JPH06236913A - Wafer fork - Google Patents

Wafer fork

Info

Publication number
JPH06236913A
JPH06236913A JP2090593A JP2090593A JPH06236913A JP H06236913 A JPH06236913 A JP H06236913A JP 2090593 A JP2090593 A JP 2090593A JP 2090593 A JP2090593 A JP 2090593A JP H06236913 A JPH06236913 A JP H06236913A
Authority
JP
Japan
Prior art keywords
wafer
fork
powder
wafer fork
pins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2090593A
Other languages
Japanese (ja)
Inventor
Takeshi Shioda
武 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2090593A priority Critical patent/JPH06236913A/en
Publication of JPH06236913A publication Critical patent/JPH06236913A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a wafer fork little in pollution, strong, and accurate in dimension by constituting a placing part and a holding part for a fork for holding and carrying a water with pins and making the section in contact with the wafer out of ceramic on nonoxide line such as silicon nitride or the like. CONSTITUTION:A wafer fork body sintered body is manufactured by molding mixed powder, where 4wt.% Al2O3 powder, 3wt.%AlN powder, and 5wt.%Y2O3 powder are added uniformly to 100 pts.wt. of Si3N4 powder, under pressure of 800kg/cm<2> into an CIP, and cutting the obtained ceramic molded item by machining, and degreasing it for three hours at a temperature of 700 deg.C in nitrogen atmosphere, and sintering it successively for six hours at 1750 deg.C. Pins being obtained similarly are attached to it to complete a plating part 8 and a holding part 9. At this time, the contact area between a wafer fork 7 and a wafer 2 is 50.24mm<2>. Since it is made of material high in rigidity and tenacity, the reliability on carriage, and the availability and productivity of semiconductor devices improve.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はウェハーの移送搬送用に
使用されるウェハーフォークに関し、特に不純物による
ウェハーの汚染などが少なく、またそりなどの発生が少
なく高強度で高寸法精度を有するウェハーフォークに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wafer fork used for transferring and transporting a wafer, and more particularly, a wafer fork having less contamination of the wafer due to impurities and less warpage, high strength and high dimensional accuracy. Regarding

【0002】[0002]

【従来の技術】従来から半導体製造工程のウェハーの熱
処理工程や搬送ラインにおいては、単結晶シリコンをス
ライスした多数のウェハーを順次、移送搬送するため
に、ウェハーフォークやウェハーチャックなどの各種保
持具が使用されている。ウェハーフォークは平板状の本
体中央部に、ウェハーが嵌入する浅い凹部を形成して構
成される一方、ウェハーチャックは、真空吸着または静
電作用に基づいてウェハーを吸着保持する保持具であ
る。
2. Description of the Related Art Conventionally, in a wafer heat treatment process or a transfer line in a semiconductor manufacturing process, various holders such as a wafer fork and a wafer chuck have been used in order to sequentially transfer and transfer a large number of sliced single crystal silicon wafers. It is used. The wafer fork is configured by forming a shallow recess into which a wafer is fitted in the central portion of a flat plate-shaped main body, while the wafer chuck is a holder that holds and holds the wafer by vacuum suction or electrostatic action.

【0003】上記ウェハーフォークは、例えば搬送ロボ
ットのアーム先端部に固着され、微細な間隙を介して多
段にウェハーを収納するカートリッジやキャリアの間隙
部に挿通され、ウェハーを凹部にすくい上げて保持し、
次工程の処理部などに搬送する。
The above-mentioned wafer fork is fixed to, for example, the tip of an arm of a transfer robot, is inserted through a minute gap into a gap between cartridges and carriers for accommodating wafers in multiple stages, and the wafer is picked up and held in a concave portion.
It is transported to the processing section of the next process.

【0004】従来、上記のウェハーフォークとしてステ
ンレス鋼板を所定形状に切削・研磨加工した後に、加工
表面をフッ素樹脂被膜などでコーティングしたものやフ
ォーク全体を石英ガラスで構成したものが主として使用
されていた。
Conventionally, as the above-mentioned wafer fork, one in which a stainless steel plate is cut and polished into a predetermined shape and then the processed surface is coated with a fluororesin coating or the like, or the entire fork is made of quartz glass is mainly used. .

【0005】[0005]

【発明が解決しようとする課題】しかしながらステンレ
ス鋼表面に樹脂コーティングしたウェハーフォークで
は、コーティング層が短期間に破れ、鉄やアルカリ塩な
どの不純物がウェハー側に転移しやすく汚染を引き起し
やすい欠点がある。また本体を構成するステンレス鋼が
塑性変形を起こしやすく、高精度の搬送動作が困難とな
る場合が多い。一方ステンレス鋼自体の靭性が高いた
め、万一搬送装置自体が誤動作した場合にはウェハーフ
ォークによって高価なロボットなどの周辺設備が破損さ
れ、製造工程が停止するおそれもあった。
However, in a wafer fork whose surface is coated with resin on a stainless steel surface, the coating layer is broken in a short period of time, and impurities such as iron and alkali salts are likely to be transferred to the wafer side, which easily causes contamination. There is. In addition, the stainless steel forming the main body is likely to be plastically deformed, which often makes it difficult to carry out a highly accurate transfer operation. On the other hand, since the stainless steel itself has high toughness, if the transfer device itself malfunctions, the wafer fork may damage peripheral equipment such as an expensive robot and stop the manufacturing process.

【0006】一方、石英ガラスで構成したウェハーフォ
ークでは、コーティング層を形成しない場合でも不純物
汚染の心配は少なく、また熱的に安定で有利である一
方、強度および剛性がやや低いため、繰り返して使用す
る構造体として使用するには難点があった。特に近年、
複数のウェハーを収納するカートリッジやキャリアにも
より多くのウェハーを装填することが求められ、隣接す
るウェハー間の間隙も狭められる傾向にあり、必然的
に、その間隙部に挿通されるウェハーフォークもより薄
型化する要請が高まっている。しかしながら、薄型化に
伴ってその機械的強度も小さくなり、短期にたわみを生
じやすくなり、寿命が短縮される問題点がある。
On the other hand, a wafer fork made of quartz glass is less likely to be contaminated with impurities even when a coating layer is not formed, and is thermally stable, which is advantageous, while strength and rigidity are slightly low, so that it can be used repeatedly. There was a difficulty in using it as a structure that does. Especially in recent years
It is required to load more wafers in a cartridge or a carrier that stores a plurality of wafers, and the gap between adjacent wafers tends to be narrowed. Inevitably, a wafer fork inserted in the gap is also required. The demand for thinner products is increasing. However, as the device becomes thinner, its mechanical strength becomes smaller, so that it tends to bend in a short period of time, resulting in a problem of shortening the life.

【0007】上記問題点を解決する手段として、純度9
9%以上のアルミナ(Al2 3 )焼結体を研磨加工し
て形成したウェハーフォークも一部で使用されている。
このAl2 3 製ウェハーフォークは、図3および図4
に示すように周円段部3を設け、この周円段部3でウェ
ハー2を載置・保持している。しかしながら、このよう
に周円段部3でウェハー2を保持する構造では、ウェハ
ー2との接触面積が大きく、ウェハー2表面に不純物が
付着しやすい。またウェハーフォーク1の形状がウェハ
ー2といわゆるニアネットシェープになっているため、
特に硬質で脆弱な材料、例えばセラミックスでは研磨加
工が困難かつ高価なものとなり、さらなる改良が望まれ
ていた。
As a means for solving the above problems, a purity of 9
A wafer fork formed by polishing an alumina (Al 2 O 3 ) sintered body of 9% or more is also used in part.
This Al 2 O 3 wafer fork is shown in FIGS.
As shown in FIG. 3, the peripheral circular step portion 3 is provided, and the wafer 2 is placed and held by the peripheral circular step portion 3. However, in the structure in which the wafer 2 is held by the circumferential step portion 3 as described above, the contact area with the wafer 2 is large and impurities are likely to adhere to the surface of the wafer 2. Since the wafer fork 1 and the wafer 2 have a so-called near net shape,
Particularly, a hard and brittle material such as ceramics is difficult and expensive to polish, and further improvement has been desired.

【0008】またAl2 3 製ウェハーフォークでは、
半導体製造工程の温度条件や雰囲気ガスによって、強度
特性や耐久性が大きく異なり、均質な信頼性が得られな
い欠点もある。一方、半導体基板の集積度も1Mビット
から4Mビットへと急増するに伴って、ウェハーに対す
る不純物の許容限度もより厳格化し、従来のAl2 3
製ウェハーフォークでは、対応不可能な状態になりつつ
ある。
Further, in the Al 2 O 3 wafer fork,
The strength characteristics and durability vary greatly depending on the temperature conditions and atmospheric gas in the semiconductor manufacturing process, and there is a drawback that uniform reliability cannot be obtained. On the other hand, as the degree of integration of semiconductor substrates has rapidly increased from 1 Mbit to 4 Mbit, the allowable limit of impurities for wafers has become more stringent and the conventional Al 2 O 3
With wafer forks made by us, it is becoming impossible to handle.

【0009】本発明は上記の問題点を解決するためにな
されたものであり、不純物によるウェハーの汚染が少な
く、また高強度で高寸法精度を有するウェハーフォーク
を提供することを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a wafer fork having less contamination of the wafer with impurities, high strength and high dimensional accuracy.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本願第1の発明に係るウェハーフォークは、ウェハ
ーを保持して順次搬送するウェハーフォークにおいて、
ウェハーを下方から接触載置する載置部と、ウェハーの
周辺部と接触してウェハーを所定位置に保持する保持部
を有し、かつ載置部および保持部がピンからなり、さら
に載置部および保持部の少なくともウェハーと接触する
部位が、Si3 4 ,Si−Al−O−N,SiCの少
なくとも1種からなることを特徴とする。
In order to achieve the above object, the wafer fork according to the first invention of the present application is a wafer fork that holds and sequentially conveys wafers,
It has a placing part for placing the wafer in contact with it from below, and a holding part for holding the wafer in a predetermined position by contacting the peripheral part of the wafer, and the placing part and the holding part consist of pins, and the placing part Further, at least a portion of the holding portion that is in contact with the wafer is made of at least one of Si 3 N 4 , Si—Al—O—N, and SiC.

【0011】ここで載置部および保持部がピンからなる
のは主としてウェハーとウェハーフォークの接触面積を
減らすためで、接触面積が減少することによりウェハー
への汚染は抑えられる。接触面積が20〜100mm2
であれば好ましく、特に40〜70mm2 であればより
好ましい。
Here, the mounting portion and the holding portion are formed of pins mainly to reduce the contact area between the wafer and the wafer fork, and the contact area is reduced, so that the contamination of the wafer is suppressed. Contact area is 20-100mm 2
It is preferable if it is 40 to 70 mm 2. It is more preferable if

【0012】また載置部および保持部の少なくともウェ
ハーと接触する部位を、Si3 4,Si−Al−O−
N,SiCの少なくとも1種としたのは、Si3 4
Si−Al−O−N,SiCはいずれも他の材料、特に
セラミックスと比較して剛性、靭性などの強度値および
耐環境特性が高く、ウェハーフォークのように薄く形成
した場合においても、十分な耐久性を有するとともに、
耐熱衝撃性も優れているためである。
Further, at least the portions of the mounting portion and the holding portion that come into contact with the wafer are Si 3 N 4 , Si-Al-O-.
At least one of N and SiC is Si 3 N 4 ,
Si-Al-O-N and SiC have high strength values such as rigidity and toughness and environmental resistance characteristics as compared with other materials, especially ceramics, and are sufficient even when formed thin such as a wafer fork. While having durability,
This is because the thermal shock resistance is also excellent.

【0013】また本願第2の発明に係るウェハーフォー
クは、ウェハーを保持して順次搬送するウェハーフォー
クにおいて、ウェハーと接触する部位の面積が20〜1
00mm2 であることを特徴とする。
A wafer fork according to a second aspect of the present invention is a wafer fork that holds and sequentially conveys a wafer, and the area of the portion that contacts the wafer is 20 to 1
00 mm 2 Is characterized in that.

【0014】ここでウェハーフォークのウェハーと接触
する部位の面積を20〜100mm2 としたのは、20
mm2 未満の場合には、接触する面積が小さすぎてウェ
ハーを点で支えることになり、特に十分な強度を有して
いない材料によりウェハーフォークを製造した場合など
には一点に大きな力がかかりすぎて好ましくない。また
ウェハーの保持が不安定となりやすくなる。一方、10
0mm2 を超える場合には、接触する面積が大きすぎて
ウェハーが汚染されやすく好ましくない。好ましい範囲
は40〜70mm2 である。この範囲ではウェハーも安
定して保持でき、またウェハーの汚染も多くはない。
Here, the area of the portion of the wafer fork that contacts the wafer is 20 to 100 mm 2. Was 20
mm 2 If it is less than, the contact area is too small to support the wafer at the point, and if a wafer fork is manufactured with a material that does not have sufficient strength, too much force is applied to one point. Not preferable. Further, the holding of the wafer is likely to be unstable. On the other hand, 10
0 mm 2 If it exceeds, the contact area is too large and the wafer is easily contaminated, which is not preferable. The preferred range is 40 to 70 mm 2. Is. In this range, the wafer can be stably held, and the wafer is not contaminated much.

【0015】さらに好ましい範囲は45〜60mm2
ある。この場合にはある程度の面積でウェハーを支える
ため、一点に大きな力がかかりすぎることもなく、また
ウェハーへの汚染もあまりない。
A more preferable range is 45 to 60 mm 2. Is. In this case, since the wafer is supported by a certain area, a large force is not applied to one point, and the wafer is not contaminated too much.

【0016】また本願第2の発明においてはウェハーフ
ォークの材質は特に限定されないが、強度の優れた材質
よりなるものが好ましく、Si3 4 ,Si−Al−O
−N,SiCなどの非酸化系セラミックスは好適であ
る。
In the second invention of the present application, the material of the wafer fork is not particularly limited, but it is preferably made of a material having excellent strength, such as Si 3 N 4 , Si-Al-O.
Non-oxidizing ceramics such as -N and SiC are suitable.

【0017】また接触面積が40〜70mm2 とする手
段としては、ウェハーフォークをピンで載置するのが好
ましい例であるが、特に限定されるものではない。従来
のように面状に形成した周円段部のウェハーと接触する
面積を極力小さくするなどしてなしても良い。
The contact area is 40 to 70 mm 2. A preferable example of the means is to mount the wafer fork with a pin, but it is not particularly limited. As in the conventional case, the area of the peripheral circular step portion formed in a planar shape that comes into contact with the wafer may be made as small as possible.

【0018】またSi3 4 ,Si−Al−O−N,S
iCの少なくとも1種からなる焼結体で形成したウェハ
ーフォークは、そのままでも使用できるが、さらに焼結
体表面にフッ素樹脂コーティングなどの汚染防止層を形
成することにより、ウェハーの汚染をより効果的に防止
することができる。
Si 3 N 4 , Si-Al-O-N, S
A wafer fork made of a sintered body made of at least one kind of iC can be used as it is, but by further forming a contamination prevention layer such as a fluororesin coating on the surface of the sintered body, the contamination of the wafer is more effective. Can be prevented.

【0019】以下に製造方法の一例を述べる。この例で
は本願第1および第2の発明を同時に満たす、すなわち
材質はSi3 4 ,Si−Al−O−N,SiCの少く
とも1種、載置部と保持部をピンにより形成し、ウェハ
ーとウェハーフォークの接触面積を20〜100mm2
とする場合を説明する。
An example of the manufacturing method will be described below. In this example, the first and second inventions of the present application are simultaneously satisfied, that is, the material is at least one of Si 3 N 4 , Si—Al—O—N, and SiC, and the mounting portion and the holding portion are formed by pins, The contact area between the wafer and the wafer fork is 20 to 100 mm 2
The case will be described.

【0020】まず、Si3 4 ,Si−Al−O−N,
SiCの少くとも一種からなる粉末に対して、各種焼結
助剤を添加して均一に混合して原料混合体を調製し、こ
の原料混合体を金型プレス、冷間静水圧プレス(CI
P)などによって加圧成形し、均一な厚さを有する矩形
のセラミックス成形体が得られる。次に得られたセラミ
ックス成形体を機械加工により切断し、所定の輪郭を有
するウェハーフォーク成形体を形成する。この成形体を
焼結し、研削・研磨加工を施し、ウェハーフォーク本体
を製造する。一方、同様に製造されたピンをウェハーフ
ォークの所定の位置に取り付け載置部および保持部と
し、本願発明のウェハーフォークを製造する。
First, Si 3 N 4 , Si-Al-O-N,
A powder mixture of at least one kind of SiC is added with various sintering aids and uniformly mixed to prepare a raw material mixture, and the raw material mixture is subjected to a die press, a cold isostatic press (CI).
P) or the like is pressure-molded to obtain a rectangular ceramic molded body having a uniform thickness. Next, the obtained ceramic formed body is cut by machining to form a wafer fork formed body having a predetermined contour. The molded body is sintered and subjected to grinding / polishing to manufacture a wafer fork main body. On the other hand, similarly manufactured pins are attached to a predetermined position of the wafer fork as a mounting portion and a holding portion, and the wafer fork of the present invention is manufactured.

【0021】[0021]

【作用】上記のような構成とした第1の発明のウェハー
フォークによれば、剛性や靭性値が高いSi3 4 ,S
i−Al−O−N,SiCの少くとも一種で形成されて
いるため、耐久性、耐熱衝撃性に優れたウェハーフォー
クが得られる。またウェハーフォークのウェハーと接触
する部位(載置部および保持部)がピンでできているの
で、ウェハーの汚染を抑えられる。
According to the wafer fork of the first invention having the above structure, Si 3 N 4 , S having a high rigidity and toughness value is obtained.
Since it is formed of at least one of i-Al-O-N and SiC, a wafer fork having excellent durability and thermal shock resistance can be obtained. Further, since the portions of the wafer fork that come into contact with the wafer (the mounting portion and the holding portion) are made of pins, the contamination of the wafer can be suppressed.

【0022】さらに第2の発明のウェハーフォークによ
れば、ウェハーとの接触面積が保持するには十分でウェ
ハーを汚染しない範囲としたので、半導体製造工程中に
ウェハーの汚染を抑えられる。
Further, according to the wafer fork of the second aspect of the invention, since the contact area with the wafer is sufficient to keep the wafer from being contaminated, contamination of the wafer can be suppressed during the semiconductor manufacturing process.

【0023】[0023]

【実施例】次に本発明を以下の実施例および図面を参照
してより具体的に説明する。 実施例1 Si3 4 粉末100重量部に対してAl2 3 粉末を
4重量%と、AlN粉末を3重量%と、Y2 3 粉末を
5重量%とを均一に添加した混合粉末を調合し、800
kg/cm2 の圧力でCIP成形し、得られた厚さ5m
mのセラミックス成形体を機械加工により切断してウェ
ハーフォーク本体成形体を形成し、得られたウェハーフ
ォーク本体成形体を窒素ガス雰囲気中で温度700℃で
3時間脱脂し、引き続き、窒素ガス雰囲気中にて温度1
750℃で6時間焼結してウェハーフォーク本体焼結体
7aを製造した。
The present invention will now be described more specifically with reference to the following examples and drawings. Example 1 A mixed powder in which 4% by weight of Al 2 O 3 powder, 3% by weight of AlN powder and 5% by weight of Y 2 O 3 powder were uniformly added to 100 parts by weight of Si 3 N 4 powder. And mix 800
kg / cm 2 5m thickness obtained by CIP molding under the pressure of
The wafer fork body molded body is formed by cutting the ceramic molded body of m by machining to dewax the obtained wafer fork body molded body in a nitrogen gas atmosphere at a temperature of 700 ° C. for 3 hours, and subsequently in a nitrogen gas atmosphere. At temperature 1
Wafer fork main body sintered body 7a was manufactured by sintering at 750 ° C. for 6 hours.

【0024】同様にして得られたピンを上述したウェハ
ーフォーク本体焼結体に取り付け載置部8および保持部
9とし、ウェハーフォーク7を製造した。このときのウ
ェハーフォーク7とウェハー2との接触面積は50.2
4mm2 であった。 実施例2
The pins obtained in the same manner were attached to the above-mentioned sintered body of the wafer fork main body to form a mounting portion 8 and a holding portion 9 to manufacture a wafer fork 7. At this time, the contact area between the wafer fork 7 and the wafer 2 is 50.2.
4 mm 2 Met. Example 2

【0025】純度99.5%のAl2 3 粉末100重
量部を800kg/cm2 の圧力で金型プレス成形し、
得られた厚さ5mmのセラミックス成形体を機械加工に
より切断してウェハーフォーク本体成形体を形成し、得
られたウェハーフォーク本体成形体を大気中で温度70
0℃で1時間脱脂し、引き続き、大気中にて温度170
0℃で2時間焼結してウェハーフォーク本体焼結体7a
を調製した。
100 parts by weight of Al 2 O 3 powder having a purity of 99.5% is added to 800 kg / cm 2. Mold press molding with the pressure of
The obtained ceramic molded body having a thickness of 5 mm is cut by machining to form a wafer fork main body molded body, and the obtained wafer fork main body molded body is heated to a temperature of 70
Degrease at 0 ° C for 1 hour, and then in the air at a temperature of 170
Wafer fork main body sintered body 7a after sintering at 0 ° C for 2 hours
Was prepared.

【0026】同様にして得られたピンを上述したウェハ
ーフォーク本体焼結体7aに取り付け載置部8および保
持部9とし、ウェハーフォーク7を製造した。このとき
のウェハーフォーク7とウェハー2との接触面積は5
0.24mm2 であった。 比較例1
The pins obtained in the same manner were attached to the above-mentioned wafer fork main body sintered body 7a to form a mounting portion 8 and a holding portion 9 to manufacture the wafer fork 7. At this time, the contact area between the wafer fork 7 and the wafer 2 is 5
0.24 mm 2 Met. Comparative Example 1

【0027】Si3 4 粉末100重量部に対してAl
2 3 粉末を4重量%と、AlN粉末を3重量%と、Y
2 3 粉末を5重量%とを均一に添加した混合粉末を調
合し、800kg/cm2 の圧力で金型プレス成形し、
得られた厚さ5mmのセラミックス成形体を機械加工に
より切断してフォーク本体成形体を形成し、得られたフ
ォーク本体成形体を窒素ガス雰囲気中で温度700℃で
3時間脱脂し、引き続き、窒素ガス雰囲気中にて温度1
750℃で6時間焼結して一体型ウェハーフォーク焼結
体1aを調製した。
Al based on 100 parts by weight of Si 3 N 4 powder
4% by weight of 2 O 3 powder, 3% by weight of AlN powder, Y
2 O 3 powder to prepare a mixed powder was uniformly added and 5 wt% to, 800 kg / cm 2 Mold press molding with the pressure of
The obtained ceramic molded body having a thickness of 5 mm is cut by machining to form a fork main body molded body, and the obtained fork main body molded body is degreased at a temperature of 700 ° C. for 3 hours in a nitrogen gas atmosphere, followed by nitrogen. Temperature 1 in gas atmosphere
The integrated wafer fork sintered body 1a was prepared by sintering at 750 ° C. for 6 hours.

【0028】これに研削・研磨加工を施して周円段部3
および凹部4を形成し、従来のウェハーフォーク1を製
造した。このときのウェハーフォーク1とウェハー2と
の接触面積は602.5mm2 であった。 比較例2
The peripheral circular stepped portion 3 is formed by grinding and polishing this.
Then, the recess 4 was formed, and the conventional wafer fork 1 was manufactured. The contact area between the wafer fork 1 and the wafer 2 at this time is 602.5 mm 2 Met. Comparative example 2

【0029】純度99.5%のAl2 3 粉末100重
量部を800kg/cm2 の圧力で金型プレス成形し、
得られた厚さ5mmのセラミックス成形体を機械加工に
より切断してウェハーフォーク本体成形体を形成し、得
られたウェハーフォーク本体成形体を大気中で温度70
0℃で1時間脱脂し、引き続き、大気中にて温度170
0℃で2時間焼結してウェハーフォーク本体焼結体1a
を調製した。
100 parts by weight of Al 2 O 3 powder having a purity of 99.5% is added to 800 kg / cm 2. Mold press molding with the pressure of
The obtained ceramic molded body having a thickness of 5 mm is cut by machining to form a wafer fork main body molded body, and the obtained wafer fork main body molded body is heated to a temperature of 70
Degrease at 0 ° C for 1 hour, and then in the air at a temperature of 170
Wafer fork main body sintered body 1a after sintering at 0 ° C for 2 hours
Was prepared.

【0030】これに研削・研磨加工を施して周円段部3
および凹部4を形成し、従来のウェハーフォーク1を製
造した。このときのウェハーフォーク1とウェハー2と
の接触面積は602.5mm2 であった。
By grinding / polishing this, the circumferential step 3
Then, the recess 4 was formed, and the conventional wafer fork 1 was manufactured. The contact area between the wafer fork 1 and the wafer 2 at this time is 602.5 mm 2 Met.

【0031】実施例1〜2および比較例1〜2に係る各
ウェハーフォークを各5つずつ製作し、通常の取り付け
方法でウェハー搬送装置で3ケ月間の連続運転に供し、
ウェハーのコンタミ不良比を測定した。この結果を下記
表1に示す。
Five wafer forks according to each of Examples 1 and 2 and Comparative Examples 1 and 2 were manufactured, and each wafer fork was subjected to a continuous operation for 3 months by a normal mounting method.
The contamination defect ratio of the wafer was measured. The results are shown in Table 1 below.

【0032】[0032]

【表1】 [Table 1]

【0033】表1に示す結果から明らかなように実施例
1および実施例2に係るウェハーフォークによれば、従
来の研削・研磨加工を施して周円段部および凹部を形成
したウェハーフォークと比べて汚染が少なく、ウェハー
に鉄やアルカリなどの不純物が付着してウェハーを不良
とすることが低減できた。
As is clear from the results shown in Table 1, the wafer forks according to Examples 1 and 2 are different from the wafer forks in which the peripheral circular step and the recess are formed by the conventional grinding / polishing process. As a result, impurities such as iron and alkali adhered to the wafer and the wafer could be made defective.

【0034】このように第1または第2の本発明に係る
ウェハーフォークを採用することにより、ウェハー搬送
の信頼性および半導体製造装置の稼動率が大幅に向上
し、半導体装置の生産性を大幅に向上させることができ
た。
As described above, by adopting the wafer fork according to the first or second aspect of the present invention, the reliability of wafer transfer and the operation rate of the semiconductor manufacturing apparatus are greatly improved, and the productivity of the semiconductor apparatus is greatly improved. I was able to improve.

【0035】[0035]

【発明の効果】以上説明した通り、第1の本発明に係る
ウェハーフォークによれば、剛性や靭性値が高いSi3
4 ,Si−Al−O−N,SiCの少くとも一種のピ
ンで形成されているため、耐久性、耐熱衝撃性に優れ、
かつウェハーの接触による不純物汚染も大幅に低減され
る。また第2の本発明に係るウェハーフォークによれ
ば、ウェハーとの接触面積が小さいのでウェハーを汚染
することがあまりなくなる。
As described above, according to the wafer fork according to the first aspect of the present invention, Si 3 having a high rigidity and a high toughness value can be obtained.
Since it is formed of at least one kind of pin of N 4 , Si-Al-O-N, and SiC, it has excellent durability and thermal shock resistance,
In addition, impurity contamination due to wafer contact is also greatly reduced. Further, according to the wafer fork according to the second aspect of the present invention, since the contact area with the wafer is small, the wafer is less contaminated.

【0036】したがって第1および第2の本発明に係る
ウェハーフォークはウェハー搬送の信頼性および半導体
製造装置の稼働率が向上し、半導体装置の生産性を大幅
に向上できる。
Therefore, the wafer forks according to the first and second aspects of the present invention can improve the reliability of wafer transfer and the operation rate of the semiconductor manufacturing apparatus, and can greatly improve the productivity of the semiconductor apparatus.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の本発明のウェハーフォークの平面図。FIG. 1 is a plan view of a wafer fork according to a first aspect of the present invention.

【図2】図1におけるII−II矢視断面図。FIG. 2 is a sectional view taken along the line II-II in FIG.

【図3】従来のウェハーフォークの構造例を示す平面
図。
FIG. 3 is a plan view showing a structural example of a conventional wafer fork.

【図4】図3におけるIV−IV矢視断面図。FIG. 4 is a sectional view taken along the line IV-IV in FIG.

【符号の説明】 1,1a 従来のウェハーフォーク 2 ウェハー 3 周円段部 4 凹部 5 ロボットアーム 6 締着ねじ 7 本発明のウェハーフォーク 7a 本発明のウェハーフォーク本体 8 ピン(載置部) 9 ピン(保持部)整理番号 9GA92800
11
[Explanation of Codes] 1, 1a Conventional wafer fork 2 Wafer 3 Circumferential circular step portion 4 Recessed portion 5 Robot arm 6 Tightening screw 7 Wafer fork of the present invention 7a Wafer fork main body of the present invention 8 pins (placement portion) 9 pins (Holding part) Reference number 9GA92800
11

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ウェハーを保持して順次搬送するウェハ
ーフォークにおいて、ウェハーを下方から接触載置する
載置部と、ウェハーの周辺部と接触してウェハーを所定
位置に保持する保持部を有し、かつ載置部および保持部
がピンからなり、さらに載置部および保持部の少なくと
もウェハーと接触する部位が、Si3 4 ,Si−Al
−O−N,SiCの少なくとも1種からなることを特徴
とするウェハーフォーク。
1. A wafer fork that holds and sequentially conveys a wafer, and has a mounting portion for mounting the wafer in contact therewith from below, and a holding portion for contacting the peripheral portion of the wafer and holding the wafer at a predetermined position. The mounting portion and the holding portion are made of pins, and at least the portions of the mounting portion and the holding portion that come into contact with the wafer are Si 3 N 4 , Si-Al.
A wafer fork comprising at least one of -ON and SiC.
【請求項2】 ウェハーを保持して順次搬送するウェハ
ーフォークにおいて、ウェハーと接触する部位の面積が
20〜100mm2 であることを特徴とするウェハーフ
ォーク。
2. In a wafer fork that holds and sequentially conveys a wafer, the area of the portion in contact with the wafer is 20 to 100 mm 2. Wafer fork.
JP2090593A 1993-02-09 1993-02-09 Wafer fork Pending JPH06236913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2090593A JPH06236913A (en) 1993-02-09 1993-02-09 Wafer fork

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2090593A JPH06236913A (en) 1993-02-09 1993-02-09 Wafer fork

Publications (1)

Publication Number Publication Date
JPH06236913A true JPH06236913A (en) 1994-08-23

Family

ID=12040251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2090593A Pending JPH06236913A (en) 1993-02-09 1993-02-09 Wafer fork

Country Status (1)

Country Link
JP (1) JPH06236913A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6614190B2 (en) 2001-01-31 2003-09-02 Hitachi, Ltd. Ion implanter
EP1498934A3 (en) * 1996-02-28 2005-12-21 Ebara Corporation Robotic wafer transport apparatus
JP2011026111A (en) * 2009-07-03 2011-02-10 Tokyo Electron Ltd Position-deviation prevention device, substrate holder including this, substrate conveying device, and substrate conveying method
US20110146578A1 (en) * 2009-12-17 2011-06-23 Hitachi-Kokusai Electric Inc. Substrate processing apparatus
US9012030B2 (en) 2002-01-08 2015-04-21 Applied Materials, Inc. Process chamber component having yttrium—aluminum coating
TWI825613B (en) * 2022-03-08 2023-12-11 權亞石材股份有限公司 granite fork

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1498934A3 (en) * 1996-02-28 2005-12-21 Ebara Corporation Robotic wafer transport apparatus
US6614190B2 (en) 2001-01-31 2003-09-02 Hitachi, Ltd. Ion implanter
US9012030B2 (en) 2002-01-08 2015-04-21 Applied Materials, Inc. Process chamber component having yttrium—aluminum coating
JP2011026111A (en) * 2009-07-03 2011-02-10 Tokyo Electron Ltd Position-deviation prevention device, substrate holder including this, substrate conveying device, and substrate conveying method
TWI555681B (en) * 2009-07-03 2016-11-01 Tokyo Electron Ltd A position shift preventing device, a substrate holder including the same, a substrate handling device, and a substrate handling method
US20110146578A1 (en) * 2009-12-17 2011-06-23 Hitachi-Kokusai Electric Inc. Substrate processing apparatus
TWI825613B (en) * 2022-03-08 2023-12-11 權亞石材股份有限公司 granite fork

Similar Documents

Publication Publication Date Title
US6933254B2 (en) Plasma-resistant articles and production method thereof
TW202311202A (en) Y2o3-zro2erosion resistant material for chamber components in plasma environments
JPS6169116A (en) Susceptor for continuous cvd coating on silicon wafer
JPH0722489A (en) Wafer fork
JPH06151550A (en) Wafer fork
JPH06236913A (en) Wafer fork
JPH02174116A (en) Susceptor
JPH1012692A (en) Dummy wafer
JPH08188408A (en) Silicon carbide molded product by chemical vapor deposition and its production
JP4570195B2 (en) BORON CARBIDE BONDED BODY, ITS MANUFACTURING METHOD, AND PLASMA RESISTANT MEMBER
JP2003282685A (en) Cooling plate
KR101642671B1 (en) Handle substrates of composite substrates for semiconductors, and composite substrates for semiconductors
JP4057443B2 (en) Semiconductor manufacturing apparatus member and manufacturing method thereof
JPH07122614A (en) Wafer fork
JP2961480B2 (en) Fork for transferring semiconductor wafers
JP2001068536A (en) Aligner and support member used for the same
JPH09260471A (en) Semiconductor wafer vacuum chuck made of sintered silicon carbide substrate coated with chemically vaporized silicon carbide
JPH0653303A (en) Wafer fork and its manufacture method
JP3297571B2 (en) Electrostatic chuck
JPH1160356A (en) Aluminum nitride composite base, aluminum nitride composite heat generating body using the same, aluminum nitride composite electrostatic chuck, and same chuck with heater
US20040067354A1 (en) Tray for vapor phase step
JP4559574B2 (en) Ceramic substrate for circuit board and circuit board
JPH09232409A (en) Wafer holding apparatus
JP4159029B2 (en) Ceramic plate
JP3162557B2 (en) Semiconductor substrate holding device and method of manufacturing the same