manufacturing is improved. Can be significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)ないし(c)は本発明に係るリセスゲー
ト構造GaAs電力FETの一実施例の製造方法の一部
につき工程順に示すいずれも断面図。
1A to 1C are cross-sectional views showing a part of a manufacturing method of an embodiment of a recess gate structure GaAs power FET according to the present invention in the order of steps.

【図2】(a)および(b)は本発明に係るリセスゲー
ト構造GaAs電力FETの一実施例の製造方法の一部
につき図1に続き工程順に示すいずれも断面図。
2 (a) and 2 (b) are cross-sectional views showing a part of a manufacturing method of an embodiment of a recess gate structure GaAs power FET according to the present invention, following FIG. 1 in the order of steps.

【図3】従来例に係るリセスゲート構造GaAs電力F
ETの一実施例の製造方法の一部工程の断面図。
FIG. 3 is a GaAs power F having a recess gate structure according to a conventional example.
Sectional drawing of the one part process of the manufacturing method of one Example of ET.

【図4】(a)ないし(c)は従来例に係るリセスゲー
ト構造GaAs電力FETの一実施例の製造方法の一部
につき図3に続き工程順に示すいずれも断面図。
4 (a) to 4 (c) are cross-sectional views each showing a part of a method of manufacturing a recess gate structure GaAs power FET according to a conventional example, following FIG.

【図5】従来例の係るリセスゲート構造GaAs電力F
ETの一実施例の製造方法の一部につき図4に続き工程
順に示す断面図。
FIG. 5: Recess gate structure GaAs power F according to a conventional example
Sectional drawing which shows a part of the manufacturing method of one Example of ET following FIG. 4 in order of process.

【符号の説明】[Explanation of symbols]

1,201 電力FETのn型能動層 2,202 電力FETのn+ コンタクト層 1a 能動層から延在するn型半導体層 3,203 モニタFETの能動層 4,204 モニタFETのn+ コンタクト層 5,205 電力FETのソース電極 5a 第3の電極 6,206 電力FETのドレイン電極 7,207 モニタFETのソース電極 8,208 モニタFETのドレイン電極 9,209 SiO2 膜 10,210 フォトレジスト膜 11,12,12a,111,112 開口 13,113 リセス 14,114 ゲート電極1,201 n-type active layer of power FET 2,202 n + contact layer of power FET 1a n-type semiconductor layer extending from active layer 3,203 active layer of monitor FET 4,204 n + contact layer of monitor FET 5 , 205 source electrode of power FET 5a third electrode 6,206 drain electrode of power FET 7,207 source electrode of monitor FET 8,208 drain electrode of monitor FET 9,209 SiO 2 film 10, 210 photoresist film 11, 12, 12a, 111, 112 Opening 13, 113 Recess 14, 114 Gate electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 n型能動層とオーミック接合するソース
電極、ドレイン電極および前記両電極に挟まれたn型能
動層表面に設けられたリセス内のゲート電極を有するシ
ョットキ接合型FETの製造にあたり、前記FETと、
このFETのリセスエッチング量をきめるためのモニタ
FETと、前記FETのn型能動層から延在させたn型
半導体層の一部にオーミック接合する電極とを形成する
工程と、前記電極をエッチング液に浸漬させてFETの
n型能動層にリセスエッチングを施す工程を含む半導体
装置の製造方法。
1. A Schottky junction FET having a source electrode and a drain electrode which form an ohmic contact with an n-type active layer, and a gate electrode in a recess provided on the surface of the n-type active layer sandwiched between the two electrodes, The FET,
A step of forming a monitor FET for determining the recess etching amount of this FET and a step of forming an electrode which makes ohmic contact with a part of the n-type semiconductor layer extending from the n-type active layer of the FET, and an etching solution for the electrode. 1. A method of manufacturing a semiconductor device, comprising the step of: immersing the semiconductor substrate in the substrate and performing recess etching on the n-type active layer of the FET.
【請求項2】 FETが電力FETであることを特徴と
する請求項1に記載の半導体装置の製造方法。
2. The method of manufacturing a semiconductor device according to claim 1, wherein the FET is a power FET.
JP1502494A 1994-02-09 1994-02-09 Manufacture of semiconductor device Pending JPH07226407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1502494A JPH07226407A (en) 1994-02-09 1994-02-09 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1502494A JPH07226407A (en) 1994-02-09 1994-02-09 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH07226407A true JPH07226407A (en) 1995-08-22

Family

ID=11877279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1502494A Pending JPH07226407A (en) 1994-02-09 1994-02-09 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH07226407A (en)

Similar Documents

Publication Publication Date Title
JP3285132B2 (en) Method for manufacturing semiconductor device
JPS6253953B2 (en)
JPH1140578A (en) Semiconductor device and its manufacture
JPH07226407A (en) Manufacture of semiconductor device
JP3858888B2 (en) Etching method and semiconductor device manufacturing method
JP3223865B2 (en) Manufacturing process evaluation method and process evaluation pattern for compound semiconductor device
JPH04343440A (en) Semiconductor device
JPH07201887A (en) Field effect transistor
JPS5850434B2 (en) Method for manufacturing field effect transistors
US20030155619A1 (en) Semiconductor device and manufacturing method
JPH0436458B2 (en)
JPS62293679A (en) Field-effect semiconductor device and manufacture thereof
JPS5892273A (en) Manufacture of field effect transistor
JPH0472384B2 (en)
JP2507030B2 (en) Field effect transistor
JP2807290B2 (en) Method for manufacturing semiconductor device
JPH01107577A (en) Manufacture of field effect transistor
JPS6070772A (en) Manufacture of field-effect transistor
JPH04219936A (en) Manufacture of semiconductor device
JPH02220449A (en) Field-effect transistor and manufacture thereof
JPH05275455A (en) Semiconductor device and its manufacture
JPH04107928A (en) Manufacture of semiconductor device
JPH03196531A (en) Field-effect transistor and manufacture thereof
JPS6077469A (en) Manufacture of semiconductor device
JPH047101B2 (en)