JPH0722332A - Plasma cvd device - Google Patents

Plasma cvd device

Info

Publication number
JPH0722332A
JPH0722332A JP5161441A JP16144193A JPH0722332A JP H0722332 A JPH0722332 A JP H0722332A JP 5161441 A JP5161441 A JP 5161441A JP 16144193 A JP16144193 A JP 16144193A JP H0722332 A JPH0722332 A JP H0722332A
Authority
JP
Japan
Prior art keywords
plasma
sample
vacuum container
cvd
processing gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5161441A
Other languages
Japanese (ja)
Inventor
Hiroichi Ueda
博一 上田
Koichiro Takeuchi
浩一郎 竹内
Satoru Narai
哲 奈良井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP5161441A priority Critical patent/JPH0722332A/en
Publication of JPH0722332A publication Critical patent/JPH0722332A/en
Priority to US08/917,803 priority patent/US5824158A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To provide a plasma CVD device capable of adopting ICP as a plasma producing means as well as forming high quality films. CONSTITUTION:When a specific CVD processing gas is introduced in a vacuum vessel 2 from a gas blowing nozzle 10 while an antena 4 arranged near a dielectric window 3 is fed with high-frequency power, a high-frequency field is induced in the vacuum vessel 2 by the electromagnetic waves from the antena 4 so as to turn the CVD processing gas into plasma by the high-frequency field. A specimen 5 can be arranged in the position not to be exposed in the plasma due to the plasma produced near the antena 4 side in the vacuum vessel 2 so that the decomposed product of the CVD processing gas produced by the plasma may be deposited on the surface of the specimen 5 mounted on a specimen base to be formed into a film. At this time, the mounting part 7 of the specimen base 6 for mounting the specimen 5 is formed of a quartz glass so that the mixing of any impurities with the deposited film may be avoided thereby enabling the heating temperature of the mounted specimen 5 to be set up at high degree.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,半導体集積回路の製造
プロセス等に用いられるプラズマCVD装置に係り,特
に,プラズマ発生手段としてICP(Inductively Coup
led Plasma)によってプラズマCVD装置を構成すると
共に,不純物の混入が少ない成膜を実現するICPによ
るプラズマCVD装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma CVD apparatus used in a semiconductor integrated circuit manufacturing process, and more particularly, to an ICP (Inductively Coupling) as a plasma generating means.
The present invention relates to an ICP plasma CVD apparatus that realizes film formation with less contamination of impurities, while configuring a plasma CVD apparatus using led plasma).

【0002】[0002]

【従来の技術】半導体集積回路の製造プロセスにおける
プラズマCVD(Chemical Vapor Deposition −化学的
気相堆積法)の処理技術は,半導体基板の配線前絶縁膜
の形成,ヴィアホールの埋め込み,パッシベーション膜
の形成等に用いられている。このようなCVD処理に用
いられるプラズマCVD装置として,従来では平行平板
電極型プラズマCVD装置,あるいはECRプラズマC
VD装置が採用されてきた。上記平行平板電極型プラズ
マCVD装置は,図3に概略構成図として示すように構
成される。図3において,平行平板電極型プラズマCV
D装置20は,真空容器21内に平板状に形成された上
部電極22と下部電極23とが平行に向かい合って配置
され,上部電極22に高周波電源から高周波電力が印加
される。下部電極23上にはCVD処理を行う試料24
が載置され,該下部電極23は接地電位に接続される。
図示するように,上部電極22に設けられた流路からC
VD処理ガスが真空容器21内に導入されると,高周波
電力が印加された各電極22,23間にプラズマが発生
し,該プラズマにより生成されたCVD処理ガスの分解
生成物が試料24上に堆積され,試料24の表面に成膜
が施される。又,プラズマCVD装置として,上記平行
平板電極型プラズマCVD装置の他,ECR(Electron
Cyclotron Resonance−電子サイクロトロン共鳴)プラ
ズマを用いたECRプラズマCVD装置が知られてい
る。このECRプラズマCVD装置の特徴は,数十から
数百Torrの比較的低圧の真空環境で高密度のプラズ
マ(1×1011〜1012/cm3 程度の電子密度)が得ら
れることにある。低圧条件下で発生させたプラズマを利
用したCVDの利点は,材料ガスの平均自由行程が長く
することができ,ステップカバレージのよい成膜がなさ
れることにある。このECRプラズマCVD装置は,図
4に概略構成図として示すように構成される。図4にお
いて,ECRプラズマCVD装置26は,円筒状に形成
された真空容器27の軸方向に設けられた誘電体窓28
からマイクロ波が真空容器27内に導入されると共に,
真空容器27と同軸に配設された磁場発生コイル31か
ら真空容器27内に磁場が印加される。真空容器27の
軸方向の所定位置に配設された試料台30上に試料29
を載置して,真空容器27内にCVD処理ガスを導入す
ると,真空容器27内にECRプラズマが発生し,該プ
ラズマにより生成されたCVD処理ガスの分解生成物が
試料29上に堆積され,試料29の表面に成膜が施され
る。
2. Description of the Related Art A plasma CVD (Chemical Vapor Deposition) processing technique in a semiconductor integrated circuit manufacturing process is used for forming a pre-wiring insulating film on a semiconductor substrate, filling a via hole, and forming a passivation film. It is used for etc. As a plasma CVD apparatus used for such a CVD process, a parallel plate electrode type plasma CVD apparatus or an ECR plasma C is conventionally used.
VD devices have been adopted. The parallel plate electrode type plasma CVD apparatus is configured as shown in FIG. 3 as a schematic configuration diagram. In FIG. 3, parallel plate electrode type plasma CV
In the D device 20, an upper electrode 22 and a lower electrode 23 formed in a flat plate shape are arranged in parallel in a vacuum container 21 so as to face each other, and high frequency power is applied to the upper electrode 22 from a high frequency power supply. A sample 24 to be subjected to the CVD process on the lower electrode 23
Is placed and the lower electrode 23 is connected to the ground potential.
As shown in the drawing, from the channel provided in the upper electrode 22, C
When the VD processing gas is introduced into the vacuum container 21, plasma is generated between the electrodes 22 and 23 to which high frequency power is applied, and the decomposition product of the CVD processing gas generated by the plasma is deposited on the sample 24. The sample 24 is deposited and a film is formed on the surface of the sample 24. Further, as a plasma CVD apparatus, in addition to the parallel plate electrode type plasma CVD apparatus, an ECR (Electron
An ECR plasma CVD apparatus using a Cyclotron Resonance (Electron Cyclotron Resonance) plasma is known. The characteristic of this ECR plasma CVD apparatus is that high density plasma (electron density of about 1 × 10 11 to 10 12 / cm 3 ) can be obtained in a vacuum environment of relatively low pressure of several tens to several hundreds Torr. The advantage of the CVD using the plasma generated under the low pressure condition is that the mean free path of the material gas can be lengthened and the film can be formed with good step coverage. This ECR plasma CVD apparatus is configured as shown in a schematic configuration diagram in FIG. In FIG. 4, an ECR plasma CVD apparatus 26 includes a dielectric window 28 provided in an axial direction of a vacuum container 27 formed in a cylindrical shape.
Microwave is introduced into the vacuum container 27 from
A magnetic field is applied to the inside of the vacuum container 27 from the magnetic field generation coil 31 arranged coaxially with the vacuum container 27. The sample 29 is placed on the sample table 30 arranged at a predetermined position in the axial direction of the vacuum container 27.
And the CVD processing gas is introduced into the vacuum container 27, ECR plasma is generated in the vacuum container 27, and a decomposition product of the CVD processing gas generated by the plasma is deposited on the sample 29. A film is formed on the surface of the sample 29.

【0003】[0003]

【発明が解決しようとする課題】近来の半導体集積回路
の高集積化の要求に応えるためには,細密で且つ高品質
の成膜が必要である。しかしながら,上記平行平板電極
型プラズマCVD装置では,プラズマは各電極間に発生
するため,試料がプラズマに接触することになりプラズ
マにより生成された様々の化合物が好むと好まざるとに
係わらず堆積膜内に混入する。例えば,シリコン酸化膜
(SiO)の成膜を行う場合,CVD処理ガスとして一
般にシランガス(SiH4 )及び亜酸化窒素ガス(N2
O)が用いられる。又,有機液体材料の珪酸エチル(T
EOS)をバブラー等の気化装置を用いて処理ガスとす
る場合もある。理想的には,堆積させたいシリコン酸化
膜の中には膜の電気的な特性(電気的破壊耐圧,耐漏れ
電流特性)を悪くするシラノール(−OH)成分,ハイ
ドロカーボン,水素成分,窒化物,有機物,重金属等が
全く含まれないことが望ましい。しかし,材料ガスが上
記のようにシランガス及び亜酸化窒素ガスである場合を
例にとっても,プラズマ中ではSi,H,N,Oの元素
の組み合わせでできる殆どの化合物が存在することにな
る。故に,プラズマCVDで実際に堆積されたシリコン
酸化膜には,O,H,N等の不純物が混入し,膜の緻密
さや電気的な特性を劣化させる。一般に平行平板電極型
プラズマCVD装置で成膜したシリコン酸化膜には,多
量の水素が含まれていることがよく知られている。上記
の問題は,シリコン酸化膜に限らず,シリコン窒化膜,
アモルファスシリコン膜,タングステン膜,タングステ
ンシリサイド膜等についても同様なことがいえる。上記
のように平行平板電極型プラズマCVD装置では,試料
表面がプラズマに接していることからプラズマ中で生成
される副反応生成物の堆積膜中への混入が避けられない
問題点があった。又,平行平板電極型プラズマCVD装
置では,各電極にカーボングラファイト,酸化アルミニ
ウム,ステンレス材などが使用されるため,試料に対す
る重金属汚染の懸念もある。このような成膜中に不純物
混入の危惧があるプラズマCVD処理技術では,高集積
化の要求に応える細密化や高品質化の障害となる。
In order to meet the recent demand for higher integration of semiconductor integrated circuits, fine and high quality film formation is required. However, in the above parallel plate electrode type plasma CVD apparatus, the plasma is generated between the electrodes, so that the sample comes into contact with the plasma, and it is preferable to use various compounds generated by the plasma regardless of whether it is preferable or not. Mixed in. For example, when forming a silicon oxide film (SiO), silane gas (SiH 4 ) and nitrous oxide gas (N 2 ) are generally used as a CVD processing gas.
O) is used. In addition, the organic liquid material ethyl silicate (T
EOS) may be used as a processing gas by using a vaporizer such as a bubbler. Ideally, in the silicon oxide film to be deposited, silanol (-OH) components, hydrocarbons, hydrogen components, nitrides that deteriorate the electrical properties of the film (electric breakdown withstand voltage, leakage current resistance) , Organic matter, heavy metals, etc. should not be contained at all. However, even in the case where the material gas is the silane gas and the nitrous oxide gas as described above, most of the compounds formed by the combination of the elements of Si, H, N and O are present in the plasma. Therefore, impurities such as O, H, and N are mixed in the silicon oxide film actually deposited by plasma CVD, and the film density and electrical characteristics are deteriorated. It is well known that a silicon oxide film formed by a parallel plate electrode type plasma CVD apparatus generally contains a large amount of hydrogen. The above problems are not limited to silicon oxide films, but silicon nitride films,
The same applies to the amorphous silicon film, the tungsten film, the tungsten silicide film, and the like. As described above, in the parallel plate electrode type plasma CVD apparatus, since the sample surface is in contact with the plasma, there is a problem that side reaction products generated in the plasma are inevitably mixed in the deposited film. Further, in the parallel plate electrode type plasma CVD apparatus, since carbon graphite, aluminum oxide, stainless steel, etc. are used for each electrode, there is a concern of heavy metal contamination of the sample. In such a plasma CVD processing technique in which impurities may be mixed in during film formation, there are obstacles to miniaturization and high quality that meet the demand for high integration.

【0004】一方,上記ECRプラズマCVD装置で
は,試料がプラズマ中に曝されることがないため,平行
平板電極型プラズマCVD装置でみられるような副反応
生成物の膜中への混入はない。しかし,装置構成上の問
題点がある。即ち,磁場とマイクロ波との作用でECR
を均一に発生させることは容易でなく,現在の半導体製
造プロセスの主流となっている8インチウェハー(試
料)を処理できる装置を作ろうとすると,かなり大きな
磁場発生コイルを備えることが要求され,装置の大型化
に伴うコストアップ,設置スペースの増加等の問題点が
生じる。又,ECRプラズマCVD装置では,プラズマ
の均一性が誘電体窓の環境によって左右されやすく,誘
電体窓にCVD膜が堆積されて汚染されると,成膜の堆
積速度が試料面上,あるいは試料間で不均一となる問題
点があった。この誘電体窓の汚染は,誘電体窓のクリー
ニングを随時行うことにより解決されるが,周囲に磁場
発生コイルが配置された状態にあるため,クリーニング
の実施は容易でない。そこで,本願発明者らは試料がプ
ラズマ中に曝されることなくCVD処理を行うことが可
能で,且つ簡易な構成で高密度プラズマを大口径で発生
させることが可能なプラズマ発生手段として,ICPに
よるプラズマに注目した。従来型のICPではプラズマ
CVD装置として利用するには問題があったが,プラズ
マ発生のための高周波電力を印加するアンテナに改良が
加えられたことによって大口径の高密度プラズマの生成
が可能となった。本願発明者らは,このICPによりプ
ラズマCVD装置を構成すると共に,試料上に形成され
る成膜中に不純物の混入がより少なく,且つCVD処理
に必要な試料の加熱温度をより高く保つことができるよ
うに構成して,本発明をなすに到った。従って,本発明
の目的は,プラズマ発生手段としてICPを採用すると
共に,高品質の成膜処理を可能にしたプラズマCVD装
置を提供することにある。
On the other hand, in the above ECR plasma CVD apparatus, since the sample is not exposed to plasma, there is no mixing of side reaction products into the film as seen in the parallel plate electrode type plasma CVD apparatus. However, there is a problem in the device configuration. That is, ECR is generated by the action of the magnetic field and microwave.
It is not easy to generate uniformly, and it is required to have a considerably large magnetic field generating coil in order to make a device that can process an 8-inch wafer (sample), which is the mainstream of the current semiconductor manufacturing process. Problems such as cost increase and installation space increase due to the increase in size. Further, in the ECR plasma CVD apparatus, the plasma uniformity is easily influenced by the environment of the dielectric window, and when the CVD film is deposited and contaminated on the dielectric window, the deposition rate of the film formation is on the sample surface or the sample. There was a problem that it was not uniform between the two. The contamination of the dielectric window can be solved by cleaning the dielectric window at any time, but the cleaning is not easy because the magnetic field generating coil is arranged around the dielectric window. Therefore, the inventors of the present application have used ICP as a plasma generation means capable of performing a CVD process without exposing a sample to plasma and capable of generating a high-density plasma with a large diameter with a simple structure. I paid attention to the plasma. The conventional ICP has a problem in using it as a plasma CVD apparatus, but it is possible to generate a large-diameter high-density plasma by improving an antenna for applying high-frequency power for plasma generation. It was The inventors of the present application can configure a plasma CVD apparatus by using this ICP, keep impurities less mixed during film formation on the sample, and keep the sample heating temperature required for the CVD process higher. The present invention has been configured so that the present invention can be made. Therefore, it is an object of the present invention to provide a plasma CVD apparatus which employs an ICP as a plasma generating means and enables high quality film forming processing.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明が採用する手段は,高周波電力が印加された真
空容器内に所要のCVD処理ガスを導入してプラズマ化
し,該プラズマにより生成された分解生成物を上記真空
容器内に配置された試料上に堆積させるプラズマCVD
装置において,上記CVD処理ガスを導入するガス導入
ノズルと,上記高周波電力を導入する誘電体窓とを備え
た真空容器と,上記誘電体窓外の近接位置に配設され,
該誘電体窓外から上記真空容器内に高周波電力を印加す
ることにより,真空容器内に高周波電場を誘起させるア
ンテナと,上記真空容器内の所定位置に配設され,試料
載置部分が石英ガラスで形成されてなると共に,載置さ
れる上記試料を所定温度に加熱する加熱手段を備えてな
る試料台を具備してなることを特徴とするプラズマCV
D装置として構成される。又,上記プラズマCVD装置
は,上記真空容器内にCVD処理ガスを導入するガス導
入ノズルが石英ガラスで形成されてなるプラズマCVD
装置として構成することができる。
In order to achieve the above-mentioned object, the means adopted by the present invention is to introduce a required CVD processing gas into a vacuum container to which high frequency power is applied to generate plasma, and generate by the plasma. CVD for depositing decomposed decomposition products on a sample placed in the vacuum container
In the apparatus, a vacuum container having a gas introduction nozzle for introducing the CVD processing gas, a dielectric window for introducing the high frequency power, and a vacuum container provided at a close position outside the dielectric window,
An antenna for inducing a high-frequency electric field in the vacuum container by applying high-frequency power from the outside of the dielectric window to the inside of the vacuum container, and a sample mounting portion which is arranged at a predetermined position in the vacuum container and is made of quartz glass. A plasma CV characterized by comprising a sample table formed of the above-mentioned and provided with a heating means for heating the mounted sample to a predetermined temperature.
It is configured as a D device. The plasma CVD apparatus is a plasma CVD apparatus in which a gas introducing nozzle for introducing a CVD processing gas into the vacuum container is made of quartz glass.
It can be configured as a device.

【0006】[0006]

【作用】本発明によれば,ガス導入ノズルから所要のC
VD処理ガスを真空容器内に導入し,誘電体窓の近傍に
配設されたアンテナに高周波電力を供給すると,アンテ
ナからの電磁波により真空容器内に高周波電場が誘起さ
れ,該高周波電場によりCVD処理ガスがプラズマ化さ
れる。ICPによるプラズマ発生は電磁波の伝播状態に
よって影響される度合いが少ないので,ECRプラズマ
の場合のように誘電体窓の汚染がプラズマの均一性に即
影響されることがない。このプラズマは真空容器内のア
ンテナに近い側に発生するので,試料はプラズマに曝さ
れない位置に配置することができ,プラズマにより生成
されるCVD処理ガスの分解生成物は試料台上に載置さ
れた試料表面上に堆積して成膜がなされる。従って,上
記のように試料がプラズマに曝されることがなく,尚且
つ,試料が載置される試料台の載置部分が石英ガラスで
形成されているため,堆積膜中への不純物の混入が解消
される。又,上記試料台の載置部分を石英で形成するこ
とにより,載置される試料の加熱温度を高く設定するこ
とができる。CVDの化学反応は温度により進行し,多
くの場合その反応は高温であるため,加熱温度の上限が
高いことはCVD装置にとって有効である。更に,ガス
導入ノズルを石英ガラスによって形成することによっ
て,導入されるCVD処理ガス中への不純物の混入が防
止される。
According to the present invention, the required C from the gas introduction nozzle is
When VD processing gas is introduced into a vacuum container and high frequency power is supplied to an antenna arranged in the vicinity of a dielectric window, a high frequency electric field is induced in the vacuum container by an electromagnetic wave from the antenna, and the CVD processing is performed by the high frequency electric field. The gas is turned into plasma. Since the generation of plasma by ICP is less affected by the propagation state of electromagnetic waves, the contamination of the dielectric window is not immediately affected by the uniformity of plasma as in the case of ECR plasma. Since this plasma is generated in the vacuum container on the side close to the antenna, the sample can be placed at a position not exposed to the plasma, and the decomposition products of the CVD processing gas generated by the plasma are placed on the sample table. A film is formed by depositing on the surface of the sample. Therefore, the sample is not exposed to the plasma as described above, and since the mounting portion of the sample table on which the sample is mounted is made of quartz glass, the contamination of impurities in the deposited film is prevented. Is eliminated. Further, by forming the mounting portion of the sample table with quartz, the heating temperature of the mounted sample can be set high. Since the chemical reaction of CVD proceeds depending on the temperature, and in many cases the reaction is at a high temperature, a high upper limit of the heating temperature is effective for the CVD apparatus. Further, by forming the gas introduction nozzle with quartz glass, it is possible to prevent impurities from being mixed into the introduced CVD processing gas.

【0007】[0007]

【実施例】以下,添付図面を参照して本発明を具体化し
た実施例につき説明し,本発明の理解に供する。尚,以
下の実施例は本発明を具体化した一例であって,本発明
の技術的範囲を限定するものではない。ここに,図1は
本発明の一実施例に係るプラズマCVD装置の構成を示
す模式図,図2は実施例に係るアンテナ形状の一例で,
図1に示すアンテナの平面図である。図1において,本
実施例に係るプラズマCVD装置1は,円筒状に形成さ
れ,ガス導入ポート10と真空排気のための排気ポート
11とを備えた真空容器2と,該真空容器2の中心軸線
上に設けられた誘電体窓3と,該誘電体窓3の近傍外側
に配置されたアンテナ4と,該アンテナ4に高周波電力
をマッチング回路8を介して供給する高周波電源9と,
上記真空容器2の中心軸線上の任意高さ位置に移動可能
に配設され,試料5を載置するサセプター(載置部分)
7と,該サセプター7を介して試料5を所定温度に加熱
する加熱用ヒータ(加熱手段)12とを備えた試料台6
とを具備して構成されている。上記アンテナ4は,例え
ば,図2に示すような渦巻き状に形成されたアンテナ4
として構成することができ,高周波電源9から供給され
る高周波電力を真空容器2内に輻射して,真空容器2内
に高周波電場を誘起させる。又,上記サセプター7は石
英ガラスにより形成され,載置される試料5への不純物
の混入を排除すると共に,裏面に設けられた加熱ヒータ
12による試料5の加熱温度の上限を高く設定できるよ
う構成されている。更に,ガス導入ポート10から真空
容器2内へCVD処理ガスを噴出させるガス導入ノズル
10aも石英ガラスにより形成され,CVD処理ガス中
への不純物の混入の排除が図られている。
Embodiments of the present invention will be described below with reference to the accompanying drawings for the understanding of the present invention. The following embodiments are examples of embodying the present invention and do not limit the technical scope of the present invention. 1 is a schematic diagram showing the configuration of a plasma CVD apparatus according to an embodiment of the present invention, and FIG. 2 is an example of an antenna shape according to the embodiment.
It is a top view of the antenna shown in FIG. In FIG. 1, a plasma CVD apparatus 1 according to the present embodiment is formed in a cylindrical shape, and has a vacuum container 2 having a gas introduction port 10 and an exhaust port 11 for vacuum exhaust, and a central axis of the vacuum container 2. A dielectric window 3 provided on the line, an antenna 4 arranged outside the dielectric window 3 in the vicinity thereof, a high frequency power supply 9 for supplying high frequency power to the antenna 4 through a matching circuit 8,
A susceptor (mounting portion) that is movably arranged at a position on the central axis of the vacuum container 2 and that mounts the sample 5 thereon.
7 and a sample stage 6 including a heater (heating means) 12 for heating the sample 5 to a predetermined temperature via the susceptor 7.
And is configured. The antenna 4 is, for example, an antenna 4 formed in a spiral shape as shown in FIG.
The high frequency power supplied from the high frequency power source 9 is radiated into the vacuum container 2 to induce a high frequency electric field in the vacuum container 2. Further, the susceptor 7 is formed of quartz glass so that impurities are not mixed into the mounted sample 5 and the upper limit of the heating temperature of the sample 5 by the heater 12 provided on the back surface can be set high. Has been done. Furthermore, the gas introduction nozzle 10a for ejecting the CVD processing gas from the gas introduction port 10 into the vacuum container 2 is also made of quartz glass, and the inclusion of impurities in the CVD processing gas is eliminated.

【0008】本実施例は,上記構成になるプラズマCV
D装置1により,試料5として採用された6インチ・シ
リコンウェハーに対してCVD成膜を行うものである。
該試料5を試料台6のサセプター7上に載置し,排気ポ
ート11から図示しない真空ポンプにより真空排気し
て,シラン(SiH4 )及び亜酸化窒素ガス(N2 O)
をそれぞれ別々に流量制御した後,ガス導入ポート10
から真空容器2内に導入する。本実施例における成膜プ
ロセス条件では,高周波電源から13.56MHzの高
周波を10W〜1000Wでアンテナ4に供給し,シラ
ンと亜酸化窒素ガスをそれぞれ100sccm,500
sccmの流量で真空容器2内に導入した。又,試料5
である6インチ・シリコンウェハーの温度を300度〜
400度,圧力は10mTorr〜1000mTorr
とし,試料台6を移動させて試料5と誘電体窓3との距
離を1cm〜30cmに変化させてCVD処理を行った。上
記構成において,ガス導入ノズル10aから所要のCV
D処理ガスを真空容器2内に導入し,誘電体窓3の近傍
に配設されたアンテナに高周波電力を供給すると,アン
テナからの電磁波により真空容器内に高周波電場が誘起
される。この高周波電場は自然放射線等によって真空容
器2内に発生した電子を加速し,CVD処理ガス中の中
性原子と衝突して該中性原子をイオン化してイオンと電
子とを生成し,初期プラズマを発生する。新たに発生し
た電子は高周波電場により加速され,イオンと電子を生
成する過程を繰り返す。このようにしてプラズマ密度が
ある程度以上上昇すると,プラズマ中の電子密度が上昇
してプラズマ中の電子の応答周波数を上昇させる。その
結果,プラズマはあたかも導電体のように作用して高周
波電界を遮断するかのように電流が流れて,電磁波を遮
断し始める。このとき,プラズマ固有の特殊なモード以
外はプラズマ内部に電磁波が入らないため,表面のプラ
ズマのみがアンテナからの電磁波のエネルギーを得てプ
ラズマ密度を更に上昇させ,プラズマ内部に拡散する。
In this embodiment, the plasma CV having the above structure is used.
The D device 1 is used to form a CVD film on a 6-inch silicon wafer used as the sample 5.
The sample 5 is placed on the susceptor 7 of the sample table 6 and evacuated from the exhaust port 11 by a vacuum pump (not shown) to supply silane (SiH 4 ) and nitrous oxide gas (N 2 O).
After individually controlling the flow rate of each gas, the gas introduction port 10
Is introduced into the vacuum container 2. Under the film forming process conditions in this embodiment, a high frequency of 13.56 MHz is supplied from the high frequency power source to the antenna 4 at 10 W to 1000 W, and silane and nitrous oxide gas are 100 sccm and 500, respectively.
It was introduced into the vacuum container 2 at a flow rate of sccm. Also, sample 5
The temperature of the 6-inch silicon wafer is 300 degrees
400 degrees, pressure 10mTorr ~ 1000mTorr
Then, the sample stage 6 was moved to change the distance between the sample 5 and the dielectric window 3 to 1 cm to 30 cm, and the CVD process was performed. In the above configuration, the required CV from the gas introduction nozzle 10a
When the D processing gas is introduced into the vacuum container 2 and high frequency power is supplied to the antenna arranged near the dielectric window 3, a high frequency electric field is induced in the vacuum container by the electromagnetic waves from the antenna. This high-frequency electric field accelerates electrons generated in the vacuum chamber 2 by natural radiation or the like, collides with neutral atoms in the CVD processing gas and ionizes the neutral atoms to generate ions and electrons, and initial plasma To occur. The newly generated electrons are accelerated by the high-frequency electric field, and the process of generating ions and electrons is repeated. When the plasma density rises above a certain level in this way, the electron density in the plasma rises and the response frequency of the electrons in the plasma rises. As a result, the plasma acts as a conductor and a current flows as if to block the high-frequency electric field, and begins to block the electromagnetic waves. At this time, electromagnetic waves do not enter inside the plasma except in a special mode peculiar to the plasma, so only the plasma on the surface obtains the energy of the electromagnetic waves from the antenna to further increase the plasma density and diffuse inside the plasma.

【0009】上記のようにして発生したプラズマにより
生成される分解生成物は試料5上に堆積される。試料5
は試料台6を移動させてプラズマに直接曝されない位置
に試料表面(堆積膜を形成させたい部分)を配置するこ
とができるので,成膜中に不純物の混入がない緻密なC
VD膜が形成される。又,真空容器2内のプラズマに曝
される位置に導電体が配設されないので試料5の汚染が
なく,ガス導入ポート10のノズルを石英ガラスによっ
て形成することによってCVD処理ガス中への不純物の
混入をも排除して,上記不純物の混入のない緻密なCV
D膜の形成が確保される。上記実施例におけるプロセス
条件では,試料5の加熱温度は300〜400度に設定
しているが,サセプター7を石英ガラスで形成したこと
により,従来構成における上限温度は約500度であっ
たが,約1100度にまで上昇させることが可能とな
り,CVD処理を行う条件により処理温度を高く設定す
ることができ,不純物の混入が排除されることに併せて
高品質なCVD処理が達成される。又,ECRプラズマ
CVD装置と比較して装置構成が簡単であるため,真空
容器内のクリーニングを容易に行うことができる。
Decomposition products produced by the plasma generated as described above are deposited on the sample 5. Sample 5
Since the sample surface (the portion where the deposited film is to be formed) can be arranged at a position where the sample table 6 is not moved to be directly exposed to plasma, the dense C that does not contain impurities during film formation
A VD film is formed. In addition, since the conductor is not disposed at the position exposed to the plasma in the vacuum container 2, the sample 5 is not contaminated, and the nozzle of the gas introduction port 10 is formed of quartz glass so that impurities in the CVD processing gas can be prevented. Dense CV free from the above impurities by eliminating the inclusion
The formation of the D film is ensured. Under the process conditions in the above-mentioned embodiment, the heating temperature of the sample 5 is set to 300 to 400 degrees, but the upper limit temperature in the conventional configuration was about 500 degrees because the susceptor 7 was made of quartz glass. It is possible to raise the temperature to about 1100 ° C., the processing temperature can be set high depending on the condition for performing the CVD process, and the inclusion of impurities is eliminated, and the high-quality CVD process is achieved. Further, since the apparatus structure is simple as compared with the ECR plasma CVD apparatus, the inside of the vacuum container can be easily cleaned.

【0010】[0010]

【発明の効果】以上の説明の通り本発明によれば,ガス
導入ノズルから所要のCVD処理ガスを真空容器内に導
入し,誘電体窓の近傍に配設されたアンテナに高周波電
力を供給すると,アンテナからの電磁波により真空容器
内に高周波電場が誘起され,該高周波電場によりCVD
処理ガスがプラズマ化される。ICPによるプラズマ発
生は電磁波の伝播状態によって影響される度合いが少な
いので,ECRプラズマの場合のように誘電体窓の汚染
がプラズマの均一性に即影響されることがない。このプ
ラズマは真空容器内のアンテナに近い側に発生するの
で,試料はプラズマに曝されない位置に配置することが
でき,プラズマにより生成されるCVD処理ガスの分解
生成物は試料台上に載置された試料表面上に堆積して成
膜がなされる。したがって,上記のように試料がプラズ
マに曝されることがなく,尚且つ,試料が載置される試
料台の載置部分が石英ガラスで形成されているため,堆
積膜中への不純物の混入が解消される。又,上記試料台
の載置部分を石英で形成することにより,載置される試
料の加熱温度を高く設定することができる。CVDの化
学反応は温度により進行し,多くの場合その反応は高温
であるため,加熱温度の上限が高いことはCVD装置に
とって有効である。
As described above, according to the present invention, when the required CVD processing gas is introduced into the vacuum container from the gas introduction nozzle, high frequency power is supplied to the antenna arranged near the dielectric window. , An electromagnetic wave from an antenna induces a high frequency electric field in the vacuum container, and the high frequency electric field causes CVD.
The processing gas is turned into plasma. Since the generation of plasma by ICP is less affected by the propagation state of electromagnetic waves, the contamination of the dielectric window is not immediately affected by the uniformity of plasma as in the case of ECR plasma. Since this plasma is generated in the vacuum container on the side close to the antenna, the sample can be placed at a position not exposed to the plasma, and the decomposition products of the CVD processing gas generated by the plasma are placed on the sample table. A film is formed by depositing on the surface of the sample. Therefore, as described above, the sample is not exposed to the plasma, and since the mounting portion of the sample table on which the sample is mounted is made of quartz glass, impurities are not mixed in the deposited film. Is eliminated. Further, by forming the mounting portion of the sample table with quartz, the heating temperature of the mounted sample can be set high. Since the chemical reaction of CVD proceeds depending on the temperature, and in many cases the reaction is at a high temperature, a high upper limit of the heating temperature is effective for the CVD apparatus.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係るプラズマCVD装置
の構成を示す模式図。
FIG. 1 is a schematic diagram showing the configuration of a plasma CVD apparatus according to an embodiment of the present invention.

【図2】 実施例に係るアンテナ構成の例を示す模式
図。
FIG. 2 is a schematic diagram showing an example of an antenna configuration according to an embodiment.

【図3】 従来例に係る平行平板電極型プラズマCVD
装置の構成を示す模式図。
FIG. 3 is a parallel plate electrode type plasma CVD according to a conventional example.
The schematic diagram which shows the structure of an apparatus.

【図4】 従来例に係るECRプラズマCVD装置の構
成を示す模式図。
FIG. 4 is a schematic diagram showing a configuration of an ECR plasma CVD apparatus according to a conventional example.

【符号の説明】 1…プラズマCVD装置 2…真空容器 3…誘電体窓 4…アンテナ 5…試料 6…試料台 7…サセプター(載置部分) 10…ガス導入ポート 10a…ガス導入ノズル 11…排気ポート 12…加熱用ヒータ(加熱手段)[Explanation of Codes] 1 ... Plasma CVD apparatus 2 ... Vacuum container 3 ... Dielectric window 4 ... Antenna 5 ... Sample 6 ... Sample stand 7 ... Susceptor (placement portion) 10 ... Gas introduction port 10a ... Gas introduction nozzle 11 ... Exhaust Port 12 ... Heating heater (heating means)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高周波電力が印加された真空容器内に所
要のCVD処理ガスを導入してプラズマ化し,該プラズ
マにより生成された分解生成物を上記真空容器内に配置
された試料上に堆積させるプラズマCVD装置におい
て,上記CVD処理ガスを導入するガス導入ノズルと,
上記高周波電力を導入する誘電体窓とを備えた真空容器
と,上記誘電体窓外の近接位置に配設され,該誘電体窓
外から上記真空容器内に高周波電力を印加することによ
り,真空容器内に高周波電場を誘起させるアンテナと,
上記真空容器内の所定位置に配設され,試料載置部分が
石英ガラスで形成されてなると共に,載置される上記試
料を所定温度に加熱する加熱手段を備えてなる試料台を
具備してなることを特徴とするプラズマCVD装置。
1. A required CVD processing gas is introduced into a vacuum container to which high frequency power is applied to generate plasma, and a decomposition product generated by the plasma is deposited on a sample arranged in the vacuum container. In the plasma CVD apparatus, a gas introduction nozzle for introducing the above CVD processing gas,
A vacuum container provided with a dielectric window for introducing the high frequency power and a proximity position outside the dielectric window, and by applying high frequency power into the vacuum container from outside the dielectric window, a vacuum is obtained. An antenna for inducing a high frequency electric field in the container,
The sample container is provided at a predetermined position in the vacuum container, the sample mounting portion is made of quartz glass, and the sample table is provided with a heating means for heating the mounted sample to a predetermined temperature. And a plasma CVD apparatus.
【請求項2】 上記ガス導入ノズルが石英ガラスで形成
されてなる請求項1記載のICPによるプラズマCVD
装置。
2. The plasma CVD by ICP according to claim 1, wherein the gas introduction nozzle is made of quartz glass.
apparatus.
JP5161441A 1993-06-30 1993-06-30 Plasma cvd device Pending JPH0722332A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5161441A JPH0722332A (en) 1993-06-30 1993-06-30 Plasma cvd device
US08/917,803 US5824158A (en) 1993-06-30 1997-08-27 Chemical vapor deposition using inductively coupled plasma and system therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5161441A JPH0722332A (en) 1993-06-30 1993-06-30 Plasma cvd device

Publications (1)

Publication Number Publication Date
JPH0722332A true JPH0722332A (en) 1995-01-24

Family

ID=15735179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5161441A Pending JPH0722332A (en) 1993-06-30 1993-06-30 Plasma cvd device

Country Status (1)

Country Link
JP (1) JPH0722332A (en)

Similar Documents

Publication Publication Date Title
US10340123B2 (en) Multi-frequency power modulation for etching high aspect ratio features
US5824158A (en) Chemical vapor deposition using inductively coupled plasma and system therefor
JP4817528B2 (en) Electronic workpiece manufacturing equipment
US6553932B2 (en) Reduction of plasma edge effect on plasma enhanced CVD processes
KR100783200B1 (en) Apparatus for depositing film and apparatus for plasma processing a substrate
US20010003014A1 (en) Plasma CVD apparatus and plasma CVD method
US20050005854A1 (en) Surface wave plasma treatment apparatus using multi-slot antenna
US10410873B2 (en) Power modulation for etching high aspect ratio features
EP0179665A2 (en) Apparatus and method for magnetron-enhanced plasma-assisted chemical vapor deposition
WO2004049420A1 (en) Plasma processing apparatus and method
JP4052454B2 (en) Method for manufacturing silicon oxide film or silicon nitride film
JPH0766186A (en) Anisotropic depositing method of dielectric
WO2021132010A1 (en) Film forming method and film forming system
US10381238B2 (en) Process for performing self-limited etching of organic materials
JP4478352B2 (en) Plasma processing apparatus, plasma processing method, and structure manufacturing method
JPH0722332A (en) Plasma cvd device
JP2001073150A (en) Microwave supply device and plasma treatment device as well treatment therefor
JP2003133398A (en) Double-electrode wafer holder of plasma-assisted wafer processing apparatus
JPH07263354A (en) Formation of plasma cvd film
KR100381915B1 (en) Chemical Vapor Deposition Device Using Microwave
JPH0722333A (en) Plasma cvd processing method and device
JPH01279757A (en) Plasma treatment apparatus
JPH11167998A (en) Plasma processing device and processing method using parabolic antenna
JPH08253864A (en) Plasma chemical vapor deposition device
JPH1187328A (en) Plasma-processing apparatus