JPH07224318A - Desulfurization method of molten steel - Google Patents

Desulfurization method of molten steel

Info

Publication number
JPH07224318A
JPH07224318A JP1816894A JP1816894A JPH07224318A JP H07224318 A JPH07224318 A JP H07224318A JP 1816894 A JP1816894 A JP 1816894A JP 1816894 A JP1816894 A JP 1816894A JP H07224318 A JPH07224318 A JP H07224318A
Authority
JP
Japan
Prior art keywords
desulfurization
ladle
flux
molten steel
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1816894A
Other languages
Japanese (ja)
Inventor
Eiju Matsuno
英寿 松野
Yoshiteru Kikuchi
良輝 菊池
Manabu Arai
学 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP1816894A priority Critical patent/JPH07224318A/en
Publication of JPH07224318A publication Critical patent/JPH07224318A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To prevent resulfurization and to improve desulfurization efficiency by incorporating a desulfurizing agent to molten steel, then incorporating a flux, such as magnesia, thereto at the time of desulfurizing the molten steel by using RH degassing equipment. CONSTITUTION:The powdery flux which is composed of >=1 kinds among magnesia, alumina, calcia and zirconia and has the m.p. above the temp. for treatment with the desulfurizing agent is incorporated into the molten steel under reflux or into the molten steel in a or in both of them ladle after addition of the desulfurizing agent to form a flux layer in the lower part of the slag in the ladle, by which resulfurization from the slag is prevented. The desulfurization rate by the treatment exhibits a tendency to decrease when the content of (FeO+MnO) in the ladle slag exceeds 8%. The high desulfurization rate of nearly 80% is obtd. in the case of <=8%. The desulfurization method is applicable to ladle refining as well and the high desulfurization rate is attained by adding the powdery flux to the molten steel in the ladle after incorporating the desulfurizing agent thereto.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は復硫を防止した溶鋼の脱
硫処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for desulfurizing molten steel which prevents re-sulfurization.

【0002】[0002]

【従来の技術】近年、鉄鋼材料の高機能化、高品質化ニ
ーズの高まりから、炭素、硫黄等の不純物を極限まで低
減した清浄度鋼が要請されている。従来、この様な清浄
度鋼を溶製する場合、1次精錬炉出鋼後、RHやVOD
等の脱ガス設備を使用して真空脱炭処理した後、LF等
の取鍋精錬設備に取鍋を移動して、別個のプロセスとし
て脱硫処理(以下、取鍋精錬脱硫技術という)されてき
た。
2. Description of the Related Art In recent years, cleanliness steel in which impurities such as carbon and sulfur have been reduced to the utmost has been demanded in response to an increasing need for higher performance and higher quality of steel materials. Conventionally, when smelting such cleanliness steel, RH and VOD after tapping the primary refining furnace
Vacuum decarburization using degassing equipment such as LF, and then moving the ladle to ladle refining equipment such as LF, and desulfurization treatment as a separate process (hereinafter referred to as ladle refining desulfurization technology) .

【0003】取鍋精錬脱硫技術では、まず、脱硫効率向
上及び復硫防止のため取鍋スラグ組成を適切な範囲にコ
ントロール(これをスラグ改質という)する必要があ
る。このため、一次精錬炉より取鍋内に不可避的に流入
した酸化性スラグを排滓した後、スラグ改質用フラック
スをアーク溶解して、目的とする脱硫スラグ組成とす
る。その後、粉体状の脱硫剤を溶鋼内に吹き込んで脱硫
を進行させる。従って、当該技術では、フラックス溶解
電力、高温アーク熱による取鍋耐火物損傷、溶解による
処理時間の増大をまねく。更には、前記フラックスより
吸収された水素を除去するため、脱硫処理終了後、脱ガ
ス設備に戻して脱水素工程が必要となる。
In the ladle refining desulfurization technology, it is first necessary to control the composition of the ladle slag within an appropriate range (this is called slag reforming) in order to improve desulfurization efficiency and prevent re-sulfurization. Therefore, after the oxidizing slag that inevitably flows into the ladle from the primary refining furnace is discharged, the slag reforming flux is arc-melted to obtain the desired desulfurization slag composition. Then, a desulfurizing agent in powder form is blown into the molten steel to proceed desulfurization. Therefore, in this technique, the flux melting power, the damage to the ladle refractory due to the high temperature arc heat, and the increase in the processing time due to the melting are caused. Further, in order to remove the hydrogen absorbed by the flux, it is necessary to return to the degassing equipment and perform a dehydrogenation step after the desulfurization treatment is completed.

【0004】一方、最近、RH真空脱ガス設備におい
て、真空脱炭処理をした後、極低硫鋼を溶製する技術、
言い換えると、RHの多機能化によるプロセス集約化技
術が開示されている。例えば、日本鉄鋼協会発行「鉄と
鋼」73(1986)、S263では、RH上昇側浸漬
管の下部にJ型状ランスを配設し、このランスから粉体
状の脱硫フラックスを上昇側浸漬管下部に向かってイン
ジェクションして脱硫処理を行う技術(以下、上昇管下
部吹き込み法という)が、また、特開平5−23953
4号公報の中では、RH脱ガス真空槽内の上部より上吹
きランスを配設し、粉体状の脱硫フラックスを減圧下の
鋼浴面に上吹きして脱硫処理を行う技術(以下、真空槽
内上吹き法という)が開示されている。
On the other hand, recently, in an RH vacuum degassing facility, a technology for producing ultra low sulfur steel after vacuum decarburizing treatment,
In other words, the process integration technology by making the RH multifunctional is disclosed. For example, in "Iron and Steel" 73 (1986), S263 issued by the Iron and Steel Institute of Japan, a J-shaped lance is arranged at the lower part of the RH rising side immersion pipe, and powdery desulfurization flux is supplied from this lance to the rising side immersion pipe. A technique of performing desulfurization treatment by injecting toward the lower part (hereinafter referred to as a bottom pipe blowing method) is also disclosed in JP-A-5-23953.
In Japanese Patent No. 4 publication, a technique for disposing desulfurization by disposing a desulfurization flux in the form of powder on a steel bath surface under reduced pressure by disposing an upper-blowing lance from the upper part in an RH degassing vacuum tank (hereinafter, (Referred to as a top blowing method in a vacuum chamber).

【0005】上昇管下部吹き込み法では、J型ランスよ
りCaO等を主成分とする粉体状の脱硫フラックスが上
昇側浸漬管下部から上方に向かって吹き込まれる。その
後、当該フラックスは、上昇環流に導かれて真空槽内に
入り、以下の(1)式に従って真空槽内溶鋼中の硫黄
(以下、Sと表現する)と反応し、その一部がCaSを
生成して、これが溶鋼中に懸濁した状態で下降管を経由
して取鍋内に環流する。 CaO + → CaS + (1)
In the lower part of the ascending tube, a powdery desulfurization flux containing CaO or the like as a main component is blown upward from the lower part of the ascending-side dip tube from a J-type lance. Then, the flux is introduced into the vacuum tank by being guided to the rising reflux, and reacts with sulfur (hereinafter referred to as S) in the molten steel in the vacuum tank according to the following equation (1), and a part of CaS It is generated and, in the state of being suspended in molten steel, recirculates into the ladle via the downcomer pipe. CaO + S → CaS + O (1)

【0006】その他の未反応のCaOは取鍋内溶鋼中の
Sと反応し、CaSを生成する。これらのCaSは、そ
の後、取鍋内溶鋼中を浮上し、取鍋内スラグに補足され
ることで脱硫が進行する。
[0006] Other unreacted CaO reacts with S in the molten steel in the ladle to produce CaS. These CaS then float in the molten steel in the ladle and are captured by the slag in the ladle, whereby desulfurization proceeds.

【0007】真空槽内上吹き法は、脱硫フラックスの添
加される箇所が減圧下の鋼浴面上である点で、前述の上
昇管下部吹き込み法と異なるが、この箇所に添加しても
脱硫フラックスは槽内より下降管を経て取鍋内に環流す
るので、これ以降の脱硫反応機構及び脱硫効果は同様で
ある。
The top-blown method in the vacuum tank is different from the above-mentioned bottom pipe blowing method in that the desulfurization flux is added to the surface of the steel bath under reduced pressure. Since the flux recirculates from the inside of the tank through the downcomer into the ladle, the desulfurization reaction mechanism and the desulfurization effect thereafter are the same.

【0008】これらRH設備を使用した脱硫法では、同
一のRH設備で、真空脱炭処理の後、引き続いて脱硫処
理が出来るので、RH設備から取鍋精錬設備への取鍋移
動がない。また、スラグ改質が不要となるのでフラック
ス溶解電力や脱水素工程が不要となって、大幅な処理時
間の短縮や製造コストダウンが達成されるという利点が
ある。
In the desulfurization method using these RH equipments, since the same RH equipment can carry out the desulfurization treatment after the vacuum decarburization treatment, there is no ladle transfer from the RH equipment to the ladle refining equipment. In addition, since slag reforming is not required, there is no need for flux melting power or a dehydrogenation step, and there is an advantage that a significant reduction in processing time and reduction in manufacturing cost can be achieved.

【0009】[0009]

【発明が解決しようとする課題】上記RH設備を使用し
た脱硫法では、特開平5−214424号公報の中で開
示されているように、取鍋スラグ中の(FeO+Mn
O)含有量は5%以下にコントロールされると、80%
程度の高い脱硫率(定義式は後述する)が達成される
が、上記含有量が5%を越え増加するに従って、脱硫率
は急激に低下してしまい、極低硫鋼が溶製出来ないとい
う問題が発生する。
In the desulfurization method using the above-mentioned RH equipment, as disclosed in JP-A-5-214424, (FeO + Mn in ladle slag is disclosed.
O) content is 80% when controlled below 5%
Although a high degree of desulfurization (a definitional formula will be described later) is achieved, as the above content exceeds 5%, the desulfurization rate sharply decreases, and it is said that ultra low sulfur steel cannot be melted. The problem occurs.

【0010】この理由は、上記脱硫法では、取鍋内のス
ラグ改質を行わないので、鍋内スラグ組成は一次精錬炉
からの未脱酸状態のままであり、スラグ中の(FeO+
MnO)含有量は10%以上と高い。従って、取鍋スラ
グの酸素ポテンシャルは高く、(1)式の脱硫平衡反応
の右辺の項が大きくなり、(1)式の反応は起きにくく
なる。このため、スラグのサルファイドキャパシティー
が減少し、脱硫によって到達するS値レベル(脱硫到達
S濃度という)は高くなって、脱硫率は低下する。
The reason for this is that in the above desulfurization method, the slag in the ladle is not reformed, so the composition of the slag in the ladle remains in the undeoxidized state from the primary refining furnace, and (FeO +
The MnO) content is as high as 10% or more. Therefore, the oxygen potential of the ladle slag is high, the term on the right side of the desulfurization equilibrium reaction of the formula (1) becomes large, and the reaction of the formula (1) becomes difficult to occur. Therefore, the sulfide capacity of the slag is reduced, the S value level reached by desulfurization (referred to as desulfurization arrival S concentration) is increased, and the desulfurization rate is decreased.

【0011】同時に、冶金反応平衡論より、(1)式の
右辺の項が大きいと、(1)式の逆向きの反応、言い換
えると、復硫反応が起きやすくなる。スラグ中の(Fe
O+MnO)含有量が高い程、逆向きの反応は増大する
ので、復硫量が増大する。この復硫反応は、脱硫処理終
了直後、開始し、鋳造中継続するので、モールド内S値
は、脱硫処理終了時のS値より大きくなってしまう。
At the same time, if the term on the right side of the equation (1) is larger than the metallurgical reaction equilibrium theory, the reaction in the opposite direction of the equation (1), in other words, the vulcanization reaction is likely to occur. (Fe in the slag
The higher the (O + MnO) content, the greater the amount of re-sulfurization because the reverse reaction increases. This resulfurization reaction starts immediately after the desulfurization treatment ends and continues during casting, so the S value in the mold becomes larger than the S value at the end of the desulfurization treatment.

【0012】以上述べたことより、RHを使用する脱硫
法では、プロセス集約化によって大幅な処理時間短縮や
製造コストダウンが達成されるものの、スラグ改質を行
わないため、脱硫能が低下して、脱硫到達S濃度が高く
なり、同時に、鋳造中復硫が起きてしまい、極低硫鋼の
溶製が出来ないという問題が生じる。
As described above, in the desulfurization method using RH, although the treatment time is greatly shortened and the manufacturing cost is reduced by the process integration, the desulfurization ability is lowered because the slag reforming is not performed. However, the S concentration reaching desulfurization becomes high, and at the same time, re-sulfurization occurs during casting, which causes a problem that it is impossible to produce ultra low-sulfur steel.

【0013】本発明は、上記従来技術が抱えている問題
点を解決するために提案されたものであって、RH設備
で脱炭処理の後、脱硫処理を行い、プロセスの集約化を
図り、しかも、取鍋スラグ改質をすることなく、簡易な
方法でスラグからの復硫防止を図りつつ脱硫処理を促進
する極低硫鋼溶製技術を提供するものである。
The present invention has been proposed in order to solve the problems of the above-mentioned prior art, in which the desulfurization treatment is performed after the decarburization treatment in the RH equipment, and the process is integrated. Moreover, the present invention provides an extremely low-sulfur steel melting technology for promoting desulfurization treatment while preventing re-sulfurization from slag by a simple method without modifying ladle slag.

【0014】[0014]

【課題を解決するための手段】請求項1に係わる発明
は、RH脱ガス設備を使用して脱硫する脱硫処理方法に
おいて、脱硫剤を添加した後に、環流する溶鋼中もしく
は取鍋内溶鋼中又はこの両方に、マグネシア、アルミ
ナ、カルシア、ジルコニアの内、1種類以上から構成さ
れ、融点が脱硫処理温度以上である粉体状のフラックス
を添加し、取鍋内スラグ層の下部に当該フラックス層を
形成させることを特徴とする溶鋼の脱硫方法である。
According to a first aspect of the present invention, there is provided a desulfurization treatment method in which desulfurization is carried out by using an RH degassing equipment, and after the desulfurizing agent is added, the molten steel is circulated in a circulating manner or in a ladle. To both of these, powdery flux composed of one or more of magnesia, alumina, calcia, and zirconia and having a melting point of desulfurization temperature or higher was added, and the flux layer was formed at the bottom of the slag layer in the ladle. It is a method for desulfurizing molten steel, characterized in that it is formed.

【0015】請求項2に係わる発明は、取鍋精錬設備を
使用して脱硫する脱硫処理方法において、脱硫剤を添加
した後に、取鍋内溶鋼中に、前記粉体状のフラックスを
添加することを特徴とする請求項1記載の溶鋼の脱硫方
法である。
According to a second aspect of the present invention, in the desulfurization treatment method of desulfurizing using a ladle refining facility, after adding a desulfurizing agent, the powdery flux is added to the molten steel in the ladle. The method for desulfurizing molten steel according to claim 1, wherein

【0016】[0016]

【作用】本発明では、RHにおいて脱硫剤を添加した後
に、上昇管下部の取鍋内溶鋼中、真空槽内鋼浴面上、上
昇管内及び下降管内等の環流する溶鋼中に、粉体状のフ
ラックス(以下、復硫防止用フラックスという)を添加
するので、復硫防止用フラックスは下降管を経由して環
流し取鍋内溶鋼中に短時間に混入される。しかも、当該
フラックスは粉体状かつキャリアーガスとともに添加さ
れるため、取鍋内溶鋼中に均一に分散できるので、鍋内
全体にわたり溶鋼中を浮上し、取鍋内スラグ層下部に到
達できる。
In the present invention, after the desulfurizing agent is added in the RH, it is powdered in the molten steel in the ladle in the lower part of the rising pipe, in the steel bath surface in the vacuum tank, in the circulating molten steel such as in the rising pipe and in the descending pipe. The flux for preventing vulcanization (hereinafter referred to as the flux for preventing vulcanization) is added, so that the flux for preventing vulcanization is mixed into the molten steel in the circulating ladle via the downcomer in a short time. Moreover, since the flux is added in powder form together with the carrier gas, it can be uniformly dispersed in the molten steel in the ladle, so that it can float in the molten steel throughout the ladle and reach the lower portion of the slag layer in the ladle.

【0017】そして、マグネシア、アルミナ、カルシ
ア、ジルコニアは、単体で1700℃以上の融点を持
つ。また、復硫防止用フラックスも、これらの内、一種
類以上から構成され、かつ、復硫防止用フラックスの融
点は脱硫処理温度(一般に1650℃以下)よりも高い
ので、脱硫処理中溶解しない。更に、後述するCaO−
SiO2 −Al2 3 −MgO系である取鍋内スラグと
も溶融しない性質を持つので、取鍋内スラグ下部に独立
して粉体のまま、しかも、鍋内全体にわたり均一な厚さ
の復硫防止用フラックス層が形成される。
Further, magnesia, alumina, calcia, and zirconia each have a melting point of 1700 ° C. or higher. Further, the desulfurization preventing flux is also composed of one or more of these, and since the melting point of the resulfurization preventing flux is higher than the desulfurization treatment temperature (generally 1650 ° C. or lower), it does not dissolve during the desulfurization treatment. Furthermore, CaO-described later
Since it has the property that it does not melt with the slag in the ladle, which is a SiO 2 -Al 2 O 3 -MgO system, it remains as powder independently in the lower part of the slag in the ladle, and furthermore, it has a uniform thickness throughout the pot. A sulfur prevention flux layer is formed.

【0018】また、マグネシア、アルミナ、カルシア、
ジルコニアの酸化物は、熱力学的標準生成自由エネルギ
ーが低く安定しており、酸化物中の酸素と取鍋内スラグ
中のCaS(脱硫反応生成物)とは反応せず、前述の
(1)式の逆向きの反応が起きないので、復硫は発生し
ない。同様の理由から、これら酸化物とSi、Mn、A
l等の溶鋼中の溶質元素とは反応しないので溶鋼中の成
分は変動しない。従って、溶質元素との反応生成物生成
による溶鋼の汚染を起こすことがない。
Further, magnesia, alumina, calcia,
The zirconia oxide has a low thermodynamic standard free energy of formation and is stable, and does not react with oxygen in the oxide and CaS (desulfurization reaction product) in the slag in the ladle. No reversion occurs as the reaction in the opposite direction of the equation does not occur. For the same reason, these oxides and Si, Mn, A
Since it does not react with solute elements in molten steel such as l, the components in the molten steel do not change. Therefore, the molten steel is not contaminated due to the formation of reaction products with solute elements.

【0019】ここで、復硫防止用フラックスの融点が脱
硫処理温度よりも低いと、真空槽内で、復硫防止用フラ
ックスの一部は溶融して、槽内耐火物表面に付着、堆積
し易くなるので、RH環流量が低下する等のトラブルを
まねく。また、前記4元系の取鍋内スラグと反応して溶
融し、独立した復硫防止用フラックス層が形成されず、
遮断層としての機能が発揮されなくなるので、復硫が防
止できない。
Here, if the melting point of the vulcanization preventing flux is lower than the desulfurization temperature, a part of the vulcanization preventing flux is melted in the vacuum chamber and adheres and deposits on the surface of the refractory in the chamber. Since it becomes easier, it causes troubles such as a decrease in the RH ring flow rate. Further, the slag in the quaternary system reacts with the slag and melts to form an independent flux layer for preventing vulcanization,
Since the function as a blocking layer is not exerted, re-sulfurization cannot be prevented.

【0020】更に、RH脱硫処理中における、環流によ
る溶鋼攪拌エネルギーは大きいが、VOD処理と比べ、
取鍋内でスラグ/溶鋼間の上下方向の動きが、著しく小
さいので、復硫防止用フラックス層は破断することがな
い。このため、前記フラックス層は安定して物理的な遮
断機能が保持できるので、少量のフラックス添加によっ
て、復硫が防止できる。
Further, during the RH desulfurization treatment, the molten steel stirring energy due to reflux is large, but compared with the VOD treatment,
Since the vertical movement between the slag and the molten steel in the ladle is extremely small, the vulcanization preventing flux layer does not break. For this reason, the flux layer can stably maintain the physical blocking function, so that the addition of a small amount of flux can prevent the vulcanization.

【0021】また、復硫防止用フラックスは、脱硫剤添
加後、攪拌エネルギーの大きな環流する溶鋼中に添加さ
れるので、取鍋内スラグ下部にフラックス層が短時間に
形成される。このため、取鍋スラグ内で(1)式の逆向
きの反応が起きる時間的余裕が与えられないので、復硫
が防止できる。
Further, since the flux for preventing vulcanization is added to the molten steel which is refluxed with a large amount of stirring energy after the addition of the desulfurizing agent, the flux layer is formed in the lower portion of the slag in the ladle in a short time. For this reason, there is no time margin for the reaction in the ladle slag to occur in the opposite direction of the equation (1), so that the vulcanization can be prevented.

【0022】ここで、発明者らによる試験結果に基き、
本発明における復硫防止用フラックス層の作用を具体的
に説明する。図1は、取鍋スラグ中の(FeO+Mn
O)含有量、言い換えると、取鍋スラグ中の酸素ポテン
シャルを変動させた場合の脱硫率に与える影響を調査し
たものである。ここで、真空脱炭終了後、脱酸のための
Al及び金属Alを含有するCaOを主体とするスラグ
改質剤を槽内に少量添加して、(FeO+MnO)含有
量を、0.5〜12%の範囲に変動させた後、脱硫フラ
ックスを真空槽内上吹き法により添加した。本発明によ
る実施例(図中、●印で示す)では、後述する表2に示
す実施例1の組成を持つ、CaO含有量が75%の復硫
防止用フラックスを、脱硫フラックス添加終了後、上吹
きランスを用いて槽内内に添加し、上記フラックス層か
ら成る遮断層を形成させた。一方、比較例(図中、○印
で示す)では、復硫防止用フラックスを添加していな
い。その他の条件は、後述する表2の場合と同じとし
た。
Here, based on the test results by the inventors,
The action of the vulcanization preventing flux layer in the present invention will be specifically described. Figure 1 shows (FeO + Mn in ladle slag
O) content, in other words, the effect of varying the oxygen potential in the ladle slag on the desulfurization rate was investigated. Here, after the completion of vacuum decarburization, a small amount of a slag modifier mainly composed of CaO containing Al and metal Al for deoxidation is added to the tank to adjust the (FeO + MnO) content to 0.5 to After changing to a range of 12%, desulfurization flux was added by a top blowing method in a vacuum chamber. In the example according to the present invention (indicated by ● in the figure), after the desulfurization flux addition was completed, a desulfurization preventing flux having the composition of Example 1 shown in Table 2 described later and having a CaO content of 75% was used. It was added to the inside of the tank by using an upper blowing lance to form a blocking layer composed of the above flux layer. On the other hand, in the comparative example (indicated by a circle in the figure), the flux for preventing vulcanization is not added. Other conditions were the same as those in Table 2 described later.

【0023】図1の結果より、復硫防止用フラックスを
添加する実施例では、(FeO+MnO)含有量が0.
5〜8%の範囲で、ほぼ80%の高い脱硫率が達成され
るが、8〜12%の範囲では、脱硫率は80%より、や
や低下する傾向が見られた。この理由は以下のように説
明できる。上記(FeO+MnO)含有量が8%以下の
範囲では、脱硫能は低下せず80%の高い脱硫率が達成
され、同時に、当該フラックス層形成による遮断効果も
働き、復硫が防止されるので、脱硫率は80%のまま保
持されることを示している。しかし、8%を越えると、
復硫防止用フラックス層形成によって、復硫防止効果は
8%以下の場合と同様に働くものの、脱硫能は低下し、
脱硫到達S濃度が上昇するので、脱硫率はやや低下する
傾向を示すものと考えられる。
From the results shown in FIG. 1, in the example in which the flux for preventing vulcanization was added, the content of (FeO + MnO) was 0.1.
In the range of 5 to 8%, a high desulfurization rate of almost 80% was achieved, but in the range of 8 to 12%, the desulfurization rate tended to be slightly lower than 80%. The reason for this can be explained as follows. In the range where the (FeO + MnO) content is 8% or less, the desulfurization ability does not decrease and a high desulfurization rate of 80% is achieved, and at the same time, the blocking effect by the flux layer formation works and the re-sulfurization is prevented. It shows that the desulfurization rate is maintained at 80%. However, if it exceeds 8%,
By the formation of the flux layer for preventing desulfurization, the desulfurization preventing effect works as in the case of 8% or less, but the desulfurization ability decreases,
It is considered that the desulfurization rate tends to slightly decrease because the S concentration reaching desulfurization increases.

【0024】一方、復硫防止用フラックスを添加しない
比較例では、(FeO+MnO)含有量が2%以下の範
囲までは、80%の高い脱硫率が確保されるが、2%を
越える範囲では、急激に脱硫率は低下している。この理
由は、前述したように、2%以下では、80%の高い脱
硫率が達成されるのと同時に、復硫も防止できるので、
80%の脱硫率が保持される。他方、2%を越えると、
80%の高い脱硫率が得られるが、復硫が急激に増大す
るので、脱硫率は急激に低下すると考えられる。
On the other hand, in the comparative example in which the re-sulfurization preventing flux is not added, a high desulfurization rate of 80% is secured up to the range of (FeO + MnO) content of 2% or less, but in the range of more than 2%, The desulfurization rate is rapidly decreasing. The reason for this is that, as described above, at 2% or less, a high desulfurization rate of 80% is achieved, and at the same time, it is possible to prevent re-sulfurization.
A desulfurization rate of 80% is retained. On the other hand, if it exceeds 2%,
Although a high desulfurization rate of 80% can be obtained, it is considered that the desulfurization rate sharply decreases because the re-sulfurization rapidly increases.

【0025】本発明では、復硫防止用フラックスを、環
流する溶鋼中及び取鍋内溶鋼中の両方から添加する。こ
の方法により、単位時間当りの添加量は増大でき、復硫
する時間的余裕が減少するので、(FeO+MnO)含
有量が高く、復硫速度の大きい条件下でも、高い脱硫率
が達成される。
In the present invention, the flux for preventing vulcanization is added from both the molten steel which recirculates and the molten steel in the ladle. By this method, the amount added per unit time can be increased and the time margin for re-sulfurization is reduced, so that a high desulfurization rate can be achieved even under conditions of high (FeO + MnO) content and high re-sulfurization rate.

【0026】更に、復硫防止用フラックスを、複数のラ
ンスを浸漬させて全て取鍋内溶鋼中から吹き込んでも、
取鍋内全体にわたり均一なフラックス層が形成できるの
で、復硫が防止できる。
Further, even if a plurality of lances are dipped in the flux for preventing vulcanization and all are blown from the molten steel in the ladle,
Since a uniform flux layer can be formed over the entire ladle, it is possible to prevent vulcanization.

【0027】請求項2に係わる発明は、取鍋精錬設備を
使用して脱硫する脱硫処理方法において、脱硫剤を添加
した後に、取鍋内溶鋼中に、前記粉体状のフラックスを
添加する溶鋼の脱硫方法である。ここで、前工程の脱ガ
ス処理終了時のスラグの粘性が高く、除滓が完全に出来
ない場合、スラグ改質しても(FeO+MnO)含有量
が2%以上となって、復硫が防止できない場合がある。
The invention according to claim 2 is a desulfurization treatment method in which desulfurization is performed using a ladle refining facility, and after adding a desulfurizing agent, molten steel in which the powdery flux is added to the molten steel in the ladle It is a desulfurization method. Here, when the slag has a high viscosity at the end of the degassing process in the previous step and cannot completely remove slag, the (FeO + MnO) content becomes 2% or more even if the slag is reformed, and vulcanization is prevented. Sometimes you can't.

【0028】本発明の一例として、上記条件下でも、脱
硫剤を添加した後、脱硫剤を添加した浸漬ランスを使用
して、粉体状の復硫防止用フラックスをキャリアーガス
とともに、取鍋内溶鋼中に吹き込むことにより、取鍋ス
ラグ下に当該フラックス層を形成させることができるの
で、復硫が防止できる。
As an example of the present invention, even under the above-mentioned conditions, after the desulfurizing agent is added, a dip lance containing the desulfurizing agent is used, and the powdery vulcanization preventing flux is put together with the carrier gas in the ladle. By blowing the molten steel into the molten steel, the flux layer can be formed under the ladle slag, so that the vulcanization can be prevented.

【0029】[0029]

【実施例】高炉から出銑された溶銑を溶銑予備処理にて
脱硫、脱リンした後、転炉吹錬し、表1に示す成分範囲
の未脱酸溶鋼を出鋼した。
[Example] The hot metal tapped from the blast furnace was desulfurized and dephosphorized by hot metal pretreatment, and then blown in a converter to produce undeoxidized molten steel having a composition range shown in Table 1.

【0030】[0030]

【表1】 [Table 1]

【0031】この未脱酸溶鋼をRH脱ガス装置におい
て、環流用Arガス吹き込み羽口より、2500〜30
00Nl/minのArガス流量を吹き込み、溶鋼を環
流させ、約15分間の真空脱炭処理を行い、炭素濃度が
30ppm以下に到達したことを確認した。その後、真
空槽内鋼浴にAlを添加して脱酸した後、脱硫処理を開
始した。脱硫方法は、真空槽内上吹き法と上昇管下部吹
き込み法の2つの方法で実施した。
This undeoxidized molten steel is used in an RH degassing apparatus, and from the tuyere blown with Ar gas for circulation, 2500 to 30
It was confirmed that the carbon concentration reached 30 ppm or less by blowing Ar gas flow rate of 00 Nl / min, refluxing the molten steel, and performing vacuum decarburization treatment for about 15 minutes. After that, Al was added to the steel bath in the vacuum tank to deoxidize it, and then desulfurization treatment was started. The desulfurization method was performed by two methods: an upper blowing method in a vacuum tank and a lower blowing method of the rising pipe.

【0032】図2は、脱硫フラックスを真空槽内上吹き
法により吹き付けた後、同じ上吹きランスを用いて粉体
状の復硫防止用フラックスを槽内鋼浴面に吹き付け、取
鍋内スラグと溶鋼との間にフラックス層を形成させ、復
硫を防止している本発明の実施状況を示す。
FIG. 2 shows that after desulfurizing flux is sprayed by the upper spraying method in the vacuum tank, powdery re-sulfurization preventing flux is sprayed on the steel bath surface in the tank using the same upper spraying lance, and the slag in the ladle is slag. Fig. 2 shows an implementation state of the present invention in which a flux layer is formed between the molten steel and molten steel to prevent re-sulfurization.

【0033】ここで、1はRH真空槽、2aは上昇管
(浸漬管)、2bは下降管(浸漬管)、3は取鍋、4は
溶鋼、5は上吹きランス、6は環流用Arガス吹き込み
羽口、7は復硫防止用フラックス、8は取鍋スラグ、9
は復硫防止用フラックス層である。
Here, 1 is a RH vacuum tank, 2a is an ascending pipe (immersion pipe), 2b is a descending pipe (immersion pipe), 3 is a ladle, 4 is molten steel, 5 is an upper blowing lance, and 6 is Ar for circulation. Gas blown tuyere, 7 is flux for preventing vulcanization, 8 is ladle slag, 9
Is a flux layer for preventing vulcanization.

【0034】取鍋3内には、脱硫処理の終了した、約2
50トンのS濃度10ppm以下の極低硫の溶鋼4があ
る。この溶鋼4上に、均一な厚みの復硫防止用フラック
ス層9がが形成され、更に、この上に、(FeO+Mn
O)及びCaSを含有する、脱硫処理の終了した取鍋ス
ラグ8がある。
In the ladle 3, there are about 2 desulfurized products.
There is an extremely low sulfur molten steel 4 having 50 tons of S concentration of 10 ppm or less. A flux layer 9 for preventing re-sulfurization having a uniform thickness is formed on the molten steel 4, and further, (FeO + Mn) is formed on the flux layer 9.
There is a desulfurized ladle slag 8 containing O) and CaS.

【0035】脱硫フラックスは、CaO−CaF2 −M
gO系フラックスの1種類とし、各成分の含有量は、C
aO:60重量%(以下、%と略す)、CaF2 :20
%、MgO:20%の組成のフラックスを使用した。ま
た、脱硫フラックスの原単位は、一律4Kg/Tとし
た。本発明による実施例では、脱硫フラックス添加後、
同一の上吹きランスから表2に示す復硫防止用フラック
ス7を1Kg/T吹き付けた。
The desulfurizing flux is CaO-CaF 2 -M.
One type of gO-based flux, and the content of each component is C
aO: 60% by weight (hereinafter abbreviated as%), CaF 2 : 20
%, MgO: 20% flux was used. Moreover, the basic unit of the desulfurization flux was uniformly set to 4 kg / T. In the example according to the present invention, after the desulfurization flux is added,
From the same top blowing lance, 1 kg / T of the vulcanization preventing flux 7 shown in Table 2 was sprayed.

【0036】[0036]

【表2】 [Table 2]

【0037】復硫防止用フラックス組成は、マグネシ
ア、アルミナ、カルシア、ジルコニアの内、1〜3種類
から構成され、この合計含有量が50重量%以上の組成
として、上記フラックスの融点を1650℃以上とし
た。
The flux composition for preventing vulcanization is composed of 1 to 3 kinds of magnesia, alumina, calcia and zirconia, and the total content is 50% by weight or more, and the melting point of the flux is 1650 ° C. or more. And

【0038】また、復硫防止用フラックス7は、吹き込
み易くするため粉体状とし、アルゴンガスをキャリアー
ガスとして吹き付けた。脱硫フラックス添加開始から上
記フラックス7の添加終了後5分間までの槽内真空度
を、0.5〜2torrの高真空とし、脱硫処理と脱水
素処理を同時に行い、処理時間の短縮を図った。
Further, the vulcanization preventing flux 7 was made into a powder form to facilitate blowing, and argon gas was blown as a carrier gas. The degree of vacuum in the tank was set to a high vacuum of 0.5 to 2 torr from the start of the addition of the desulfurization flux to the end of the addition of the above-mentioned flux 7, and the desulfurization treatment and the dehydrogenation treatment were simultaneously performed to shorten the treatment time.

【0039】表2に、本発明による実施例と比較例の結
果を示す。実施例では、8種類の復硫防止用フラックス
組成を前述の2つの添加法で行った。本発明による復硫
防止効果の判断は、脱硫処理前(脱炭終了時)、脱硫処
理後、連続鋳造時のモールド内(素鋼成分分析箇所)の
3箇所の溶鋼中のS値を分析し比較して評価した。脱硫
効果は、脱硫処理前のS値とモールド内S値との変化よ
り計算される脱硫率(定義式=〔1−(モールド内S
値)/(脱硫処理前のS値)〕×100%)で評価し
た。
Table 2 shows the results of Examples according to the present invention and Comparative Examples. In the examples, eight types of flux-reducing flux compositions were applied by the above-mentioned two addition methods. The determination of the effect of preventing re-sulfurization according to the present invention is carried out by analyzing the S value in three molten steels before desulfurization treatment (at the end of decarburization), after desulfurization treatment, and in the mold during continuous casting (points of raw steel composition analysis). It evaluated by comparing. The desulfurization effect is a desulfurization rate (definition formula = [1- (S in mold) calculated from change in S value before desulfurization treatment and S value in mold].
Value) / (S value before desulfurization treatment)] × 100%).

【0040】復硫防止用フラックス7を添加しない比較
例(6例)では、脱硫処理後、5〜6ppmのS値まで
低減できているが、モールド内S値はいずれも10〜1
2ppmまで増加しており、復硫している。このため、
脱硫率は60〜67%の範囲にあって低い。一方、復硫
防止用フラックス7を添加した実施例(8例)では、モ
ールド内S値はいずれも5〜6ppmのままで、脱硫処
理後のS値と同じか、1ppm以下の増加におさまって
おり、復硫が防止できている。このため、79〜83%
の範囲の高い脱硫率が達成された。
In the comparative examples (six examples) in which the vulcanization preventing flux 7 was not added, the S value could be reduced to 5 to 6 ppm after the desulfurization treatment, but the S value in the mold was 10 to 1 in all cases.
It has increased to 2ppm, and has been re-sulphurized. For this reason,
The desulfurization rate is low in the range of 60 to 67%. On the other hand, in the examples (8 examples) in which the flux 7 for preventing sulfur reduction was added, the S value in the mold remained at 5 to 6 ppm, which was the same as the S value after desulfurization treatment, or increased by 1 ppm or less. And prevents vulcanization. Therefore, 79-83%
A high desulfurization rate in the range of was achieved.

【0041】取鍋スラグの粘性が低く、かつ、取鍋内溶
鋼湯面変動の大きい脱硫条件の下では、復硫防止用フラ
ックス層9が破れて、取鍋スラグと溶鋼とが接触し、復
硫が発生する。本発明では、環流する溶鋼中及び取鍋内
溶鋼中の両方から添加することにより、添加時間を延長
することなく、復硫防止用フラックス層9の厚みを確保
して復硫を防止できた。
Under the desulfurization conditions in which the viscosity of the ladle slag is low and the molten steel level in the ladle is large, the flux layer 9 for preventing desulfurization breaks, the ladle slag and molten steel come into contact with each other, and Sulfur occurs. In the present invention, by adding from both the molten steel that recirculates and the molten steel in the ladle, the thickness of the vulcanization preventing flux layer 9 can be secured and vulcanization can be prevented without extending the addition time.

【0042】また、復硫防止用フラックス7を環流する
溶鋼中のみから添加すると、環流用Arガス吹き込み
量、環流管径や鍋容量等の脱硫条件によっては、取鍋内
全体に渡って均一な厚さのフラックス層9から成る遮断
層が形成されない場合がある。この場合、そのフラック
ス層9の厚みが、薄い箇所で遮断層の効果が働かず復硫
が発生する。この対策として、取鍋内溶鋼中からは薄い
箇所を狙って添加することにより、厚み不足は解消され
復硫を防止できた。
When the flux 7 for preventing re-sulfurization is added only from the molten steel which recirculates, it is evenly distributed over the entire ladle depending on the desulfurization conditions such as the amount of Ar gas blown for recirculation, the diameter of the recirculation pipe and the pot capacity. In some cases, the barrier layer composed of the thick flux layer 9 is not formed. In this case, when the thickness of the flux layer 9 is thin, the effect of the blocking layer does not work and re-sulfurization occurs. As a countermeasure against this, by adding the molten steel in the ladle aiming at a thin portion, the lack of thickness was eliminated and vulcanization could be prevented.

【0043】更に、復硫防止用フラックス7を環流する
溶鋼中に添加すると、真空槽内や環流管の耐火物表面
に、上記フラックス7が付着、堆積し、RHの機能に支
障をきたす場合がある。この対策として、RHを経由せ
ず、複数のランスを使用して取鍋内溶鋼中に吹き込むこ
とにより、上記付着、堆積は解消され復硫を防止でき
た。なお、この場合、取鍋内全体に均一な復硫防止用フ
ラックス層9を形成させるため、複数のランスを、複数
の箇所から溶鋼中に浸漬させ吹き込むことが望ましい。
Further, when the vulcanization preventing flux 7 is added to the circulating molten steel, the above-mentioned flux 7 may adhere and deposit on the refractory surface of the vacuum chamber or the reflux pipe, which may impair the function of the RH. is there. As a measure against this, by blowing into the molten steel in the ladle using a plurality of lances without passing through the RH, the above-mentioned adhesion and accumulation were eliminated and vulcanization could be prevented. In this case, in order to form a uniform vulcanization preventing flux layer 9 in the entire ladle, it is desirable to immerse and blow a plurality of lances into the molten steel from a plurality of locations.

【0044】取鍋精錬脱硫技術では、前工程の脱ガス処
理後、取鍋スラグの粘性が高く、完全に排滓出来ない場
合がある。この場合、所定量の改質用フラックスを添加
しても、(FeO+MnO)含有量が2%を越えるの
で、脱硫後、復硫が発生する。この対策として、脱硫剤
を吹き込んだ後、脱硫剤を添加した浸漬ランスを使用し
て、粉体状の復硫防止用フラックス7をキャリアーガス
とともに、取鍋内溶鋼中に吹き込むことにより、取鍋ス
ラグ下部に当該フラックス層9を形成させて、復硫を防
止できた。
In the ladle refining desulfurization technique, after the degassing treatment in the previous step, the ladle slag may have a high viscosity and may not be completely discharged. In this case, even if a predetermined amount of the reforming flux is added, the (FeO + MnO) content exceeds 2%, and therefore, desulfurization occurs after desulfurization. As a countermeasure against this problem, after the desulfurizing agent is blown in, the immersion lance containing the desulfurizing agent is used to blow the powdery re-sulfurization preventing flux 7 together with the carrier gas into the molten steel in the ladle. By forming the flux layer 9 below the slag, it was possible to prevent re-sulfurization.

【0045】本発明では、マグネシア、アルミナ、カル
シア、ジルコニアの4種類の酸化物を選択した。酸化物
単体及び復硫防止用フラックスの融点が脱硫処理温度よ
りも高く溶解しない、標準生成自由エネルギーも低く安
定していて、CaS(脱硫反応生成物)や溶鋼中の溶質
元素とも反応せず、CaO−SiO2 −Al2 3 −M
gO系の取鍋内スラグとも溶融しないという性質を満足
するならば、上記4種類以外の酸化物を選択しても良
い。
In the present invention, four kinds of oxides of magnesia, alumina, calcia and zirconia were selected. The melting point of the oxide simple substance and the flux for preventing the re-sulfurization is not higher than the desulfurization treatment temperature, the standard free energy of formation is low and stable, and CaS (desulfurization reaction product) and solute elements in molten steel do not react, CaO-SiO 2 -Al 2 O 3 -M
Oxides other than the above four types may be selected as long as they satisfy the property that neither the gO-based ladle slag melts.

【0046】[0046]

【発明の効果】本発明により、RH処理中の取鍋内スラ
グ下部に復硫防止用フラックス層を形成させることによ
り、取鍋スラグ改質をすることなく、安定して復硫を防
止できる。この結果、RHにおいて極低炭素鋼の溶製が
可能となる。
EFFECTS OF THE INVENTION According to the present invention, by forming a flux layer for preventing vulcanization in the lower part of the slag in the ladle during the RH treatment, it is possible to stably prevent vulcanization without modifying the ladle slag. As a result, it becomes possible to produce ultra low carbon steel in RH.

【図面の簡単な説明】[Brief description of drawings]

【図1】取鍋スラグ中の(FeO+MnO)含有量と脱
硫率との関係を示した図である。
FIG. 1 is a diagram showing a relationship between a (FeO + MnO) content in a ladle slag and a desulfurization rate.

【図2】復硫防止用フラックスを槽内鋼浴面に吹き付
け、取鍋内スラグ下部に復硫防止用フラックス層を形成
させ、復硫を防止する本発明の実施例を示した図であ
る。
FIG. 2 is a diagram showing an embodiment of the present invention in which a vulcanization preventing flux is sprayed onto the steel bath surface in the tank to form a vulcanization preventing flux layer under the slag in the ladle to prevent vulcanization. .

【符号の説明】[Explanation of symbols]

1 RH真空槽 2a 上昇管(浸漬管) 2b 下降管(浸漬管) 3 取鍋 5 上吹きランス 7 復硫防止用フラックス 8 取鍋スラグ 9 復硫防止用フラックス層 1 RH vacuum tank 2a Ascending pipe (immersion pipe) 2b Downcomer pipe (immersion pipe) 3 Ladle 5 Top blowing lance 7 Flux for preventing vulcanization 8 Ladle slag 9 Flux layer for preventing vulcanization

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 RH脱ガス設備を使用して脱硫する脱硫
処理方法において、脱硫剤を添加した後に、環流する溶
鋼中もしくは取鍋内溶鋼中又はこの両方に、マグネシ
ア、アルミナ、カルシア、ジルコニアの内、1種類以上
から構成され、融点が脱硫処理温度以上である粉体状の
フラックスを添加し、取鍋内スラグ層の下部に当該フラ
ックス層を形成させることを特徴とする溶鋼の脱硫方法
1. A desulfurization treatment method for desulfurization using RH degassing equipment, wherein magnesia, alumina, calcia and zirconia are added to molten steel which is refluxed after addition of a desulfurizing agent or molten steel in a ladle, or both. Among them, a method for desulfurizing molten steel, characterized by adding a powdery flux having one or more kinds of melting points and having a melting point of desulfurization treatment temperature or higher to form the flux layer below the slag layer in the ladle.
【請求項2】 取鍋精錬設備を使用して脱硫する脱硫処
理方法において、脱硫剤を添加した後に、取鍋内溶鋼中
に、前記粉体状のフラックスを添加することを特徴とす
る請求項1記載の溶鋼の脱硫方法
2. A desulfurization treatment method of desulfurizing using a ladle refining facility, wherein the powdery flux is added to the molten steel in the ladle after adding a desulfurizing agent. 1. Molten steel desulfurization method according to 1.
JP1816894A 1994-02-15 1994-02-15 Desulfurization method of molten steel Pending JPH07224318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1816894A JPH07224318A (en) 1994-02-15 1994-02-15 Desulfurization method of molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1816894A JPH07224318A (en) 1994-02-15 1994-02-15 Desulfurization method of molten steel

Publications (1)

Publication Number Publication Date
JPH07224318A true JPH07224318A (en) 1995-08-22

Family

ID=11964087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1816894A Pending JPH07224318A (en) 1994-02-15 1994-02-15 Desulfurization method of molten steel

Country Status (1)

Country Link
JP (1) JPH07224318A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103484600A (en) * 2013-09-10 2014-01-01 首钢总公司 Anti-RH (Relative Humidity) resulfurization technology for ultralow-sulfur moderate-thickness plate steel in high-sulfur molten steel smelting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103484600A (en) * 2013-09-10 2014-01-01 首钢总公司 Anti-RH (Relative Humidity) resulfurization technology for ultralow-sulfur moderate-thickness plate steel in high-sulfur molten steel smelting

Similar Documents

Publication Publication Date Title
CN101553583B (en) Process for producing extra-low-sulfur low-nitrogen high-cleanliness steel through melting
RU2608865C2 (en) Method of desulphurising steel
JPH09217110A (en) Method for melting extra-low sulfur steel
JP4499969B2 (en) Desulfurization method by ladle refining of molten steel
JP2000160233A (en) Method for desulfurize-refining stainless steel
JP2018100427A (en) Method for producing low sulfur steel
JP5200380B2 (en) Desulfurization method for molten steel
FI67094B (en) FOERFARANDE FOER ATT FOERHINDRA ATT SLAGGMETALL VAELLER UPP ID PNEUMATISK UNDER YTAN SKEENDE RAFFINERING AV STAOL
JP6323688B2 (en) Desulfurization method for molten steel
JP4360270B2 (en) Method for refining molten steel
JPH07224318A (en) Desulfurization method of molten steel
JPH09235611A (en) Production of extra-low sulfur pure iron having high cleanliness
JP3777630B2 (en) Method for heat refining of molten steel
JP3214730B2 (en) Refining method of high purity steel using reflux type vacuum degasser
JP6414098B2 (en) Melting method of high Si high Al ultra-low carbon steel
JP4534734B2 (en) Melting method of low carbon high manganese steel
JPH0987732A (en) Method for refining molten steel
JP3660040B2 (en) Method of desulfurization of molten steel using RH vacuum degassing device
CN111819296A (en) Method for producing steel
JP2012122134A (en) Dephosphorizing treatment method of molten iron using calcium ferrite
JP7082321B2 (en) Dephosphorization method of hot metal
JP6744600B1 (en) Method for producing Ti-containing ultra low carbon steel
JP4360239B2 (en) Method for desulfurization of molten steel in vacuum degassing equipment
JP2005015890A (en) Method for producing low-carbon high-manganese steel
JPH01100216A (en) Ladle refining method for molten steel

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990831