JPH0722489A - Wafer fork - Google Patents

Wafer fork

Info

Publication number
JPH0722489A
JPH0722489A JP15946193A JP15946193A JPH0722489A JP H0722489 A JPH0722489 A JP H0722489A JP 15946193 A JP15946193 A JP 15946193A JP 15946193 A JP15946193 A JP 15946193A JP H0722489 A JPH0722489 A JP H0722489A
Authority
JP
Japan
Prior art keywords
wafer
fork
semiconductor
wafer fork
surface roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15946193A
Other languages
Japanese (ja)
Inventor
Takeshi Shioda
武 塩田
Maki Kurashima
真樹 倉島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15946193A priority Critical patent/JPH0722489A/en
Publication of JPH0722489A publication Critical patent/JPH0722489A/en
Pending legal-status Critical Current

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PURPOSE:To provide a wafer fork which causes less wafer contamination due to impurities such as dust, less plastic deformation such as warpage and less breakage due to wafer warpage or collision. CONSTITUTION:A wafer fork 1 is permitted to hold and successively carry semiconductor wafers 8 in semiconductor manufacturing processes. At least the part which makes contact with the semiconductor wafer 8 is formed of ceramics and the surface roughness of the contact part is set at the center line average roughness (Ra) of 0.2-0.5mum. The ceramic material is constituted of at least one of the following: Si3N4, Si-Al-O-N, SiC and Al2O3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体製造工程において
半導体ウェハーの移送搬送用に使用されるウェハーフォ
ークに係り、特にダスト等の不純物によるウェハーの汚
染が少なく、またウェハーの滑りや衝突による破損の発
生が少なく高強度で高寸法精度を有するウェハーフォー
クに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wafer fork used for transferring and transporting semiconductor wafers in a semiconductor manufacturing process, and in particular, contamination of the wafer by impurities such as dust is small and damage caused by slipping or collision of the wafer. The present invention relates to a wafer fork that has few occurrences, high strength, and high dimensional accuracy.

【0002】[0002]

【従来の技術】従来から半導体製造工程における半導体
ウェハーの熱処理工程や搬送ラインにおいては、単結晶
シリコンをスライスした多数の半導体ウェハーを順次、
移送搬送するために、ウェハーフォークやウェハーチャ
ック等の各種保持具が使用されている。ウェハーフォー
クは平板状の本体中央部に、半導体ウェハーが嵌入する
浅い凹部を形成して構成される一方、ウェハーチャック
は、真空吸着または静電作用に基づいてウェハーを吸着
保持する保持具である。
2. Description of the Related Art Conventionally, in a semiconductor wafer heat treatment process or a transfer line in a semiconductor manufacturing process, a large number of semiconductor wafers obtained by slicing single crystal silicon are sequentially processed.
Various holders such as a wafer fork and a wafer chuck are used for transferring and conveying. The wafer fork is formed by forming a shallow recess into which a semiconductor wafer is fitted in the central portion of a flat plate-shaped body, while the wafer chuck is a holder that holds and holds the wafer by vacuum suction or electrostatic action.

【0003】上記ウェハーフォークは、例えば搬送ロボ
ットのアーム先端部に固着され、微細な間隙を介して多
段にウェハーを収納するカートリッジやキャリアの間隙
部に挿通され、ウェハーを凹部にすくい上げて保持し、
次工程の処理部等に搬送する。
The above-mentioned wafer fork is fixed to, for example, the tip of an arm of a transfer robot, is inserted through a minute gap into a gap between cartridges or carriers for storing wafers in multiple stages, and the wafer is picked up and held in a concave portion.
It is transported to the processing section of the next process.

【0004】従来、上記のウェハーフォークとしてステ
ンレス鋼板を所定形状に切削加工した後に、加工表面を
ふっ素樹脂被膜等でコーティングしたものやフォーク全
体を石英ガラスで構成したものが主として使用されてい
た。
Conventionally, as the above-mentioned wafer fork, one in which a stainless steel plate is cut into a predetermined shape and then the processed surface is coated with a fluororesin film or the like, or one in which the entire fork is made of quartz glass is mainly used.

【0005】[0005]

【発明が解決しようとする課題】しかしながらステンレ
ス鋼表面に樹脂コーティングしたウェハーフォークで
は、コーティング層が短期間に破れ、鉄やアルカリ塩な
どの不純物がウェハー側に転移し易く汚染を引き起し易
い欠点がある。また本体を構成するステンレス鋼が塑性
変形を起こし易く、高精度の搬送動作が困難となる場合
が多い。一方ステンレス鋼自体の靭性が高いため、万一
搬送装置自体が誤動作した場合にはウェハーフォークに
よって高価なロボット等の周辺設備が破損され、製造工
程が停止するおそれもあった。
However, in a wafer fork whose surface is coated with resin on a stainless steel surface, the coating layer is broken in a short period of time, and impurities such as iron and alkali salts are easily transferred to the wafer side, which easily causes contamination. There is. Further, the stainless steel forming the main body is likely to be plastically deformed, which often makes it difficult to carry out a highly accurate conveying operation. On the other hand, since the stainless steel itself has a high toughness, if the transfer device itself malfunctions, the wafer fork may damage peripheral equipment such as an expensive robot and stop the manufacturing process.

【0006】また真空吸着または静電作用によってウェ
ハーを吸着保持するウェハーチャック式の保持具におい
ては、周辺に浮遊する微細なダストを吸引し易い欠点が
あり、取扱う対象となるウェハーにダストの付着が多く
なり、不純物汚染を引き起こす割合が高い欠点がある。
In addition, a wafer chuck type holder for sucking and holding a wafer by vacuum suction or electrostatic action has a drawback that it is easy to suck fine dust floating around, and dust is not attached to a wafer to be handled. There is a drawback that the amount of impurities increases and the ratio of impurity contamination is high.

【0007】一方、石英ガラスで構成したウェハーフォ
ークでは、コーティング層を形成しない場合でも不純物
汚染の心配は少なく、また熱的に安定で有利である一
方、強度および剛性がやや低いため、繰り返して使用す
る構造体として使用するには難点があった。特に近年、
半導体の製造プロセスの自動化に対応して複数のウェハ
ーを収納するカートリッジやキャリアにも、より多くの
ウェハーを装填することが求められ、隣接するウェハー
間の間隙も狭められる傾向にあり、必然的に、その間隙
部に挿通されるウェハーフォークもより薄型化する要請
が高まっている。しかしながら、薄型化に伴ってその剛
性および機械的強度も小さくなり、短期にたわみを生じ
易くなり、寿命が短縮される問題点がある。
On the other hand, a wafer fork made of quartz glass is less likely to be contaminated with impurities even when a coating layer is not formed, and is thermally stable, while it has a slightly low strength and rigidity, so it can be used repeatedly. There was a difficulty in using it as a structure that does. Especially in recent years
Cartridges and carriers that store multiple wafers are required to be loaded with more wafers in response to automation of semiconductor manufacturing processes, and the gap between adjacent wafers tends to be narrowed. There is an increasing demand for a thinner wafer fork to be inserted into the gap. However, as the device becomes thinner, its rigidity and mechanical strength also become smaller, so that it tends to bend in a short period of time, resulting in a problem of shortening the life.

【0008】上記問題点を解決する手段として、純度9
9.0%以上のアルミナ(Al2 3 )焼結体を研磨加
工して形成したウェハーフォークも一部で使用されてい
る。
As a means for solving the above problems, a purity of 9
A wafer fork formed by polishing an alumina (Al 2 O 3 ) sintered body of 9.0% or more is also used in part.

【0009】しかしながら、上記Al2 3 製ウェハー
フォークを含む従来のウェハーフォークにおいては半導
体ウェハーの移載時にフォーク上面においてウェハーが
滑り易くなる場合があり、滑ったウェハーがウェハーフ
ォークの内縁角部に衝突して破損を生じ、以後の搬送に
支障を来す場合があり、またウェハー自体の歩留り低下
を生じる問題があった。さらにフォーク上面におけるウ
ェハーの滑り(摺動)によってダストが発生し易くな
り、ウェハーの不純物汚染が増加する問題点があった。
However, in the conventional wafer fork including the above-mentioned Al 2 O 3 wafer fork, the wafer may become slippery on the upper surface of the fork when the semiconductor wafer is transferred, and the slipped wafer may come to the inner edge corner of the wafer fork. There is a problem in that the wafer may collide and be damaged, which may hinder the subsequent transportation, and that the yield of the wafer itself may be reduced. Further, there is a problem that dust is easily generated due to the sliding of the wafer on the upper surface of the fork, and the contamination of the wafer with impurities is increased.

【0010】さらにAl2 3 製ウェハーフォークで
は、半導体製造工程の温度条件や雰囲気ガスによって、
強度特性や耐久性が大きく異なり、均質な信頼性が得ら
れない欠点もある。一方、半導体基板の集積度も1Mビ
ットから4Mビットへと急増するに伴って、半導体ウェ
ハーに対するダスト等の不純物の許容限度もより厳格化
し、従来のAl2 3 製ウェハーフォークでは、対応不
可能な状態になりつつある。
Further, in the Al 2 O 3 wafer fork, depending on the temperature condition and the atmospheric gas in the semiconductor manufacturing process,
There is a drawback that strength characteristics and durability are greatly different and uniform reliability cannot be obtained. On the other hand, as the degree of integration of semiconductor substrates has rapidly increased from 1 Mbit to 4 Mbit, the allowable limit of impurities such as dust on semiconductor wafers has become stricter, and conventional Al 2 O 3 wafer forks cannot handle this. It is becoming a state.

【0011】本発明は上記の問題点を解決するためにな
されたものであり、ダスト等の不純物によるウェハーの
汚染が少なく、またそり等の塑性変形の発生が少なくウ
ェハーの滑りや衝突による破損が少ないウェハーフォー
クを提供することを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and the contamination of the wafer by impurities such as dust is small, and the plastic deformation such as warpage is small, and the damage due to the slip or collision of the wafer is small. It is intended to provide a reduced number of wafer forks.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するた
め、本発明者らが上記ダストの発生原因およびウェハー
の破損原因を究明したところ、特に半導体ウェハーが接
触するウェハーフォークの表面粗さが大きく影響するこ
とを突き止めた。すなわちウェハーフォークの表面粗さ
を適正に設定することにより、ウェハーフォーク上面に
おけるウェハーの滑りや衝突が効果的に防止でき、また
滑りによって生じるダスト量も大幅に減少することが判
明した。本発明は上記知見に基づいて完成されたもので
ある。
In order to achieve the above object, the inventors of the present invention have investigated the cause of dust generation and the cause of wafer damage. In particular, the surface roughness of a wafer fork with which a semiconductor wafer contacts is large. I found out that it would affect me. That is, it has been found that by properly setting the surface roughness of the wafer fork, the slip and collision of the wafer on the upper surface of the wafer fork can be effectively prevented, and the amount of dust generated by the slip can be significantly reduced. The present invention has been completed based on the above findings.

【0013】すなわち本発明に係るウェハーフォーク
は、半導体製造工程において半導体ウェハーを保持して
順次搬送するウェハーフォークにおいて、少なくとも半
導体ウェハーと接触する部位をセラミックス材で形成す
るとともに、上記接触部の表面粗さを中心線平均粗さ
(Ra)基準で0.2〜0.5μmに設定したことを特
徴とする。
That is, a wafer fork according to the present invention is a wafer fork that holds and sequentially conveys semiconductor wafers in a semiconductor manufacturing process, in which at least a portion in contact with the semiconductor wafer is formed of a ceramic material and the surface roughness of the contact portion is roughened. The roughness is set to 0.2 to 0.5 μm based on the center line average roughness (Ra).

【0014】また本発明に係るウェハーフォークは、板
状のセラミックス焼結体から成るウォーク本体に対して
半導体ウェハーを載置したときにウェハーの周辺部と接
触してウェハーを所定位置に保持する周縁段部と、上記
ウェハーと非接触となる凹部とを研削加工等によって形
成し、さらに半導体ウェハーと接触する周縁段部表面
を、砥石による研削加工または遊離砥粒を使用した研磨
加工によって所定の表面粗さ、すなわち中心線平均粗さ
(Ra)基準で0.2〜0.5μmの範囲に設定して製
造される。
Further, the wafer fork according to the present invention is such that when the semiconductor wafer is placed on the walk body made of a plate-shaped ceramics sintered body, the wafer fork is in contact with the peripheral portion of the wafer and holds the wafer at a predetermined position. A step and a recess that is not in contact with the wafer are formed by grinding or the like, and the peripheral step surface that comes into contact with the semiconductor wafer is given a predetermined surface by grinding with a grindstone or polishing using loose abrasive grains. Roughness, that is, the center line average roughness (Ra) is set in the range of 0.2 to 0.5 μm for manufacture.

【0015】上記半導体ウェハーとの接触部の表面粗さ
が0.2μmRa未満となる場合には、フォーク表面に
おいて半導体ウェハーが滑り易くなり、ウェハーとフォ
ークとの衝突による破損が発生し易くなる。一方、表面
粗さが0.5μmRaを超える場合においては、ダスト
が発生し易くなる。したがって、半導体ウェハーとの接
触部の表面粗さは0.2〜0.5μmRaの範囲に設定
することが望ましい。上記表面粗さは使用砥粒の粒径お
よび研磨時間を変えることにより任意に調整することが
できる。
When the surface roughness of the contact portion with the semiconductor wafer is less than 0.2 μmRa, the semiconductor wafer tends to slip on the surface of the fork, and the damage due to the collision between the wafer and the fork is likely to occur. On the other hand, when the surface roughness exceeds 0.5 μmRa, dust is likely to be generated. Therefore, it is desirable to set the surface roughness of the contact portion with the semiconductor wafer in the range of 0.2 to 0.5 μmRa. The surface roughness can be arbitrarily adjusted by changing the particle size of the abrasive grains used and the polishing time.

【0016】特に最終製品形状に近い、いわゆるニアネ
ットシェイプのウェハーフォークを効率的に製造する方
法として、ウェハーフォークの素材となるセラミックス
成形体をレーザ加工してウェハーフォークの輪郭部を精
密に切断加工し、しかる後に、加工したセラミックス成
形体を脱脂焼結し、得られた焼結体を研削加工および研
磨加工して上記周縁段部および凹部を形成してもよい。
Particularly, as a method for efficiently manufacturing a so-called near net shape wafer fork close to the shape of the final product, a ceramic molded body as a material of the wafer fork is laser-processed to precisely cut the contour of the wafer fork. Then, after that, the processed ceramic molded body may be degreased and sintered, and the obtained sintered body may be ground and polished to form the peripheral stepped portion and the recessed portion.

【0017】本発明に係るウェハーフォークを構成する
セラミックス焼結体またはセラミックス成形体として
は、窒化けい素(Si3 4 ),サイアロン(Si−A
l−O−N)、炭化けい素(SiC)およびアルミナ
(Al2 3 )の少くとも一種が用いられる。特に上記
各種セラミックス材のうち、Si3 4 ,Si−Al−
O−N,SiCは、半導体ウェハーへの汚染(コンタミ
ネーション)物質となるNa,Ca等のアルカリ金属元素
やアルカリ土類金属元素の含有量が少ない高純度品が得
られるため、不純物汚染の少ないウェハーフォークを形
成できるため好ましい。また窒化けい素およびサイアロ
ンはいずれも他のセラミックスと比較して剛性、靭性等
の強度値および耐環境特性が高く、ウェハーフォークの
ように薄く形成した場合においても、十分な耐久性を有
するとともに、耐熱衝撃性も優れているため、半導体製
造工程のあらゆるプロセス条件で使用することができ
る。
The ceramic sintered body or the ceramic molded body which constitutes the wafer fork according to the present invention includes silicon nitride (Si 3 N 4 ) and sialon (Si-A).
l-O-N), at least one silicon carbide (SiC) and alumina (Al 2 O 3) is used. In particular, among the above various ceramic materials, Si 3 N 4 , Si-Al-
O-N and SiC are high-purity products with a low content of alkali metal elements or alkaline earth metal elements such as Na and Ca, which are contaminants (contamination) substances to semiconductor wafers, and thus have little impurity contamination. This is preferable because a wafer fork can be formed. Further, both silicon nitride and sialon have high strength values such as rigidity and toughness and environmental resistance characteristics as compared with other ceramics, and have sufficient durability even when formed thin such as a wafer fork, Since it has excellent thermal shock resistance, it can be used under all process conditions of the semiconductor manufacturing process.

【0018】特に、上記窒化けい素焼結体で形成したウ
ェハーフォークは、そのままでも使用できるが、さらに
焼結体表面にふっ素樹脂コーティング等の汚染防止層を
形成することにより、ウェハーの汚染をより効果的に防
止することができる。
In particular, the wafer fork formed of the above-mentioned silicon nitride sintered body can be used as it is, but by further forming a contamination prevention layer such as a fluorine resin coating on the surface of the sintered body, the contamination of the wafer is more effective. Can be prevented.

【0019】上記ウェハーフォークは例えば下記のよう
な手順で製造される。まず、窒化けい素粉末,サイアロ
ン粉末および炭化けい素粉末の少くとも一種の原料粉末
に対して、各種焼結助剤を添加して均一に混合して原料
混合体を調製し、この原料混合体を金型プレス等によっ
て加圧成形し、均一な厚さを有する矩形のセラミックス
成形体が得られる。次に得られたセラミックス成形体を
レーザ加工により切断し、所定の輪郭を有するウェハー
フォーク成形体を形成する。次にこのウェハーフォーク
成形体を所定条件で脱脂しさらに焼結し、得られたウェ
ハー焼結体を研削加工して周縁段部および凹部を形成し
た後、遊離砥粒を使用した研磨加工によって周縁段部表
面を研磨し、表面粗さを0.2〜0.5μmRaに調整
して製造される。さらにウェハーフォーク表面に汚染防
止用のふっ素樹脂コーティング等を施して不純物汚染を
防止することもできる。
The wafer fork is manufactured by the following procedure, for example. First, a raw material mixture is prepared by adding various sintering aids to at least one raw material powder of silicon nitride powder, sialon powder, and silicon carbide powder, and uniformly mixing the raw material powder. Is pressure-molded by a die press or the like to obtain a rectangular ceramic molded body having a uniform thickness. Next, the obtained ceramic formed body is cut by laser processing to form a wafer fork formed body having a predetermined contour. Next, this wafer fork compact is degreased under predetermined conditions and further sintered, and the obtained wafer sintered compact is ground to form a peripheral step and a concave portion, and then the peripheral edge is polished by using loose abrasive grains. It is manufactured by polishing the surface of the step portion and adjusting the surface roughness to 0.2 to 0.5 μmRa. Further, the surface of the wafer fork can be coated with a fluororesin coating or the like for preventing contamination to prevent impurity contamination.

【0020】上記のように成形体の段階でセラミックス
成形体をレーザ切断加工して所定形状のウェーハーフォ
ーク成形体を形成することにより、セラミックス焼結体
を研削加工する場合と比較して大幅に加工工数を低減す
ることができる。すなわち、セラミックス成形体に微細
なレーザ光を照射して切断加工(グリーン加工)する場
合において、レーザ光は、光学系の集光レンズによって
微細に集束され、形成しようとするウェハーフォークの
輪郭線に対応する位置に照射される。照射されたレーザ
光は成形体の照射部を高温度に加熱し、該部のセラミッ
クス成分等を瞬時に揮散せしめる。その結果、微細で寸
法精度が高いウェハーフォーク成形体が効率的に形成さ
れる。
As described above, by performing laser cutting processing on the ceramic molded body at the stage of the molded body to form a wafer fork molded body having a predetermined shape, the ceramic sintered body is significantly processed as compared with grinding. The number of steps can be reduced. That is, in the case where a ceramic compact is irradiated with a fine laser beam to perform a cutting process (green process), the laser beam is finely focused by the condenser lens of the optical system, and the laser beam is focused on the contour line of the wafer fork to be formed. The corresponding position is irradiated. The irradiated laser light heats the irradiated part of the molded body to a high temperature, and volatilizes the ceramic components and the like of the part in an instant. As a result, a fine wafer fork compact having high dimensional accuracy can be efficiently formed.

【0021】上記のように成形体の段階でレーザ加工に
よってセラミックス成形体を切断加工する場合には、切
断による衝撃力が極めて小さいため、加工影響が少な
く、軟質な成形体であっても変形やクラックを生じるお
それがなく、最終製品形状に極めて近い寸法精度が高い
フォーク成形体を効率的に形成することができる。
When the ceramic molded body is cut by laser processing at the stage of the molded body as described above, since the impact force due to cutting is extremely small, the processing influence is small, and even a soft molded body is deformed or deformed. It is possible to efficiently form a fork molded body with high dimensional accuracy that is extremely close to the shape of the final product without the risk of cracking.

【0022】[0022]

【作用】上記構成に係るウェハーフォークによれば、半
導体ウェハーとの接触部位をセラミックス材で形成して
いるため、反り等の塑性変形が少ない。また接触部位の
表面粗さを0.2〜0.5μmRaに設定しているた
め、半導体ウェハーをウェハーフォークに移載した場合
においてもフォーク表面上を半導体ウェハーが滑り摺動
することが少ない。したがって滑りによってウェハーが
フォークに衝突して破損することが未然に防止でき、半
導体ウェハーの製品歩留りを大幅に高めることができ
る。またウェハーの滑りによって生じるダスト量も減少
させることができ、半導体ウェハーの不純物汚染を効果
的に防止することができる。
According to the wafer fork having the above-mentioned structure, since the contact portion with the semiconductor wafer is formed of the ceramic material, the plastic deformation such as warpage is small. Further, since the surface roughness of the contact portion is set to 0.2 to 0.5 μmRa, even when the semiconductor wafer is transferred to the wafer fork, the semiconductor wafer rarely slides and slides on the fork surface. Therefore, it is possible to prevent the wafer from colliding against the fork and being damaged due to the slip, and the product yield of the semiconductor wafer can be significantly increased. In addition, the amount of dust generated by the slipping of the wafer can be reduced, and the impurity contamination of the semiconductor wafer can be effectively prevented.

【0023】[0023]

【実施例】次に本発明を以下の実施例および図面を参照
してより具体的に説明する。
The present invention will now be described more specifically with reference to the following examples and drawings.

【0024】実施例1 窒化けい素粉末に対してAl2 3 粉末を4重量%と、
AlN粉末を3重量%と、Y2 3 粉末を5重量%とを
均一に添加した混合粉末を調合し、80MPaの圧力で
金型プレス成形し、得られた厚さ5mmのセラミックス成
形体を機械加工により切断してフォーク成形体を形成
し、得られたフォーク成形体を窒素ガス雰囲気中で温度
700℃で3時間脱脂し、引き続き、窒素ガス雰囲気中
にて温度1750℃で6時間焼結してウェハーフォーク
焼結体5を調製した。
Example 1 Al 2 O 3 powder was 4% by weight with respect to silicon nitride powder,
3% by weight of AlN powder and 5% by weight of Y 2 O 3 powder were uniformly added to prepare a mixed powder, which was press-molded under a pressure of 80 MPa to obtain a ceramic molded body having a thickness of 5 mm. The fork compact is cut by machining to form a fork compact, and the obtained fork compact is degreased in a nitrogen gas atmosphere at a temperature of 700 ° C. for 3 hours, and subsequently sintered in a nitrogen gas atmosphere at a temperature of 1750 ° C. for 6 hours. Then, a wafer fork sintered body 5 was prepared.

【0025】次に得られたウェハーフォーク焼結体につ
いて、凹部3に対応する被研削部を平形砥石によって研
削加工し、図2に示すように深さ0.9mmの凹部3を形
成するとともに、周縁段部2,2に対応する被研削部を
カップ砥石によって研削加工し、図2に示すように幅
4.25mm、深さ0.8mmの周縁段部2,2を形成し、
さらに遊離砥粒を使用した研磨加工によって周縁段部
2,2上面の表面粗さを0.2〜0.5μmRaに調整
することにより、最終的に図1に示すような縦60mm×
横193mm×厚さ1.6mmの寸法を有する実施例1に係
るウェハーフォーク1を多数製造した。
Next, in the obtained wafer fork sintered body, the portion to be ground corresponding to the recess 3 is ground by a flat grindstone to form the recess 3 having a depth of 0.9 mm as shown in FIG. The portion to be ground corresponding to the peripheral step portions 2 and 2 is ground by a cup grindstone to form the peripheral step portions 2 and 2 having a width of 4.25 mm and a depth of 0.8 mm as shown in FIG.
Further, by adjusting the surface roughness of the upper surfaces of the peripheral stepped portions 2 and 2 to 0.2 to 0.5 μmRa by polishing using loose abrasive grains, a vertical length of 60 mm × as shown in FIG. 1 is finally obtained.
A large number of wafer forks 1 according to Example 1 having dimensions of 193 mm in width and 1.6 mm in thickness were manufactured.

【0026】得られたウェーハーフォーク1の曲げ強度
の平均値は600MPa、破壊靭性値は5〜6MPa/
1/2 、ヤング率は290GPa、熱衝撃温度差は60
0℃であり、従来の石英ガラス製のウェーハーフォーク
(ヤング率68〜72GPa)およびステンレス製ウェ
ハーフォーク(引張強度520MPa、ヤング率200
GPa)と比較して強度および熱衝撃耐性に優れている
ことが判明した。
The obtained wafer fork 1 has an average bending strength of 600 MPa and a fracture toughness value of 5 to 6 MPa /
m 1/2 , Young's modulus of 290 GPa, thermal shock temperature difference of 60
The temperature is 0 ° C., and a conventional wafer fork made of quartz glass (Young's modulus 68 to 72 GPa) and a wafer fork made of stainless steel (tensile strength 520 MPa, Young's modulus 200)
It was found to be superior in strength and thermal shock resistance as compared with GPa).

【0027】実施例2 純度99.5%のAl2 3 粉末100重量部を80M
Paの圧力で金型プレス成形し、得られた厚さ5mmのセ
ラミックス成形体を機械加工により切断してフォーク成
形体を形成し、得られたフォーク成形体を大気中で温度
700℃で1時間脱脂し、引き続き、大気中にて温度1
700℃で2時間焼結し、得られたウェハーフォーク焼
結体を実施例1と同一寸法に研削加工し、さらに周縁段
部の表面粗さが0.3〜0.5μmRaとなるように研
磨加工を実施して実施例2に係るウェハーフォークを5
枚製造した。
Example 2 100 parts by weight of Al 2 O 3 powder having a purity of 99.5% was added to 80M.
The die is press-molded at a pressure of Pa, the obtained ceramic molded body with a thickness of 5 mm is cut by machining to form a fork molded body, and the obtained fork molded body is heated in the air at a temperature of 700 ° C. for 1 hour. After degreasing, continue in the atmosphere at a temperature of 1
Sintering was performed at 700 ° C. for 2 hours, the obtained wafer fork sintered body was ground to the same size as in Example 1, and further polished so that the surface roughness of the peripheral step was 0.3 to 0.5 μmRa. The wafer fork according to the second embodiment is processed to 5
One sheet was manufactured.

【0028】比較例1〜3 実施例1において調製したSi3 4 製ウェハーフォー
ク焼結体の周縁段部上面について、砥粒サイズを変化せ
しめて研磨加工を実施し、周縁段部の表面粗さがそれぞ
れ0.05〜0.1μmRa,0.8〜1.2μmR
a,1.4〜1.6μmRaとなるように調整して、そ
れぞれ比較例1〜3に係るウェハーフォークを5枚ずつ
製造した。
Comparative Examples 1 to 3 On the upper surface of the peripheral step portion of the wafer fork sintered body made of Si 3 N 4 prepared in Example 1, polishing was performed by changing the abrasive grain size, and the surface roughness of the peripheral step portion was changed. 0.05 to 0.1 μmRa and 0.8 to 1.2 μmR
a, adjusted to 1.4 to 1.6 μmRa, and five wafer forks according to Comparative Examples 1 to 3 were manufactured.

【0029】比較例4 実施例4において調製したAl2 3 製ウェハーフォー
ク焼結体の周縁段部上面について、砥石粒サイズを増加
せしめて研磨加工を実施し、周縁段部の表面粗さが1.
2〜1.6μmRaとなるように調整して比較例4に係
るウェハーフォークを5枚製造した。
Comparative Example 4 The upper surface of the peripheral step portion of the Al 2 O 3 wafer fork sintered body prepared in Example 4 was subjected to polishing with increasing the size of the grindstone grains, and the surface roughness of the peripheral step portion was reduced. 1.
Five wafer forks according to Comparative Example 4 were manufactured by adjusting the pressure to be 2 to 1.6 μmRa.

【0030】比較例5 96%石英ガラス板を研削加工して図1および図2に示
す実施例1と同一寸法形状を有する比較例5の石英ガラ
ス製ウェハーフォークを製作した。この比較例5に係る
ウェハーフォークのヤング率は68GPaであり、実施
例1のフォークの1/4程度であった。
Comparative Example 5 A 96% quartz glass plate was ground to prepare a quartz glass wafer fork of Comparative Example 5 having the same size and shape as those of Example 1 shown in FIGS. 1 and 2. The Young's modulus of the wafer fork according to Comparative Example 5 was 68 GPa, which was about 1/4 that of the fork of Example 1.

【0031】比較例6 ステンレス鋼(SUS304)板を切削加工して実施例
1と同一寸法形状を有するフォークを製作し、さらに表
面に厚さ20μmのふっ素樹脂(テフロン)コーティン
グ層を形成し、比較例6に係る従来のウェハーフォーク
を作成した。この比較例6に係るSUS304製ウェハ
ーフォークの引張り強度は520MPaと高いが、ヤン
グ率は200GPaであり、実施例1より大幅に低下し
た。
Comparative Example 6 A fork having the same size and shape as in Example 1 was manufactured by cutting a stainless steel (SUS304) plate, and a fluorine resin (Teflon) coating layer having a thickness of 20 μm was formed on the surface of the fork. A conventional wafer fork according to Example 6 was made. The tensile strength of the SUS304 wafer fork according to Comparative Example 6 was as high as 520 MPa, but the Young's modulus was 200 GPa, which was significantly lower than that of Example 1.

【0032】また実施例1〜2および比較例1〜6に係
る各ウェハーフォークを各5枚ずつ、搬送試験に供し
た。すなわち図1〜2に示すようにウェハー搬送装置の
ロボットアーム6に締着ねじ7を介して固定し、6イン
チ半導体ウェハー8のウェハーフォーク1への移載操作
を500回繰り返した後における、各ウェハー表面に付
着した直径0.2μm以上の不純物微粒子(ダスト)数
を計数して、その平均値を算出するとともに、ウェハー
搬送時の安定性を評価した。なおウェハー搬送時の安定
性は、ウェハーまたはフォークに少なくとも1ヶ所でも
破損を生じた場合を×印で表示し、破損が全くないもの
を◎印で表示した。測定評価結果を下記表1に示す。
Further, five wafer forks according to each of Examples 1 and 2 and Comparative Examples 1 to 6 were subjected to a transportation test. That is, as shown in FIGS. 1 and 2, after fixing the robot arm 6 of the wafer transfer device through the fastening screw 7 and transferring the 6-inch semiconductor wafer 8 to the wafer fork 1 500 times, The number of impurity fine particles (dust) having a diameter of 0.2 μm or more attached to the wafer surface was counted, the average value thereof was calculated, and the stability during wafer transportation was evaluated. The stability during wafer transfer is indicated by a cross when the wafer or fork is damaged at least at one place, and is indicated by a double circle when there is no damage. The measurement evaluation results are shown in Table 1 below.

【0033】[0033]

【表1】 [Table 1]

【0034】表1に示す結果から明らかなように実施例
1〜2に係るウェハーフォークによれば、半導体ウェハ
ーとの接触面の表面粗さを最適化しているため、フォー
ク上面におけるウェハーの滑りが少なく、フォークとウ
ェハーとの摺動によるダスト発生量の低減が可能となっ
た。またウェハーの衝突による破損も少なく、半導体ウ
ェハーの製品歩留りを改善できることも実証された。一
方、半導体ウェハーとの接触部(周縁段部)の表面粗さ
を過度に低減したものでは、ダストの発生量は少なくな
るが、ウェハーの滑りによる破損が増加し、搬送時の安
定性が損われることが判明した。また、表面粗さを過大
に設定した比較例2〜3に示すウェハーフォークでは、
搬送時の安定性は良好であるが、ダスト発生量が増加
し、ウェハーの不純物汚染が増大する傾向が確認でき
た。
As is clear from the results shown in Table 1, according to the wafer forks according to Examples 1 and 2, the surface roughness of the contact surface with the semiconductor wafer is optimized, so that the slip of the wafer on the upper surface of the fork occurs. It is possible to reduce the amount of dust generated due to the sliding of the fork and the wafer. Also, it was proved that the damage due to the collision of the wafer was small and the product yield of the semiconductor wafer could be improved. On the other hand, if the surface roughness of the contact part (peripheral step) with the semiconductor wafer is excessively reduced, the amount of dust generated will be small, but damage due to slipping of the wafer will increase and stability during transportation will be impaired. It turned out to be Further, in the wafer forks shown in Comparative Examples 2 to 3 in which the surface roughness is set excessively,
Although the stability during transportation was good, it was confirmed that the dust generation amount increased and the impurity contamination of the wafer increased.

【0035】[0035]

【発明の効果】以上説明の通り、本発明に係るウェハー
フォークによれば、半導体ウェハーとの接触部位をセラ
ミックス材で形成しているため、反り等の塑性変形が少
ない。また接触部位の表面粗さを0.2〜0.5μmR
aに設定しているため、半導体ウェハーをウェハーフォ
ークに移載した場合においてもフォーク表面上を半導体
ウェハーが滑り摺動することが少ない。したがって滑り
によってウェハーがフォークに衝突して破損することが
未然に防止でき、半導体ウェハーの製品歩留りを大幅に
高めることができる。またウェハーの滑りによって生じ
るダスト量も減少させることができ、半導体ウェハーの
不純物汚染を効果的に防止することができる。
As described above, according to the wafer fork of the present invention, since the contact portion with the semiconductor wafer is formed of the ceramic material, there is little plastic deformation such as warpage. Also, the surface roughness of the contact area is 0.2 to 0.5 μmR
Since it is set to a, even when the semiconductor wafer is transferred to the wafer fork, the semiconductor wafer rarely slides and slides on the surface of the fork. Therefore, it is possible to prevent the wafer from colliding against the fork and being damaged due to the slip, and the product yield of the semiconductor wafer can be significantly increased. In addition, the amount of dust generated by the slipping of the wafer can be reduced, and the impurity contamination of the semiconductor wafer can be effectively prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るウェハーフォークの一実施例を示
す平面図。
FIG. 1 is a plan view showing an embodiment of a wafer fork according to the present invention.

【図2】図1におけるII−II線に沿う断面図。 1 ウェハーフォーク 2 周縁段部 3 凹部 5 ウェハーフォーク焼結体 6 ロボットアーム 7 締着ねじ 8 半導体ウェハーFIG. 2 is a sectional view taken along the line II-II in FIG. 1 Wafer Fork 2 Edge Step 3 Recess 5 Wafer Fork Sintered Body 6 Robot Arm 7 Fastening Screw 8 Semiconductor Wafer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体製造工程において半導体ウェハー
を保持して順次搬送するウェハーフォークにおいて、少
なくとも半導体ウェハーと接触する部位をセラミックス
材で形成するとともに、上記接触部の表面粗さを中心線
平均粗さ(Ra)基準で0.2〜0.5μmに設定した
ことを特徴とするウェハーフォーク。
1. In a wafer fork for sequentially holding and transferring semiconductor wafers in a semiconductor manufacturing process, at least a portion that comes into contact with the semiconductor wafer is formed of a ceramic material, and the surface roughness of the contact portion is a center line average roughness. A wafer fork characterized by being set to 0.2 to 0.5 μm on the basis of (Ra).
【請求項2】 セラミックス材は、Si3 4 ,Si−
Al−O−N,SiCおよびAl2 3 の少なくとも1種
から成ることを特徴とする請求項1記載のウェハーフォ
ーク。
2. The ceramic material is Si 3 N 4 , Si-
Al-O-N, wafer fork according to claim 1, characterized in that it consists of at least one of SiC and Al 2 O 3.
【請求項3】 セラミックス材表面にふっ素樹脂コーテ
ィング等の汚染防止層を形成したことを特徴とする請求
項1記載のウェハーフォーク。
3. The wafer fork according to claim 1, wherein a contamination prevention layer such as a fluororesin coating is formed on the surface of the ceramic material.
JP15946193A 1993-06-29 1993-06-29 Wafer fork Pending JPH0722489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15946193A JPH0722489A (en) 1993-06-29 1993-06-29 Wafer fork

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15946193A JPH0722489A (en) 1993-06-29 1993-06-29 Wafer fork

Publications (1)

Publication Number Publication Date
JPH0722489A true JPH0722489A (en) 1995-01-24

Family

ID=15694274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15946193A Pending JPH0722489A (en) 1993-06-29 1993-06-29 Wafer fork

Country Status (1)

Country Link
JP (1) JPH0722489A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5746460A (en) * 1995-12-08 1998-05-05 Applied Materials, Inc. End effector for semiconductor wafer transfer device and method of moving a wafer with an end effector
US6068441A (en) * 1997-11-21 2000-05-30 Asm America, Inc. Substrate transfer system for semiconductor processing equipment
JP2001035903A (en) * 1999-05-28 2001-02-09 Applied Materials Inc Assembly for wafer handling apparatus
US6267423B1 (en) 1995-12-08 2001-07-31 Applied Materials, Inc. End effector for semiconductor wafer transfer device and method of moving a wafer with an end effector
US6293749B1 (en) 1997-11-21 2001-09-25 Asm America, Inc. Substrate transfer system for semiconductor processing equipment
WO2003030251A1 (en) * 2001-09-27 2003-04-10 Shin-Etsu Handotai Co., Ltd. Silicon monocrystal wafer processing device, and method of manufacturing silicon monocrystal wafer and silicon epitaxial wafer
EP1376665A1 (en) * 2001-03-30 2004-01-02 Shin-Etsu Handotai Co., Ltd Gaseous phase growing device
JP2007250797A (en) * 2006-03-15 2007-09-27 Hitachi Kokusai Electric Inc Substrate processing apparatus
JP2008172241A (en) * 2007-01-11 2008-07-24 Applied Materials Inc High temperature robot end effector
JP2011238962A (en) * 2011-07-28 2011-11-24 Hitachi Kokusai Electric Inc Placement plate, substrate transfer apparatus, substrate processing apparatus
JP2013095973A (en) * 2011-11-02 2013-05-20 Tocalo Co Ltd Member for semiconductor manufacturing device
JP2014195057A (en) * 2013-02-28 2014-10-09 Kyocera Corp Transfer member, substrate transfer apparatus including the same, and substrate processing apparatus
JP2015159244A (en) * 2014-02-25 2015-09-03 京セラ株式会社 Transfer member, substrate transfer device including the same and substrate processing apparatus
JP2018019015A (en) * 2016-07-29 2018-02-01 株式会社アルバック Substrate transport robot and vacuum processing equipment

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5746460A (en) * 1995-12-08 1998-05-05 Applied Materials, Inc. End effector for semiconductor wafer transfer device and method of moving a wafer with an end effector
US6267423B1 (en) 1995-12-08 2001-07-31 Applied Materials, Inc. End effector for semiconductor wafer transfer device and method of moving a wafer with an end effector
US6068441A (en) * 1997-11-21 2000-05-30 Asm America, Inc. Substrate transfer system for semiconductor processing equipment
US6293749B1 (en) 1997-11-21 2001-09-25 Asm America, Inc. Substrate transfer system for semiconductor processing equipment
JP2001035903A (en) * 1999-05-28 2001-02-09 Applied Materials Inc Assembly for wafer handling apparatus
JP4554765B2 (en) * 1999-05-28 2010-09-29 アプライド マテリアルズ インコーポレイテッド Blades and blade assemblies for mechanical wafer handling equipment
EP1376665A1 (en) * 2001-03-30 2004-01-02 Shin-Etsu Handotai Co., Ltd Gaseous phase growing device
EP1376665A4 (en) * 2001-03-30 2006-11-22 Shinetsu Handotai Kk Gaseous phase growing device
US7214271B2 (en) 2001-09-27 2007-05-08 Shin-Etsu Handotai Co., Ltd. Silicon single crystal wafer process apparatus, silicon single crystal wafer, and manufacturing method of silicon epitaxial wafer
WO2003030251A1 (en) * 2001-09-27 2003-04-10 Shin-Etsu Handotai Co., Ltd. Silicon monocrystal wafer processing device, and method of manufacturing silicon monocrystal wafer and silicon epitaxial wafer
JP2007250797A (en) * 2006-03-15 2007-09-27 Hitachi Kokusai Electric Inc Substrate processing apparatus
JP2008172241A (en) * 2007-01-11 2008-07-24 Applied Materials Inc High temperature robot end effector
JP2011238962A (en) * 2011-07-28 2011-11-24 Hitachi Kokusai Electric Inc Placement plate, substrate transfer apparatus, substrate processing apparatus
JP2013095973A (en) * 2011-11-02 2013-05-20 Tocalo Co Ltd Member for semiconductor manufacturing device
JP2014195057A (en) * 2013-02-28 2014-10-09 Kyocera Corp Transfer member, substrate transfer apparatus including the same, and substrate processing apparatus
JP2015159244A (en) * 2014-02-25 2015-09-03 京セラ株式会社 Transfer member, substrate transfer device including the same and substrate processing apparatus
JP2018019015A (en) * 2016-07-29 2018-02-01 株式会社アルバック Substrate transport robot and vacuum processing equipment

Similar Documents

Publication Publication Date Title
JPH0722489A (en) Wafer fork
JPH06151550A (en) Wafer fork
US6150023A (en) Dummy wafer
JPH06236913A (en) Wafer fork
KR101642671B1 (en) Handle substrates of composite substrates for semiconductors, and composite substrates for semiconductors
JPH0653303A (en) Wafer fork and its manufacture method
JP3469513B2 (en) Exposure apparatus and support member used therein
JPH07122614A (en) Wafer fork
JP4057443B2 (en) Semiconductor manufacturing apparatus member and manufacturing method thereof
KR20030085536A (en) Film thickness measuring monitor wafer
JPH0817895A (en) Wafer feed plate
JP2004152900A (en) Wafer holding ring for semiconductor manufacturing apparatus and method of manufacturing the same, and heat treatment method and apparatus for semiconductor wafer
JPH0729959A (en) Wafer transfer device
JP4637566B2 (en) Masking spacer and manufacturing method thereof
JP3162557B2 (en) Semiconductor substrate holding device and method of manufacturing the same
JP4062059B2 (en) Low thermal expansion ceramic member, method for manufacturing the same, and member for semiconductor manufacturing apparatus
JP4766289B2 (en) Silicon carbide sintered body and manufacturing method thereof
CN111886649B (en) Plate material for annealing treatment, method for producing plate material for annealing treatment, and method for producing substrate
JP3313167B2 (en) Optical element molding member
JP2001313332A (en) Electrostatic attraction device and semiconductor manufacturing apparatus
JP2004140132A (en) Testpiece mounting stage
JPH0551262A (en) Bottom board for sintering treatment
JPH05338794A (en) Product carrying hand
JP2001071260A (en) Wafer holding plate
WO2011074436A1 (en) Substrate and method for manufacturing same